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Abstract: The promotion of the battery electric vehicle has become a worldwide problem for
governments due to its short endurance range and slow charging rate. Besides an appropriate
network of charging facilities, a subsidy has proved to be an effective way to increase the market
share of battery electric vehicles. In this paper, we investigate the joint optimal policy for a subsidy
on electric vehicles and infrastructure construction in a highway network, where the impact of siting
and sizing of fast charging stations and the impact of subsidy on the potential electric vehicle flows is
considered. A new specified local search (LS)-based algorithm is developed to maximize the overall
number of available battery electric vehicles in the network, which can get provide better solutions in
most situations when compared with existed algorithms. Moreover, we firstly combined the existing
algorithms to establish a multi-stage optimization method, which can obtain better solutions than all
existed algorithms. A practical case from the highway network in Hunan, China, is studied to analyze
the factors that impact the choice of subsidy and the deployment of charging stations. The results
prove that the joint policy for subsidy and infrastructure construction can be effectively improved
with the optimization model and the algorithms we developed. The managerial analysis indicates
that the improvement on the capacity of charging facility can increase the proportion of construction
fees in the total budget, while the improvement in the endurance range of battery electric vehicles
is more efficient in expanding battery electric vehicle adoption in the highway network. A more
detailed formulation of the battery electric vehicle flow demand and equilibrium situation will be
studied in the future.

Keywords: battery electric vehicles; charging station; local search; location problem

1. Introduction

Battery electric vehicles (BEVs) are regarded as a most promising solution to increasingly serious
air pollution and global warming [1]. The widely adoption of BEV can bring many advantages,
such as energy conservation, emission reduction and clean energy application [2,3]. However, the
popularization of BEVs is a universal difficulty for the governments worldwide. Compared with
traditional internal combustion engine (IDE) vehicles at the same price, the endurance range of BEVs
is much shorter [4]. The adoption of BEVs in a highway network relies on a widespread network
of charging facilities. On the other hand, customers are reductant to purchase BEVs due to the long
recharging time, even though there may be sufficient charging facilities. Thus, besides constructing
basic infrastructures, governments need to increase the ownership of BEVs among citizens.
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To promote BEV purchasing, some governments provide a subsidy to the customers who own or
buy BEVs, such as in China and India. According to the data of EV-volumes [5] in Figure 1, since the
Chinese government began to largely implement the subsidy in 2013 [6], the ownerships of BEVs has
gained huge growth, which is much faster than in other countries. China now has the largest market
share in the world. This proves that the subsidy is an effective way to increase the willing of customer
to purchase BEVs.
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On the other hand, the location and size of a charging station is essential for the BEVs running
on the highway network. As the endurance range of a BEV is much shorter [7], it needs to recharge
more frequently than IDE vehicles. Meanwhile, even with a fast charging pile, it still takes about
half an hour to take a fully recharge for BEV, which means the service capacity of a charging pile is
limited. As the construction and maintenance cost of the charging facility is high, the investment is
often not sufficient to cover all the charging demand. To maximize the BEV traffic on the highway
network, an optimal siting and sizing scheme of the charging station is necessary to take full use of
the investment. Meanwhile, as the total investment is limited, the policymaker needs to balance the
budget distribution on the facility construction and the subsidy.

The siting and sizing problem of a charging station is different from the traditional facility location
problem, which can be described in four aspects: (1) instead of concentrating in some nodes, the
demand in the problem is more like a flow from one node to another; (2) The flow demand often
needs to recharge multiple times and the distances between the recharging nodes cannot exceed a
fixed length that is called the endurance constraint; (3) The volume of the demand that can be charged
depends on the service capacity of the charging stations on the route; (4) The drivers have their own
strategy to choose the station when there are multiple choices. In recent years, much research has
investigated the siting and sizing problem of charging station, which is introduced as follows.

For facilities like advertisements, demand is more like being captured instead of fulfilled by the
facility. To formulate the location problem of these facilities, Hodgson [8] presents a new model called
the flow capturing location model (FCLM), in which the demand is presented as a flow from origin
to destination (O–D). Once a demand flow passes through a facility, the demand is marked captured
by the facility. Alhough there is no passing limit in FCLM, it is the basic model of many problems
with flow demand. Kuby and Lim [3] add the endurance constraint into the FCLM, which makes it
applicable to solve the location problem of a refueling station. They define that a demand can proceed
only if there are sufficient stations at fixed distances along the path. The extended model is called
a flow refueling location model (FRLM). A practical case of road network in Florida is discussed to
prove the performance of FRLM [9]. Kuby et al. pointed out that the largest difficulty is controlling
the computing complexity from the exponential growth of the combination number. Upchurch and
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Kuby [10] then compare the performance of FRLM and traditional node-based models. The result
proves that FRLM can achieve a better solution in the location problem of a refueling station in a
highway network. After that, much research has investigated FRLM. Lin et al. [11] proposed an
approach called the “fuel-travel-back” pattern to estimate the potential demand based on FRLM. They
suppose that the place where you drive most is the place where you are most likely to refuel. Thus, the
origin of a trip can be found with the vehicle miles traveled (VMT). In this way, the demand of a road
segment is concentrated into a node, which simplifies the solving process of FRLM. Wang and Lin [12]
change the objective of FRLM to minimize the cost for fulfilling all refueling demand. They use the
method of “set covering” to solve FRLM by cutting demand into segments, which saves much of the
calculating time.

In FRLM, the refueling time is short enough that it can be ignored. However, it is unreasonable for
the BEVs as the recharging time is relatively long, which means the service capacity of a charging pile is
limited. Upchurch et al. [13] extend the FRLM by adding a capacity constraint to fit the requirement of
the charging station location problem, namely, the capacitated flow refueling location model (CFRLM).
In CFRLM, the service capacity of a charging station is measured by the number of the charging piles
in it. Meanwhile, when the service capacity is limited, the charging strategy of drivers needs to be
formulated, as it can impact on the sizing scheme of a charging station. Upchurch et al. assume that
the recharging pattern of a driver can be decided by the planner in a system-optimal manner. Besides
CFRLM, Capar et al. [14] raise another model to formulate the siting and sizing problem of a charging
station called the arc cove-path cover model (AC-PC). The AC-PC is based on the observation that if
all the sub-paths of a path are accessible, the path is also accessible. In this way, the demand of a path
can be separated to every arc of the path, in which the station choice does not have to be discussed.
In other words, AC-PC places some redundancy to fulfill all the possible situations of station choice.
Wang et al. [15] find a reasonable approach to formulate the charging strategy of drivers with utility
theory. They find that different charging schemes in a path are just like different routes for an O–D
pair. The drivers in the path have their own utility to choose every charging scheme depending on the
congestion situation of each charging station. Thus, they define the usefulness of a driver to choose a
charging scheme by the possibility of being served. However, the algorithm they used only contains
optimization in the siting aspect. Once the siting scheme of stations is settled, the sizing scheme is
made with some fixed strategy, which will miss better solutions.

There is also some research studying the location problem of charging stations in urban areas.
Sadeghi-Barzani et al. [16] investigate the impact of the electric grid loss, development cost, substations
location and other aspects on location decision. Andrenacci et al. [17] concentrate on demand with
the cluster method, which separates the entire network into subareas. Xiang et al. [18] consider the
distribution of charging demand in time periods of both weekdays and weekends. An equilibrium
situation is defined to illustrate the system optimization of the road network. Arias et al. [19] estimate
the charging patterns of different kinds of BEVs with a Markov chain, with which they can predict the
volume of O–D flows with historical traffic data. Zhang et al. [20] prove that placing multiple cables
on one charging output can achieve higher efficiency of facilities. As the traveling distance is much
shorter in urban area, the studies introduced above do not consider the endurance constraint. The
demand is directly linked to the charging facilities, which is more suitable for node-based models.

In this paper, we firstly introduced the joint policy planning problem of the subsidy and the
infrastructure construction in adopting BEVs. A specified FRLM is developed to formulate the
joint optimization of a subsidy and infrastructure construction under a budget constraint, which
contains the subsidy choice and the siting and sizing of charging station. A specified local search (LS)
algorithm is approached to maximize the number of charged BEVs under given investment, which
allows the optimization in both the siting and sizing aspects. Finally, a practical case study from the
highway network of Hunan, China, is proposed to test the effectiveness of the algorithm in solving the
deployment problem of the subsidy and the construction fee in total investment.
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The rest of this study is structured as follows: Section 2 describes the problem of this subscription
and constructs the optimization model. A local search-based algorithm is also introduced. Section 3
presents a practical case study based on the highway network of Hunan, China. The algorithm’s
comparison and managerial analysis are also discussed. Section 4 discusses the practical meaning and
the limitations of this study. Finally, Section 5 presents the conclusion and future work.

2. Materials and Methods

In this section, we specified the capacitated flow refueling location model (CFRLM) developed
in [15] to formulate the joint policy optimization problem of subsidy and infrastructure construction
for BEV adoption. The impact of the subsidy is reflected in the amount of potential demand in the road
network. As the budget is limited, to maximize the number of charged BEVs in the network, a local
search-based algorithm is illustrated to find the optimal siting and sizing scheme of a charging station,
which can further improve the solution with two-stage optimization.

2.1. Model Formulation

In this subsection, we formulate the siting and sizing problem of a charging station in a similar
way to our prior work [15], which is included in parts (1) and (2). Then the impact of the subsidy
is formulated into the problem to make it fit the optimization in this paper, which is illustrated in
part (3). Finally, the main optimization model is presented in part (4). The notations used in the model
development are described in Nomenclature.

2.1.1. Highway Network Modeling

The highway network is defined as a network G(N, L), where N consists of the O–D nodes and
the candidate locations for a charging station, and L denotes the roads between these nodes. The O–D
nodes denote the cities and towns in the network while the candidate locations are the existing service
areas. Constructing charging stations in the service areas can save budget as there has already been
some basic infrastructure. As the charging pile stations are often built in pairs along the road, we
combine the twin stations in the same node as one, which can serve the demand from both directions.
The service capacity of each station depends on the number of charging piles in it.

The charging demand appears like a flow that comes from one O–D node to another O–D node.
The deviation from the shortest path is not considered as it may cause unacceptable distance addition
in highway network. The max demand between two O–D nodes is called the potential demand
represented by fq, where q represents the path between these two O–D nodes.

The actual number of BEVs that can go through a path depends on many aspects, including the
location and size of charging station, congestion situation of the network and the charging strategy of
customs. These aspects are discussed in detail in next subsection.

2.1.2. Driver Utility and Equilibrium Situation

When traveling on the road, the BEVs need to recharge every fixed distance to avoid being out of
power. This distance is called the endurance range of a BEV. Thus, if there are no sufficient charging
stations along the path, the demand of this path cannot be fulfilled at all. Figure 2 gives a simple
instance of a highway network in which s, t are O–D nodes and A, B, C are candidate nodes. If the
endurance range of BEV is 150 km, there are two station sets {A, C} and {B, C} that can support the
demand of path (s, t). These station sets are called the station combinations of path (s, t). However, the
combination {A, B, C} is not considered, because no one is willing to spend extra waiting time while
there are some better choices.
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If there are three stations constructed in node A, B and C, the customers of path (s, t) may have
multiple combinations to achieve their trip. As the service capacity of each station is limited, the
customers have their own preference to avoid congestion. In this paper, we exploit random utility
theory [21] to illustrate the distribution of potential charging demand. The random utility theory was
originally used in traffic equilibrium problem, which can measure the utility of drivers to choose one
from all the routes of an O–D pair. All the aspects that affect a driver’s willingness are contents in
the deterministic component V, which can be observed and measured. Besides, each individual has
a random error ε with a mean value of zero. Thus, the utility of a driver n in the path q to choose a
combination h can be expressed as follows:

Un
qh = Vn

qh + εn
qh, ∀h ∈ Hq, ∀q ∈ Q (1)

where Un
qh is the utility of driver n in path q to choose combination h, Vn

qh is the deterministic component
value for the choice of driver n, and εn

qh is an individual random error [15].
In a traffic equilibrium problem, V appears as a function illustrating the equivalent cost of all the

aspects. In the problem of this paper, as the route is fixed, the combinations of an O–D pair are treated
as the different routes. The only difference between these combinations is the service proportion Pqh,
which is expressed by Equation (2).

Pqh = E(Pn
qh) =


f ′qh
fqh

, fqh 6= 0

1, fqh = 0
, ∀q ∈ Q, ∀h ∈ Hq (2)

Thus, Pn
qh can be treated as the utility of drivers in path q who choose a combination h. In the

optimization problem of this paper, we focus on the macroscopic optimization of the policy, so the
utility discussed here is the expectation, which can be expressed with Equations (3) [15] and (4):

Vn
qh = Pn

qh (3)

Uqh = E(Un
qh) = E(Vn

qh) + E(εn
qh) = Pqh, ∀q ∈ Q, ∀h ∈ Hq (4)

where the mean value of εn
qh is zero.

According to utility theory, drivers always try to obtain maximum utility from routes. When
given a siting and sizing scheme of a charging station, the equilibrium situation of potential flow
should meet the following restrictions:

Firstly, for a path, the service proportions of its combinations should be equal with each other.
If the service proportion of one combination is higher, the drivers who choose other combinations
will change their prior choice to achieve higher proportions. This restriction can be expressed with
Equation (5) [15]:

Pqh = Pqh′ , ∀h, h′ ∈ Hq, ∀q ∈ Q (5)

Secondly, the charging station serves the BEVs from all paths indifferently. The number of BEVs
that are charged by a combination depends on the most congested station, which is called the bottleneck
of the combination. If the service proportion of station k is Zk, the definition of a bottleneck is expressed
with Equation (6) [15]:

Pqh ≤ Zk, ∀q ∈ Q, ∀h ∈ Hq, ∀k ∈ Kh (6)

According to the second restriction, all the combinations that treat the same station as a bottleneck
should have the same service proportion. This can be expressed with Equation (7) [15]:

Pqh = Pq′h′ , ∀h, h′
∣∣∣{chk = ch′k′ , ∀k ∈ Kh ∩ Kh′} (7)



Energies 2018, 11, 2479 6 of 21

Above all, the equilibrium situation can be described with Equations (2), (5), (6) and (7).
To calculate the equilibrium situation of a given siting and sizing scheme, we use the approach based
on gradient projection developed in [15]. This approach can be expressed with the following steps:

Initialization: at the beginning, all the potential flows fqh are set with Equation (8), which aims
to uniformly separate the potential demand of every path to all the combinations of it.

fqh =
fq

∑
h∈H

bqh
(8)

Step 1: Sort all the stations with the value of Zk, which is expressed in Equation (9):

Zk =

Ixk − ∑
q∈Q

∑
h∈H

ahkbqhvqh f ′qh

∑
q∈Q

∑
h∈H

ahkbqh(1− vqh) fqh
(9)

where vqh is a recorder, that is 1, which means the fqh has been impacted by a more congested station,
and 0 otherwise. For the station with minimum Zk, set all the f ′qh that are charged by station k with
Equation (10), and then mark the corresponding vqh as 1. This process is repeated until all the Zk is no
less than 1.

f ′qh = Zk fqh (10)

Step 2: For all the combinations that can charge the path q ∈ Q, calculate the difference of Pqh.
If the maximum difference of all the paths is more than 0.01% (this value can be controlled based on
acquiring the accuracy), go to Step 3, and otherwise go to Step 4.

Step 3: update all fqh with Formula (11), set all vqh as 0, and then go to Step 1.

fqh =
f ′qh

∑
h′∈H

bqh′ f ′qh′
fq, ∀q ∈ Q, ∀h ∈ Hq (11)

Step 4: The volume of total charged BEV flow can be calculated with Formula (12). This is the end
of the approach.

F = ∑
q∈Q

∑
h∈H

bqh f ′qh (12)

2.1.3. Impact of Subsidy

The volume of potential demand can be impacted by the subsidy for each BEV. Some people
have already purchased BEV, and more customers may be willing to choose BEVs if they get higher
subsidy. Thus, we assume that the potential demand increases linearly with the subsidy, which can be
formulated as follows:

fq = f 0
q + er f 0

q (13)

where r is the growth coefficient, and f 0
q is the original potential flow without subsidy.

2.1.4. Main Optimization Model

The main model of the problem in this paper is shown as follows:

Max : F = ∑
q∈Q

∑
h∈H

bqh f ′qh(X, Y) (14)

Subject to : ∑
q∈Q

∑
h∈H

ahkbqh f ′qh(X, Y) ≤ Ixk, ∀k ∈ K (15)
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∑
k∈K

(skxk + nkyk) + e ∑
q∈Q

∑
h∈H

( f 0
qh + er f 0

qh) ≤ R (16)

xk ≤ Myk, ∀k ∈ K (17)

X = {xk > 0, ∀k ∈ K} (18)

Y = {yk = 1, ∀k ∈ K} (19)

yk ∈ {0, 1}, ∀k ∈ K0 (20)

xk ∈ {nonnegative integer}, ∀k ∈ K0 (21)

The objective Equation (14) is to maximize the number of charged BEV in the network. f ′qh(X, Y)
represents the number of charged BEVs that is obtained with a given siting and sizing scheme (X, Y)
of charging station. Equation (15) is the capacity constraint, which suggests that the number of BEVs
charged by a station cannot exceed its service capacity. Equation (16) is the budget constraint, which
presents that the sum of construction fee and subsidy cannot exceed the total budget. Equation (17)
ensures that charging piles must be constructed in an open station. Equations (18) and (19) represent
the decisions of location and size of charging stations. Equations (20) and (21) are the integrality
requirements for the variables.

2.2. Solution Method

With the description of the model in Section 3, we can find that the problem in this paper is a
two-stage optimization problem. In the [12], the sizing scheme is calculated with a fixed strategy
after the siting scheme is settled, which can decrease the complexity of computation. In pursuit of a
better solution, the sizing optimization need to be further discussed. In this section, we develop a new
algorithm based on local search, which can optimize the solution in both siting and sizing aspects.

If a siting and sizing scheme has already consumed the budget completely, there are two ways
that may increase the total charged flow. One is to decrease the number of stations, which brings more
investment to construct charging piles that can directly increase the charging capacity of a station. The
other is to raise the proportion of the short-term demand in the total demand, which takes less service
capacity. Thus, we first find an initial solution that can consume the entire budget as the start point of
the search, and then change the number and location of the charging station existing in the scheme to
achieve less station with more short demand. Finally, we try to find the best sizing scheme of the given
siting scheme. The approach can be illustrated with the following steps:

Before we introduce the computing process of the algorithm, an approach that is used to set the
initial sizing scheme X for a given location scheme Y needs to be illustrated. When given a location
scheme Y, we assume that the potential demand of each path is separate to every combination. Then
the number of each station is set depending on its potential demand. The pseudo-code of this process
is shown in Algorithm 1.

Step 1: Find an initial scheme that can consume the entire budget. There are many methods
to get an initial scheme, such as randomly generating some schemes and choosing the best one of
them. However, as the start point is essential to the searching effectiveness, the optimal start point can
speed the convergence of the solution. In this step, we use a method that can find a relatively optimal
solution with little computing. First, we sort all the candidate nodes with the potential demand. Then
from the first one, we add one node each time to the station set until the total cost of the scheme is
equal to the budget. Then the scheme is the starting point we need. The pseudo-code of this step is
shown in Algorithm 2.
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Algorithm 1. The pseudo-code of initial sizing scheme setting.
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Step 2: From the starting scheme, we generate m new schemes by randomly removing or adding 1
to n stations for the station set of the scheme, where m and n are non-negative integers. Then we do an
equilibrium process for the new schemes and calculate the total charged flow respectively. Compared
with the starting scheme, if a new scheme has larger total charged flow or less cost with the same
total charged flow, the new scheme is treated as a new starting scheme, which is used to generate new
schemes. The scheme with the largest total charged flow should be recorded during the whole process.
The pseudo-code of the second step is shown in Algorithm 3.

Algorithm 3. The pseudo-code of Step 2.
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Step 3: For the best scheme that appeared in Step 2, we generate new schemes by randomly
moving x charging piles from one station to another and calculate the total charged flow respectively.
The new generated schemes with larger total charged flow than the basic scheme are set as new
basic schemes. Then the scheme with the largest total charged flow is the best solution we seek. The
pseudo-code of the last step is shown in Algorithm 4.

Algorithm 4. The pseudo-code of Step 3.
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3. Results

In this section, a case study from the practical highway network in Hunan is discussed to test the
performance of the new local search algorithm and conduct managerial analysis. The endurance range
of a BEV is assumed to be 150 km. The number of BEVs that can be charged by a charging pile per
day is assumed to be 40. The constructing fee of a charging station is set to be 1.5 million, while the
charging pile is 0.15 million. The total investment is set to be 750 million. All the currency discussed
here is in USD. All the computational experiments are conducted on a Dell laptop with a 2.8 GHz
Core-i7 processor and 16 GB RAM.

The Hunan highway network is shown in Figure 4, and comprises 85 O–D nodes denoted by
blue rectangles, 118 candidate nodes denoted by red triangles and 225 arcs. The potential flows in the
network are set in the same way as Hodgson [6], which is expressed by Equation (22):

f (i, j) = kpi pj/dis(i,j) (22)

where f (i, j), dis(i,j) denote the potential BEV flow and the distance between node i to j respectively, pi
denotes the population in node i, and k is a coefficient.

Figure 5 shows the optimizing results of LS under different subsidies. The results are the
mean value of running this 20 times. When the subsidy for each BEV reaches 1500, the constructed
infrastructure cannot fulfill all the potential demand. When the scale of the subsidy continues growing,
there is even less budget for constructing infrastructure. Thus, the maximum amount of charged BEVs
must appear in the situation that the constructed facilities can just fulfill the entire potential demand.
However, the subsidy offered by the government cannot be accurate to detail this number, which is
always a whole hundred number, and we only need to compare the results around the separating
point like 1200 in Figure 5.

Figure 6 shows the computing times of the LS under different subsidies. The computing times
are the mean value of 20 times running. The computing time stays in a high level when the subsidy
is under 1200, because all the potential demand needs to be considered as the construction fee is
sufficient. Then, the computing time begins to decrease when the subsidy is between 1200 to 2400.
In this region, the potential demand cannot be fulfilled, but the convergence of LS is slow as there are
many available siting and sizing schemes. When the subsidy reaches 2700, the computing decreases
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swiftly as the construction fee can only afford to build a few charging stations, which leads to the rapid
convergence of the search. In general, the LS can obtain the solution with acceptable time cost.Energies 2018, 11, x FOR PEER REVIEW  12 of 22 
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Figure 6. The computing times of the local search algorithm under different subsidies.

The boxplot of running the local search 20 times is shown in Figure 7. To promote the stability of
the LS, the y-axis presents the proportion of the difference between the results and the mean value.
As we can see in Figure 6, when the subsidy is below 1500, the LS can always find the solution that
meets all the potential demand. When the subsidy reaches 1500, the maximum difference does not
exceed 4.0%, which proves a reliable stability of the LS.
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The best scheme of siting and sizing is shown in Figure 8, in which the green circles denote the
optimal location and size of charging stations. There are a total 32 stations and 3356 charging piles
with the total construction fee of 551.4 million, while the total subsidy is 198.6 million. The stations are
widely distributed in the network, of which the majority is concentrated in the north-east part of the
network, as it is the most populous area of Hunan. There are only some small stations constructed in
the north-west part of the network as it is a mountainous area with low population. The result reflects
well the real situation of demand distribution. The result well follows the rules of utility theory, which
gives the final choice of drivers that can achieve maximum probability of the charging service. In the
situation of this result, no one is willing to change their scheme of charging, as have less opportunity
to charge their vehicles.Energies 2018, 11, x FOR PEER REVIEW  14 of 22 
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Next, some managerial analyses are conducted to discuss some aspects that impact the budget
arrangement and the siting and sizing strategy.

3.1. Impact of the Subsidy on the Siting and Sizing Strategy

Figure 9a–c presents the deployment of the charging station with the subsidy from 1200 to 1800
for each BEV. When the subsidy is low, the charging stations spread all around the network to catch as
much demand as possible. The proportion of the construction fee decreases when the subsidy rises,
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which leads to the reduction of the station quantity. As the potential BEV flow grows with the subsidy,
the stations become more concentrated in the high distribution area of charging demand. Thus, a high
subsidy may reduce the scope of the station deployment, which is not advantageous for promoting the
adoption of BEV.
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3.2. Impact of the Capacity on the Budget Arrangement and the Total Charged Flow

The results of the total traffic in the network and the budget arrangements are shown in
Figures 10 and 11, in which the capacity of the charging pile ranges from 40 to 70 and the endurance
range is set to be 150 km. Table 1 lists the total subsidy and construction fee of the best solution under
each capacity.
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Table 1. The best arrangements of the budget under each capacity.

Capacity (vehicle/day) 40 50 60 70

Construction (million) 582.15 575.40 521.85 451.80
Subsidy (million) 167.85 167.85 228.15 298.20

Available battery electric vehicles (BEV) (vehicle) 102,155 110,860 122,914 129,775

As we can see from Figures 10 and 11, when the subsidy is below 1500, the budget is sufficient to
charge all the potential demand. The number of charged BEVs does not increase with improvement
of the capacity. However, the construction fee decreases as the facilities have larger capacity that can
charge more BEVs. When the subsidy is beyond 1500, the left budget cannot afford to charge all the
potential demand. Thus, the left budget must be fully used to meet as much demand as possible.
As the construction fee is fixed, the facilities with larger capacity can meet more potential demand.
To illustrate the impact of the capacity on the subsidy, the best arrangements of the budget are listed
in Table 1. We can find that the improvement of the capacity will lead to the proportion addition of
the subsidy.

3.3. Impact of the Endurance Range on the Budget Arrangement and Total Charged Flow

When the endurance range rises, some BEVs do not need to recharge during the trip. Then
we need to discuss whether this part of the demand should be subsidized. If we do not subsidize
the recharge-free BEVs, the potential demand of this part will not increase with the subsidy. The
optimization results under different subsidies would be like those in Figures 12 and 13, in which the
capacity of the charging pile is set to be 40 BEVs per day. To emphasize the different impact of the
endurance range and the charging capacity, we add the recharge-free BEVs into the total charged BEVs,
which is named “available BEV” in the y-axis.
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When the endurance range rises, the potential demand decreases as the proportion of
unsubsidized demand increases, which can be seen in the left part of Figure 12. There is more
investment that can be used for facility construction, which can be seen in the right part of Figure 13.
From Table 2, we can see that there is no large growth on the number of the total charged BEVs.

Table 2. The best arrangements of the budget under each endurance ranges.

Range (km) 150 160 170 180

Construction (million) 582.15 595.20 558.00 572.10
Subsidy (million) 167.85 154.80 192.00 177.90

Available BEV (vehicle) 102,155 102,975 106,631 107,125

If we subsidize the recharge-free demand, the result should be like in Figures 14 and 15.
The growth trend in Figure 14 is much like that in Figure 10, and so is the construction fee in
Figures 11 and 15. From the best arrangement in Table 3, the improvement of the endurance range
leads to the increasing proportion of subsidy. Thus, it is proved that more charged BEVs can be
obtained when we subsidize the recharge-free BEVs.Energies 2018, 11, x FOR PEER REVIEW  17 of 22 

 

 

Figure 14. The results under different endurance ranges and subsidies. 

 

Figure 15. The results under different endurance ranges and subsidies. 

Table 3. The best arrangements of the budget under each endurance range. 

Range (km) 150 160 170 180 

Construction (million) 582.15 582.15 521.85 452.40 

Subsidy (million) 167.85 167.85 228.15 297.60 

Available BEV (vehicle) 102,155 108,546 113,330 123,006 

Comparing the data in Tables 1 and 3, we can achieve nearly the same number of the available 

BEVs in the network by raising 30 km of the endurance range or increasing 20 BEVs/day of the 

capacity. Despite the input–output rate of upgrading, the improvement of the endurance range is 

more efficient, of which 20% improvement can achieve the same effect as 50% improvement on the 

capacity. However, the proportion of the construction fee is larger when we choose to upgrade the 

capacity. If the budget and the achieved traffic are both the same, it is better to spend more money 

on construction which can be directly transformed into basic infrastructure. Thus, which aspect is 

more valuable depends on the practical requirement and the input–output rate. 

4. Discussion 

The optimization model and method in this paper is developed to help the government make 

policy on the budget arrangement and construction scheme. We provide an appropriate way to 

measure the impact of the subsidy by relating with the potential BEV flow, with which the 

optimization in the budget and construction can be discussed together. Meanwhile, the range 

restriction of BEV, the capacity restriction of charging stations, and the utility of drivers are all 

considered and formulated in the optimization model to make the solution more reliable. The result 

shows that the location and size of stations fits the population distribution well, which proves the 

usability of the model and method. Besides, the model and method allows the policy maker to 

compare different schemes by estimating the amount of BEV traffic.  

Figure 14. The results under different endurance ranges and subsidies.

Energies 2018, 11, x FOR PEER REVIEW  17 of 22 

 

 

Figure 14. The results under different endurance ranges and subsidies. 

 

Figure 15. The results under different endurance ranges and subsidies. 

Table 3. The best arrangements of the budget under each endurance range. 

Range (km) 150 160 170 180 

Construction (million) 582.15 582.15 521.85 452.40 

Subsidy (million) 167.85 167.85 228.15 297.60 

Available BEV (vehicle) 102,155 108,546 113,330 123,006 

Comparing the data in Tables 1 and 3, we can achieve nearly the same number of the available 

BEVs in the network by raising 30 km of the endurance range or increasing 20 BEVs/day of the 

capacity. Despite the input–output rate of upgrading, the improvement of the endurance range is 

more efficient, of which 20% improvement can achieve the same effect as 50% improvement on the 

capacity. However, the proportion of the construction fee is larger when we choose to upgrade the 

capacity. If the budget and the achieved traffic are both the same, it is better to spend more money 

on construction which can be directly transformed into basic infrastructure. Thus, which aspect is 

more valuable depends on the practical requirement and the input–output rate. 

4. Discussion 

The optimization model and method in this paper is developed to help the government make 

policy on the budget arrangement and construction scheme. We provide an appropriate way to 

measure the impact of the subsidy by relating with the potential BEV flow, with which the 

optimization in the budget and construction can be discussed together. Meanwhile, the range 

restriction of BEV, the capacity restriction of charging stations, and the utility of drivers are all 

considered and formulated in the optimization model to make the solution more reliable. The result 

shows that the location and size of stations fits the population distribution well, which proves the 

usability of the model and method. Besides, the model and method allows the policy maker to 

compare different schemes by estimating the amount of BEV traffic.  

Figure 15. The results under different endurance ranges and subsidies.

Table 3. The best arrangements of the budget under each endurance range.

Range (km) 150 160 170 180

Construction (million) 582.15 582.15 521.85 452.40
Subsidy (million) 167.85 167.85 228.15 297.60

Available BEV (vehicle) 102,155 108,546 113,330 123,006

Comparing the data in Tables 1 and 3, we can achieve nearly the same number of the available
BEVs in the network by raising 30 km of the endurance range or increasing 20 BEVs/day of the capacity.
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Despite the input–output rate of upgrading, the improvement of the endurance range is more efficient,
of which 20% improvement can achieve the same effect as 50% improvement on the capacity. However,
the proportion of the construction fee is larger when we choose to upgrade the capacity. If the budget
and the achieved traffic are both the same, it is better to spend more money on construction which can
be directly transformed into basic infrastructure. Thus, which aspect is more valuable depends on the
practical requirement and the input–output rate.

4. Discussion

The optimization model and method in this paper is developed to help the government make
policy on the budget arrangement and construction scheme. We provide an appropriate way to measure
the impact of the subsidy by relating with the potential BEV flow, with which the optimization in
the budget and construction can be discussed together. Meanwhile, the range restriction of BEV, the
capacity restriction of charging stations, and the utility of drivers are all considered and formulated in
the optimization model to make the solution more reliable. The result shows that the location and size
of stations fits the population distribution well, which proves the usability of the model and method.
Besides, the model and method allows the policy maker to compare different schemes by estimating
the amount of BEV traffic.

The result shows that the largest number of charged BEV appears when the potential charging
demand can just be fulfilled by the constructed facilities. Thus, the major issue of policy optimization
is to find the “match point”. However, the relation between the subsidy and the potential BEV flow is
not simply linear in some situations, which will cause multi-peaks in the curve of the subsidy and the
number of charged BEVs. For this situation, we need to test more values of a subsidy to find out all the
“match points”.

Another issue is the benefit–cost rate of the budget. We take the best solutions under the budget
of 450, 600, 750, 900 and 1050 million dollars to draw the curve of the benefit-cost rate, which is shown
in Figure 16, in which the unit of y-axis is added per vehicle per million dollars. The benefit–cost rate
decrease linearly with the budget. This is because when the total budget rises, the “separate point”
moves right. The total subsidy increases with a quadratic growth while the budget increase linearly.
The proportion of the construction fee continues decreasing in the best solution, which explains the
reduction of the benefit–cost rate. However, in some situations, the major objective of the government
is to increase the BEV traffic as much as possible. In spite of the low benefit–cost rate, the policy maker
will also place a large amount of the budget in adopting BEVs.
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Although we take the major restrictions into consideration, there are still some issues that need to
be further discussed. The ranges of BEVs are set to be a fixed value, and this value may vary with the
vehicle model, terrain, temperature, traffic intensity and other factors, which needs to be refined and
classified. Besides, the advertising effect needs to be considered in expanding potential BEV flow.

To maximize the charged BEV numbers, a sizing optimization is added into the local search
algorithm. The result only proves the usability of LS, whether the solution is sufficiently optimal is not
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identified. To test the efficiency and effectiveness of LS, we compare it with the genetic algorithm with
initial population generated by a heuristic algorithm (HA + GA) in the Hunan highway network.

Figures 17 and 18 show the results and the computing times of two algorithms under different
scales of subsidy, respectively. The results and computing times are the mean values of 20 times
running. From these figures, we can find that LS can achieve better solutions with less time than
HA + GA. When the subsidy is equal to 1500, the volume of charged BEV flow reaches the largest
value. The computing times of HA + GA are much longer than the LS when the subsidy is less than
1500. This is because when the subsidy is under 1500, the remaining budget is sufficient to fulfill
all the potential demand in the network, which means the fqh of all combinations for all paths are
computed. The schemes generated by HA + GA always cover the potential demand completely as all
the stations are recorded in the chromosome. Once there is budget left, the new stations are added into
the scheme continuously. However, there may be some schemes generated by LS that only cover part
of the potential demand, which avoids much computing complexity.Energies 2018, 11, x FOR PEER REVIEW  19 of 22 
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Figure 18. The computing times of the two algorithms under different subsidies.

To further test the efficiency and effectiveness of the LS, we exploit the artificial network of
different scales in [15]. The results and computing times of two algorithms are shown in Table 4, which
are the mean value of 20 times running. The unit of the volume is vehicle while that of the time is
second. The results show that LS can obtain better solutions with less time cost in most cases. However,
there are still some situations that HA + GA performs better. This is because that the quality of the LS
solution relies much on the starting scheme, which limits the searching scope. However, if we define
some jump-out procedures, the computing time is hard to control.

As the LS can improve the given solution, we treat the best solution of HA + GA as the starting
scheme and resolve the artificial networks. The results are shown on the right of Table 4. We can
find that LS can efficiently improve the solution of HA + GA with relatively shorter time cost. The
solutions of HA + GA + LS are better than those of LS and HA + GA. Using the solution of HA + GA
as the starting scheme can decrease the searching time in majority situation, because the solution of
HA + GA is already optimal which means the number of jumps is fewer than before.
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Table 4. Computational results of the three algorithms for the artificial networks with different scales.

Algorithms → Heuristic Algorithm (HA)
+ Genetic Algorithm (GA) Local Search (LS) HA + GA + LS

Network Size
(N1/N2/N3) ↓ Volume Time Volume Time Volume Time

Addition

50/90/151 65,119.73 113.23 65,315.29 177.55 65,752.38 134.93
50/93/156 38,294.41 790.03 38,295.01 576.97 38,419.57 67.49
50/95/154 45,767.77 770.18 46,394.62 124.74 47,070.83 102.86
50/99/157 46,782.00 438.98 46,835.82 310.04 46,886.07 150.57
50/99/162 50,700.75 503.20 50,851.82 473.35 50,889.77 318.19
50/101/162 34,570.00 895.61 34,285.30 333.02 34,570.00 39.51
50/102/164 37,604.62 555.87 37,758.62 374.65 37,783.51 156.64
50/107/174 37,583.09 361.33 36,934.05 197.67 37,603.81 103.87
50/111/173 47,875.24 247.47 47,045.83 63.01 47,987.81 50.17
50/114/184 52,005.95 164.23 52,125.62 254.78 52,236.90 152.77

100/204/261 78,679.07 682.63 79,297.74 892.58 79,440.19 473.40
100/204/334 99,033.50 545.12 100,635.72 511.91 100,741.43 500.27
100/214/346 62,956.73 1775.16 61,485.80 813.67 63,519.85 851.66
100/214/352 77,542.67 741.80 77,826.31 712.67 77,893.22 442.11
100/222/356 80,085.25 682.36 80,420.98 500.35 81,201.74 262.28
100/222/360 85,885.76 514.27 85,008.59 1507.46 86,488.73 673.09
100/224/376 112,074.84 685.13 105,854.52 314.41 113,418.98 797.54
100/224/358 91,362.32 436.12 91,503.94 233.12 92,483.70 137.82
100/227/359 71,555.30 1093.64 71,139.27 895.35 71,742.85 784.83
100/231/368 90,373.41 360.17 89,290.97 473.64 90,838.82 185.88

Furthermore, as the genetic algorithm can also improve the initial population. Then we add
the solution of the HA + GA + LA as part of the initial population of GA and redo the optimization
of the artificial networks, whose results are improved by the LS again. The results of the repeated
optimization are shown in Table 5. We find that the multiple running of GA + LS can further improve
the solution. The improvement finally reaches stability since the fourth running. The two columns on
the right are the results obtained by GA and LA with the same time cost of GA + LS 4, which proves
that the repeat use of GA + LS can effectively improve the quality of the solution.

Table 5. Computational results of the multi-optimization for the artificial networks with different scales.

Algorithms →
Network Size
(N1/N2/N3) ↓

HA + GA + LS GA + LS 2 GA + LS 3 GA + LS 4 GA LS

50/90/151 65,752.38 66,037.80 66,047.80 66,047.80 65,582.12 65,638.89
50/93/156 38,419.57 38,428.08 38,884.01 38,884.01 38,765.18 38,333.89
50/95/154 47,070.83 47,070.83 47,070.83 47,070.83 46,353.49 46,580.49
50/99/157 46,886.07 47,218.00 47,554.54 47,554.54 46,960.08 46,922.93
50/99/162 50,889.77 51,010.00 51,010.00 51,010.00 51,003.43 50,950.13

50/101/162 34,570.00 34,570.00 34,570.00 34,570.00 34,570.00 34,434.76
50/102/164 37,783.51 37,801.29 37,816.32 37,816.32 37,778.87 37,781.62
50/107/174 37,603.81 37,653.82 37,677.00 37,677.00 37,645.61 37,016.21
50/111/173 47,987.81 48,032.21 48,194.07 48,194.07 47,924.20 47,641.68
50/114/184 52,236.90 52,254.42 52,436.70 52,436.70 52,283.04 52,193.86
100/204/261 79,440.19 79,503.53 79,558.85 79,558.85 79,370.52 79,420.70
100/204/334 100,741.43 100,741.43 100,741.43 100,741.43 99,363.11 100,707.59
100/214/346 63,519.85 63,639.26 63,866.67 63,866.67 63,589.32 63,456.07
100/214/352 77,893.22 78,333.49 78,459.04 78,459.04 78,198.91 77,858.10
100/222/356 81,201.74 81,253.62 81,921.20 81,921.20 81,077.45 80,647.70
100/222/360 86,488.73 86,828.85 87,069.35 87,069.35 86,447.95 86,290.00
100/224/376 113,418.98 114,302.41 115,196.83 115,196.83 113,557.71 108,398.17
100/224/358 92,483.70 92,534.67 92,534.67 92,534.67 91,832.82 91,921.80
100/227/359 71,742.85 71,972.00 72,015.51 72,015.51 71,588.38 71,526.71
100/231/368 90,838.82 91,686.27 93,172.09 93,172.09 91,310.04 90,380.06
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5. Conclusions

This study investigates the joint policy optimization problem for a subsidy on electric vehicles
and infrastructure construction in the highway network. The optimization model and method is
proved to be useful for helping policy makers achieve a maximum number of charged BEVs with a
given budget. The local search is able to improve the solution obtained by other algorithms, of which
multiple running will bring even better solutions.
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Nomenclature

Index:
q index of O–D path
k index of station
h index of open station combination
Set:
Q set of all O–D paths
Hq set of all open combinations for O–D path q
H set of all open combinations of all O–D paths, and H = ∪

q∈Q
Hq

Kh set of all stations in combination h, h ∈ H
K set of all stations
K0 set of all candidate nodes
Parameter:
ahk a coefficient equal to 1 if station k is in combination h, and 0 otherwise
bqh a coefficient equal to 1 if station combination h can charge O–D path q, and 0 otherwise
chk a coefficient equal to 1 if station k is the bottleneck of combination h
I charging ability of a pile
R total budget
nk construction fee if constructing a charging station in node k
sk cost of constructing a charging pile in node k
Zk proportion of service in station k
M a sufficiently large integer
fq the potential BEV flow on the O–D path q
fqh the potential BEV flow of combination h charging for O–D path q, and ∑

h∈H
bqh fqh = fq

f ′qh the number of charged BEVs for the O–D path q by combination h
e the subsidy for each BEV
Pqh the service proportion of the driver in path q who chooses station combination h
Uqh the average utility of driver in path q to choose station combination h
V the deterministic component set that affects the utility of drivers
ε the random error of the utility with mean value of 0
Variables:
xk the number of piles placed in node k
yk 1 if a station is located at k, and 0 otherwise

References

1. Melaina, M.W. Initiating hydrogen infrastructures: Preliminary analysis of a sufficient number of initial
hydrogen stations in the US. Int. J. Hydrogen Energy 2003, 28, 743–755. [CrossRef]

http://dx.doi.org/10.1016/S0360-3199(02)00240-9


Energies 2018, 11, 2479 21 of 21

2. Sperling, D. New Transportation Fuels: A Strategic Approach to Technological Change; University of California
Press: Berkeley, CA, USA, 1990; p. 532.

3. Kuby, M.; Lim, S. The flow-refueling location problem for alternative-fuel vehicle. Socio-Econ. Plan. Sci. 2005,
39, 125–145. [CrossRef]

4. Mirhassani, S.A.; Ebrazi, R. A Flexible Reformulation of the Refueling Station Location Problem. Transp. Sci.
2013, 47, 617–628. [CrossRef]

5. EV-Volumes.Com. Available online: http://www.EV-volumes.com/ (accessed on 5 January 2018).
6. Ministry of Industry and Information Technology of the People’s Republic of China. Available online:

http://www.miit.gov.cn/ (accessed on 13 July 2018).
7. Department of Energy. Available online: https://www.fueleconomy.gov/feg/evtech.shtml (accessed on

10 August 2018).
8. Hodgson, M.J. A Flow-Capturing Location-Allocation Model. Geogr. Anal. 1990, 22, 270–279. [CrossRef]
9. Kuby, M.; Lines, L.; Schultz, R.; Xie, Z.; Kim, J.G.; Lim, S. Optimization of hydrogen stations in Florida using

the Flow-Refueling Location Model. Int. J. Hydrogen Energy 2009, 34, 6045–6064. [CrossRef]
10. Upchurch, C.; Kuby, M. Comparing the p-median and flow-refueling models for locating alternative-fuel

stations. J. Transp. Geogr. 2010, 18, 750–758. [CrossRef]
11. Lin, Z.; Ogden, J.; Fan, Y.; Chen, C.W. The fuel-travel-back approach to hydrogen station siting. Int. J.

Hydrogen Energy 2008, 33, 3096–3101. [CrossRef]
12. Wang, Y.W.; Lin, C.C. Locating road-vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2009,

45, 821–829. [CrossRef]
13. Upchurch, C.; Kuby, M.; Lim, S. A Model for Location of Capacitated Alternative-Fuel Stations. Geogr. Anal.

2009, 41, 85–106. [CrossRef]
14. Capar, I.; Kuby, M.; Leon, V.J.; Tsai, Y.J. An arc cover–path-cover formulation and strategic analysis of

alternative-fuel station locations. Eur. J. Oper. Res. 2013, 227, 142–151. [CrossRef]
15. Wang, Y.; Shi, J.; Wang, R.; Liu, Z.; Wang, L. Siting and sizing of fast charging stations in highway network

with budget constraint. Appl. Energy 2018, 228, 1255–1271. [CrossRef]
16. Sadeghi-Barzani, P.; Rajabi-Ghahnavieh, A.; Kazemi-Karegar, H. Optimal fast charging station placing and

sizing. Appl. Energy 2014, 125, 289–299. [CrossRef]
17. Andrenacci, N.; Ragona, R.; Valenti, G. A demand-side approach to the optimal deployment of electric

vehicle charging stations in metropolitan areas. Appl. Energy 2016, 182, 39–46. [CrossRef]
18. Xiang, Y.; Liu, J.; Li, R.; Li, F.; Gu, C.; Tang, S. Economic planning of electric vehicle charging stations

considering traffic constraints and load profile templates. Appl. Energy 2016, 178, 647–659. [CrossRef]
19. Arias, M.B.; Kim, M.; Bae, S. Prediction of electric vehicle charging-power demand in realistic urban traffic

networks. Appl. Energy 2017, 195, 738–753. [CrossRef]
20. Zhang, H.; Hu, Z.; Xu, Z.; Song, Y. Optimal Planning of BEV Charging Station with Single Output Multiple

Cables Charging Spots. IEEE Trans. Smart Grid 2017, 8, 2119–2128. [CrossRef]
21. Mcfadden, D. The measurement of urban travel demand. J. Pub. Econ. 1974, 3, 303–328. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.seps.2004.03.001
http://dx.doi.org/10.1287/trsc.1120.0430
http://www.EV-volumes.com/
http://www.miit.gov.cn/
https://www.fueleconomy.gov/feg/evtech.shtml
http://dx.doi.org/10.1111/j.1538-4632.1990.tb00210.x
http://dx.doi.org/10.1016/j.ijhydene.2009.05.050
http://dx.doi.org/10.1016/j.jtrangeo.2010.06.015
http://dx.doi.org/10.1016/j.ijhydene.2008.01.040
http://dx.doi.org/10.1016/j.tre.2009.03.002
http://dx.doi.org/10.1111/j.1538-4632.2009.00744.x
http://dx.doi.org/10.1016/j.ejor.2012.11.033
http://dx.doi.org/10.1016/j.apenergy.2018.07.025
http://dx.doi.org/10.1016/j.apenergy.2014.03.077
http://dx.doi.org/10.1016/j.apenergy.2016.07.137
http://dx.doi.org/10.1016/j.apenergy.2016.06.021
http://dx.doi.org/10.1016/j.apenergy.2017.02.021
http://dx.doi.org/10.1109/TSG.2016.2517026
http://dx.doi.org/10.1016/0047-2727(74)90003-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Model Formulation 
	Highway Network Modeling 
	Driver Utility and Equilibrium Situation 
	Impact of Subsidy 
	Main Optimization Model 

	Solution Method 

	Results 
	Impact of the Subsidy on the Siting and Sizing Strategy 
	Impact of the Capacity on the Budget Arrangement and the Total Charged Flow 
	Impact of the Endurance Range on the Budget Arrangement and Total Charged Flow 

	Discussion 
	Conclusions 
	References

