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Abstract: Ambient temperature affects the performance of a battery power system and its accuracy
in state-of-charge (SOC) estimation for electric vehicles and smart grid systems. This paper proposes
a battery model that considered ambient temperature, cell temperature, hysteresis voltage and
thermal aging on capacity due to multiple charging and discharging. The SOC is then estimated
using an extended Kalman filter. Several forms of validation were tested on an actual cell battery
under specific ambient temperatures to verify the battery cell model, terminal voltage and SOC
estimation performance. The SOC estimation results show an improvement in root-mean-squared
error as compared to Extended Kalman Filter (EKF) without considering the temperature dependency.
The proposed battery temperature-dependent model gave a smaller root-mean square error in SOC
and terminal voltage at 5 ◦C, 15 ◦C and 45 ◦C.

Keywords: lithium iron phosphate battery cell (ANR26650M1-B); ambient temperature; cell temperature;
hysteresis voltage; thermal aging; static capacity; extended Kalman filter; terminal voltage; state of charge

1. Introduction

Lithium iron phosphate (LiFePO4) batteries have become popular for renewable energy storage
devices, electric vehicles [1–3] and smart grids [4–6]. However, the batteries are quite vulnerable to
temperature variation and unforeseen operating conditions such as being overly charged or discharged,
which affects its performance and reduces its lifespan in an electric vehicle. There have been many
efforts in recent years to enhance the accuracy of the SOC estimation in a battery management system
(BMS) [7]. A detailed literature review can be found in the following references [8–11]. The common
Coulomb counting or Ampere-hour method [12] uses the current reading of the battery over the
operating period to calculate SOC values.

Hence, an accurate and precise physical modeling on electrochemical batteries for SOC
estimation [13] is needed. The electrochemical model [14] is one of the first such models using
the Lithium-ion, electrolyte-phase concentration and reaction current density in partial differential
equations (PDEs). The electrochemical model can provide accurate estimations of the cell behavior
over a range of operating conditions at the expense of high computational complexity due to
PDEs that are unsuitable for online application. To circumvent the problem, different model
reduction techniques were applied. The most common reduced-order model can be achieved by
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neglecting the electrolyte-phase potential and assuming a constant electrolyte-phase concentration [15].
Such assumptions are allowed for low charging rates. Hence, the use of model [16] that preserves some
of the physical insights to estimate the SOC at higher discharge rates. A similar model can be seen in
Reference [17] for higher charge and discharge rates. The reduced electrochemical model of composite
electrode Lithium-ion battery [18] was used for dual-nonlinear observers that could estimate five
different cells’ SOC over time. An alternative approach, such as the equivalent circuit model (ECM)
that models the internal battery characteristics using resistors and capacitors are commonly applied
for SOC estimation due to their low complexity and simplicity. Some of the early works on SOC
estimation include an adaptive filter such as an extended Kalman filter [19] on a 1-RC Lithium-ion
battery cell. Although the aging effect was included with ±5% of the values estimated by Ah counting,
this publication did not consider the ambient temperature as varying model parameter for estimation.
Extension to 2-RC Lithium-ion battery cell via EKF [20] was studied. But the results did not consider
the influence of ambient temperature, and the aging [19] in the SOC estimation.

As the ambient temperature affects the SOC estimation, the 1D (one-dimensional) electrochemical
with the thermal model was used to understand the heat distribution of surface and internal
temperature on a pouch-type lithium-ion battery cell [21] using thermodynamics and kinetics.
The effects on the SOC estimation was not discussed. In addition, the ECM was used to simulate the
electrochemical, thermal model [22] at an optimal cycling period. The results help to identify the battery
cell parameters. However, the influence of ambient temperature and its impact on SOC estimation
were not studied. As a result, a fully coupled electro-thermal model [23] with a fast charging strategy
was modeled as a linear-time-varying model predictive control problem, while the unmeasurable
battery internal states such as the SOC and core temperature were estimated via a nonlinear observer.
But the works were surrounded on control to balance the time and core temperature increase instead
of SOC identification.

More works were then performed to validate the lithium-ion battery at a different temperature
such as 25 ◦C [24] and a low temperature of −10 ◦C [25] via a pseudo-two dimensional electrochemical
thermal model [26]. Although the paper [27] shows that the macroscopic models are strongly controlled
by the battery operating temperature conditions, the works were mainly on the proposed model
that could affect the battery operating or internal temperature. The results of pulse-relaxation
discharge in the electrochemical thermal model [28] describe the dynamic change of Lithium-ion
concentration distribution in phases that were useful for analyzing the polarization of the battery.
Another pseudo-two dimensional electrochemical thermal model [29] showing the battery pack
application was then developed for the electric vehicle battery pack and thermal management system to
maintain the temperature uniformity and decrease the maximum temperature of the cells. The SOC was
not undertaken to further examine the impact of SOC estimation. In addition, other than modeling and
analyzing the relationship between the temperature (−20 ◦C to 60 ◦C) and battery model parameters,
the analyzed results did not show how the electrochemical-thermal battery model can be adaptively
tuned for the different ambient temperature in the case of the multiple-cell battery. The research was
further performed to model the electro-thermal behavior [30,31] of the battery of different size of
cylindrical cells with the application of the battery pack on an actual electric vehicle under different
drive tests. An electro-thermal model [32] of lithium-ion batteries based on the ECM was proposed.
The model parameters of the cell were optimized and validated for a wide range of temperatures and
SOC that led to the use of ECM again. However, the tuning of the battery model at different ambient
temperature was not mentioned.

A few nonlinear observer design methods were applied to derive the ECM-based nonlinear
SOC estimators such as sliding mode observer [33], nonlinear observer [34] and Lyapunov-based
observer methods [35]. The ambient temperature was not considered during the SOC estimation.
Nevertheless, an online parameter identification [36] was recently used to estimate the battery
parameters and nonlinear Kalman filter for SOC estimation at different ambient temperatures. Another
approach considering the battery temperature using particle swarm optimization and Gauss-Newton
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algorithm [37] to estimate the battery parameters was used. The temperature considered was either
the battery’s internal or surface temperature.

An alternate non-model based approach including neural networks [38–40], fuzzy logic [41],
neural network-fuzzy [42], support vector machine (SVM) [43,44] and extreme learning machine
(ELM) [45–51] methods was developed to predict the SOC. These machine learning methods require
sufficient large dataset and computation time for the training and validating the SOC value. They are
not quite suitable for the operating battery power system as significant training time is required
(except for ELM that uses regularized least squares to compute faster than the conventional quadratic
programming approach used in gradient method). A battery model [52–57] is briefly discussed that
could affect the SOC estimation. In addition, the ECM is likely to have higher precision in practice due
to its simplicity in the parameter identification. Hence, an adaptable ECM based Lithium-ion battery
with consideration of the ambient temperature variation for more accurate SOC estimation is required.
In contrast to works done in battery parameter estimation [58–62], the proposed method is based on
the temperature-dependent cell model.

In summary, the contributions are as follows. A unified lithium-ion battery model that includes
the ambient temperature, cell temperature, thermal aging effect on capacity, hysteresis voltage and its
impact on state-of-charge (SOC)-open-circuit voltage (OCV) relationship, hysteresis voltage dynamics
and terminal voltage is proposed and validated by an actual experimental test.

The paper is organized as follows: The new nonlinear battery model including ambient
temperature is derived in a few subsections starting from Sections 2–5. Section 6 represents the
methodology for SOC estimation using the extended Kalman filter. Section 7 provides the conclusions.

2. Cell Nonlinear Temperature-Dependent State Model

An ambient and cell temperature-dependent T ∈ (Tamb, Tcell) equivalent circuit model (ECM) in
Figure 1a is used. As shown in the circuit model, 1RC is used instead of 2RC. The comparative curves
between the 1RC and 2RC can be seen in Figure 1b. The root mean square error of 1RC and 2RC is
around 3.2775× 10−4 V (i.e., quite small). Hence, 1RC is used for simplicity as fewer parameters are
required for computing terminal voltage and SOC value.

The ambient (Tamb) temperature refers to the ambient temperature where the battery cell operates
while the cell temperature (Tcell) is the surface temperature of the cell. The terms are incorporated
into Utemp(Tcell , Tamb) to represent the temperature dependency in obtaining the terminal voltage
(instead of an external disturbance for model validation and robustness test). In addition, the proposed
battery cell model provides the current-voltage behavior compensated by the hysteresis effect that
gives a balance between simplicity and accuracy in modeling the battery cell model. Note that the
experimental data used for the subsequent comparison was obtained from the cylindrical lithium iron
phosphate battery cells (ANR26650M1-B) in Table 1.
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Figure 1. (a) Proposed ambient and cell temperature-dependent ECM of battery cell; (b) terminal
voltage of 1RC and 2RC as compared to experiment data.

From the ECM model in Figure 1a, the equations corresponding to the ECM can be expressed
as follows.

S
.

OC = − I
3600Cn(Tamb)

(1)

.
U1 =

I
C1(SOC, Tamb)

− U1

R1(SOC, Tamb)C1(SOC, Tamb)
(2)

.
Uhs = −β|I|[0.0755(1− SOC)sign(I) + Uhs] (3)
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Ut = Uoc(SOC, Tcell)−U1 − R0(SOC, Tamb)I + Uhs + Utemp(Tcell , Tamb) (4)

where the internal resistance is represented by R0 in Ω, R1 and C1 are the polarization resistance (in Ω)
and polarization capacitance (in F) as a function of Tamb (in ◦C) and state-of-charge, SOC ∈ (0, 1).
The cell capacity Cn is a function of ambient temperature (Tamb). The voltage across the single RC
circuit is indicated as U1 in V. The hysteresis voltage dynamics [63] at equilibrium state is denoted by
Uhs that is a function of SOC and current I in A. The function sign(I) = 1 for I greater or equal to 0
and −1 otherwise. The constant β has a value of 0.0245. The terminal or the output voltage of the
battery cell is denoted by Ut. The temperature dependency term Utemp(T) is included in the terminal
voltage equation to compensate for the temperature variation on the output voltage. The open-circuit
voltage Uoc is a function of SOC and cell temperature Tcell (in ◦C). The following will explain how the
parameters used in (1)–(4) are modelled.

3. Cell SOC-OCV Relationship

The SOC in (1) was obtained by the Ampere-counting method. However, the cell capacity Cn

can be a function of ambient temperature (Tamb) as shown in Figure 2 where the capacity varies at
different ambient temperature. The static capacity curve is obtained by curve-fitting the experimental
data. The capacity model Cn(Tamb) used in (1) can be written as follows.

Cn(Tamb) = 7.5× 10−6T3
amb − 0.00094T2

amb + 0.038Tamb + 2.1 (5)
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Figure 2. Cell capacity of battery cell as function of ambient temperature.

The mapping of open circuit voltage (OCV) to SOC is represented by Uoc as follows.

Uoc(SOC, Tcell) = −0.5863 exp(−21.9SOC) + 3.38 + 0.1SOC− 0.17 exp[−0.008/(1− SOC)] + 0.0008Tcell (6)

where SOC ∈ (0, 1) and Tcell is the cell temperature in ◦C. The plot of open-circuit voltage, Uoc to
SOC relationship in (6) as compared to the experimental OCV-SOC obtained from pulse discharge
test (PDT) in [51,64–66] can be seen in Figure 3. The PDT conducted in Figure 3 generated a series
of the discharge current of 2 A for decreasing SOC values in Figure 4. In the test, the battery was
fully charged with constant current-constant voltage (CCCV) mode under 25 ◦C ambient temperature
to 3.6 V. Then battery cell was then discharged at a pulse current 2 A with 450 s discharging time
and 2700 s relaxation time until the terminal voltage reaches the cut-off voltage of 2.5 V as seen in
Figure 5. The OCV was obtained when the battery’s terminal voltage reached equilibrium state during
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the relaxation period. As seen in Figure 6, the values of the SOC were then recorded. The cycle was
repeated at other ambient temperatures. The battery cell was tested under specific ambient temperature
(i.e., 5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C) in a temperature chamber. The reason for using the selected
temperature is due to the limitation of the temperature chamber at the time of the testing, although the
battery cell can go up to 55 ◦C (and in some application such as an i3 battery for BMW that could go
beyond 70 ◦C) and reached a minimum of 5 ◦C only. In this study, the maximum limit of the operating
ambient temperature is set to 45 ◦C with the use of heat absorbing material such as phase change
material (PCM). The PCM can allow higher operating ambient temperature if needed.
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As shown in Figure 6, the simulation of SOC using (1) is compared with the experimental
data obtained from Ah counting method (without the ambient temperature in the static capacity).
The results show slight differences in SOC estimation. The simulation result using (1) gives a higher
value as compared to the Ah counting method. It shows that it is essential to include an ambient
temperature in SOC estimation. On the other hand, the OCV-SOC relationship proposed in (6) exhibits
a close match to the experimental data as seen in Figure 7a. The constants used in the equation were
tuned iteratively to match the experimental OCV-SOC data.

The OCV-SOC at various ambient temperature can be simulated in MATLAB/Simulink as shown
in Figure 7b. It is used to compare the simulated results with the experimental data as shown in
Figure 7c. The root mean square errors (RMSEs) of OCV at different ambient temperature as compared
to the proposed model can be seen in Figure 7d. The maximum RMSE of OCV is around 0.33 V at an
ambient temperature of 5 ◦C followed by 15 ◦C with RMSE of 0.28 V.
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4. Cell Temperature Model

In addition to the cell temperature affecting the OCV-SOC relationship, the ambient
temperature [67,68] also affects the accuracy of terminal voltage and subsequent SOC estimation.
To account for the influence, the term Utemp(Tcell , Tamb) is included to compensate for the differences
on the terminal voltage equation.

Utemp(Tcell , Tamb) = 0.0492− 6.8× 10−6∆T − 0.0012 exp(−1/t)∆T (7)

where ∆T = Tcell − Tamb, Tcell is obtained from the general energy balance for battery thermal model
proposed by Bernardi et al. [69] with the total heat generated (Qgen) in the battery cell as defined by
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where m  is the mass of the battery cell in kg, 𝑐𝑝 is the specific heat capacity of the cell in J/kgK, ℎ  

is the convective heat transfer coefficient, ∆𝑇 = 𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏,  𝜀 is the emissivity of heat term, 𝜎 is 

the Stefan-Boltzmann constant term in J·s−1m−2K4,  𝑑𝑈𝑜𝑐 𝑑𝑇𝑐𝑒𝑙𝑙⁄  is the reversible heat term or entropy 

coefficient and 𝑅𝑐 is the contact resistance in Ω. The terminal voltage 𝑈𝑡 and open-circuit voltage 

𝑈𝑜𝑐  can be seen in (4) and (6), respectively. The values of the parameters related to the battery cell 

can be found in Table 1. 

Table 1. Parameters values used in equations. 

Parameters Values 

Nominal Capacity, Cn (Ah) 2.5 

Cell density,   (kgm−3) 2700  

Cell mass, m (kg) 0.076 

Surface Area of Heat Exchange, 𝐴𝑐𝑒𝑙𝑙 (m2) 0.0175  

(8)

where m is the mass of the battery cell in kg, cp is the specific heat capacity of the cell in J/kgK, h is
the convective heat transfer coefficient, ∆T = Tcell − Tamb, ε is the emissivity of heat term, σ is the
Stefan-Boltzmann constant term in J·s−1m−2K4, dUoc/dTcell is the reversible heat term or entropy
coefficient and Rc is the contact resistance in Ω. The terminal voltage Ut and open-circuit voltage Uoc

can be seen in (4) and (6), respectively. The values of the parameters related to the battery cell can be
found in Table 1.
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Table 1. Parameters values used in equations.

Parameters Values

Nominal Capacity, Cn (Ah) 2.5
Cell density, ρ (kgm−3) 2700
Cell mass, m (kg) 0.076
Surface Area of Heat Exchange, Acell (m2) 0.0175
Specific Heat Capacity of the Cell, cp(J/kgK) 825
Contact resistance, Rc (Ω) 25 µΩ
Entropy coefficient dUoc/dTcell 0.00125 [2]
Convective Heat Transfer Coefficient, h (W/m2/K) 4
Stefan-Boltzmann constant term,σ 5.67 × 10−8 J·s−1m−2K4

The emissivity of heat term, ε 0.95
Hysteresis voltage dynamics time constant, β 2.47 × 10−3 [63]

It is known that RC values depend on the SOC and Tamb. It is essential to include the
dependent terms SOC and Tamb in (2) and (4) as seen in the following Figures 8–10. The regression
equations R0, R1, C1 have a function of SOC. As compared with the ambient temperature counterpart,
the behaviors of R0, R1, C1 at different ambient temperature are difficult to model accurately. Hence,
the dynamics of R0, R1, C1 use in (2) and (4) are embedded into a series of lookup tables such that
the values at specific SOC and Tamb can be obtained. The relationship between R0, R1, C1 and SOC
can be expressed as follows. For example, the equations for R0, R1, C1 in (9) to (11) were derived by
curve-fitting the experimental data at ambient temperature of 25 ◦C.

R0(SOC) = 19SOC6 − 60SOC5 + 75SOC4 − 46SOC3 + 15SOC2 − 2.3SOC + 0.23 (9)

R1(SOC) = 2.2× 102SOC7 − 6.8× 102SOC6 + 8.4× 102SOC5 − 5.1× 102SOC4 + 1.6× 102SOC3

−26SOC2 + 1.7SOC− 0.015
(10)

C1(SOC) = 2.3× 108SOC7 − 8.5× 108SOC6 + 1.2× 109SOC5 − 9.3× 108SOC4 + 3.8× 108SOC3

−7.7× 107SOC2 + 7× 106SOC− 1.3× 105 (11)

where SOC ∈ (0, 1).
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Figure 11. Schematic of experimental setup. 

Figure 10. C1 as a function of (a) SOC; (b) SOC and ambient temperature.

The terminal voltage is also affected by the changes in Tcell instead of Tamb. The schematic of the
experimental setup that utilizes infrared thermal imaging was used to determine the cell temperature
as seen in Figure 11. The laboratory environment was first kept approximately 25 ◦C and discharged
to a programmable electronic load. A thermal infrared camera was used to capture the temperature
distribution of the battery cell which was wrapped in non-glossy black tape with a known emissivity
of 0.95. The battery cell was discharged under a constant current rate (2 A) at the same ambient
laboratory temperature. The experiment was performed on three different battery cells and the average
cell temperature was taken. The stop condition for the discharge was set to a cut-off voltage of 2.5 V
to prevent damage to the cell. For clarity, only one of the image captured can be seen in Figure 12.
The surface temperature can reach around 29 ◦C as seen in the thermal image. The same test was then
repeated at other ambient temperatures.
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Figure 12. Thermal image of cell temperature at ambient temperature of 25 ◦C (for constant 2 A
load current).

The time response, Tcell obtained from the experimental is compared with the simulated result
by Bernardi et al. [69]. It can be observed that there exist some errors. The errors are found to be
around 3 ◦C at the steady-state. The high time constant resulted in the sluggish response as seen in
Figure 13. The same phenomena can be observed at other ambient temperature. As time increases,
the cell temperature will increase due to the continuous discharging the cell at 2 A until it reaches
the cut-off voltage of 2.5 V. The entire simulation block diagram by MATLAB/Simulink can be seen
in Figure 14. The block diagram was used to simulate the OCV-SOC relationship, cell temperature,
terminal voltage and SOC estimate of the battery cell at different ambient temperature. The input load
current can be changed.
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5. Cell Terminal Voltage Model

With Uoc(SOC, Tcell) and Utemp(Tcell , Tamb) obtained, the terminal voltage, Ut of the battery cell in
(4) can be numerically computed using the simulation block diagram as shown in Figure 14. As seen in
Figures 15–19, the terminal voltage at different ambient temperatures such as 5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C,
and 45 ◦C is plotted. It can be observed that the simulated terminal voltage matches experimental data
near to the end of the discharging cycle or lower SOC value. The root means square errors (RMSEs)
at each ambient temperature are tabulated in Table 2. The maximum error in the terminal voltage as
compared with the actual data is around 0.0663 V. Note that the RMSE can be further improved by
tuning the parameters in Uoc and Utemp in (6) and (7), respectively.
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Figure 19. Terminal voltage at different ambient temperature of 45 ◦C.

Table 2. RMSEs of terminal voltage at different ambient temperature.

Ambient Temperature (◦C) RMSE of Terminal Voltage (V)

5 0.0663
15 0.0262
25 0.0153
35 0.0533
45 0.0523

6. SOC Estimation by Extended Kalman Filter Method

To facilitate the SOC estimation process by EKF, the above equations from (1) to (3) have to be
discretized [70]. Equation (6) and (7) will be included in the output equation in (4).

First,
.

SOC(t) in (1) can be discretized as follows.

SOC[(k + 1)T] = SOC(kT)− ∆t
3600Cn(Tamb)

I(kT) (12)

Then,
.

U1(t) in (2) can be discretized via the following steps.

U1(t) = exp
[
− 1

R1C1
(t− t0)

]
U1(t0) +

t∫
t0

exp
[
− 1

R1C1
(t− τ)

]
1

C1
I(τ)dτ (13)

where t is the current time, t0 is initial time, t0 = kT and t = (k + 1)T, k = 0, 1, 2, 3 . . . n.
The current remains unchanged within one sampling time T that is I(τ) = I(KT) equals to a

constant. Defining dt = −dτ, t = (k + 1)T− τ and solving the integration with lower and upper limit
of 0 and T, respectively gives

U1[(k + 1)T] = exp
[
− ∆t

R1C1

]
U1(kT) + R1 I(kT)

[
1− exp

(
− ∆t

R1C1

)]
(14)
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where U1(k + 1) = U1[(k + 1)T], I(k) = I(kT) and ∆t is the sampling period of 1 s.

U1(k + 1) = exp
[
− ∆t

R1C1

]
U1(k) + R1 I(k)

[
1− exp

(
− ∆t

R1C1

)]
(15)

Next, the solution for Uhs(t) in (3) can be written as follows.

Uhs(t) = 0.0755[1− exp(−β(t− t0)|I|)] sign(I)I + exp(−β(t− t0)|I|)Uhs(t0)

+0.0755[exp(−β(t− t0)|I|)− 1]sign(I)
(16)

Equation (16) can be discretized as

Uhs(k + 1) = 0.0755[1− exp(−β∆t|I(k)|)] sign(I(k))I(k) + exp(−β∆t|I(k)|)Uhs(k)
+0.0755[exp(−β∆t|I(k)|)− 1]sign(I(k))

(17)

The proposed temperature-dependent battery cell model that includes the ambient temperature,
cell temperature, hysteresis voltage dynamics, the thermal aging effect on capacity and terminal
voltage can be written as a nonlinear system equation.

.
Xk+1 = AkXk + Bkuk + wk (18)

yk = Uoc(k)−U1(k)− R0 I(k) + Uhs(k) + Utemp(k) + vk (19)

where Xk =
[

SOC
(
k
)

U1(k) Uhs(k)
]T, k is the time index, I(k) is the current at k,

uk =
[

I
(
k
)

1
]

is the input vector, wk is the process noises and vk is the measurement noise.
The process and measurement noise satisfy the following equations.

E[w(k)] = 0
E[v(k)] = 0
Cov[w(k), w(j)] = E[w(k)w(j)T] = Q(k)δkj

Cov[v(k), v(j)] = E[v(k)v(j)T] = R(k)δkj

Cov[w(k), v(j)] = E[w(k)v(j)T] = 0

(20)

where δkj =

{
0 if k 6= j
1 if k = j

is Kronecker delta, Q(k) and R(k) are symmetric positive definite matrix.

The matrices used in (18) are defined as:

Ak =

 1 0 0

0 exp
(
−∆t
R1C1

)
0

0.0755[1− exp(−β∆t|I(k)|)sign(I(k))] 0 exp(−β∆t|I(k)|)

 (21)

Bk =


−∆t

3600Cn(Tamb)
0

R1

[
1− exp

(
−∆t
R1C1

)]
0

0 0.0755[exp(−β∆t|I(k)| − 1)sign(I(k))]

 (22)

where ∆t is the sampling period of 1 s. Note that the function of Tamb and SOC in R0, R1, C1 are omitted
for clarity.

Based on the nonlinear battery cell model obtained in the previous sections, an extended Kalman
filter (EKF) can be designed to estimate the SOC of the cell. The EKF remains quite appealing
for most practitioners even with the inherent linearization error and noises [63]. The detrimental
effects due to the linearization-induced error on the SOC estimation are not significant as the battery
cell model does not have strong nonlinearity. The state equation is quite linear in the state and
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the nonlinearity in the output equation has a bounded gradient [63]. The model mismatch due to
linearization can be resolved by setting the initial SOC value close to the true value obtained from
OCV that can give a reasonable estimate of SOC value. The EKF design [19] for the state estimation
is straightforward and is thus omitted in this paper. The initial conditions of the battery cell model
are taken as X

(
0
)
=
[

0.9 0.12 0.002
]T and the EKF estimator is X̂(0) = 0.1X(0). The tuning

parameters of the EKF are taken as: Q = I3, R = 0.0005 and P0 = 0.1I3 where I3 is 3× 3 identity
matrix. The matrix Q, P and R are symmetric positive definite. The EKF is quite robust to changes of
the tuning parameters, and the process of tuning them is straightforward.

As shown in Figure 20, with the EKF and proposed cell model use the same values of model
parameters, the SOC values converge to the reference values obtained by Ah counting method.
The maximum RMSE of the SOC estimate is around 0.09. The SOC converged to the actual value at
time increases. When compared at different ambient temperature, Figure 21 shows the response of the
SOC estimate when 5 ◦C, 15 ◦C, 35 ◦C, and 45 ◦C. It can be observed at lower ambient temperature;
the SOC value is lowered than the ambient temperature of 25 ◦C and above.
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The battery cell model that includes the ambient temperature, cell temperature, hysteresis effect
and thermal aging effect on capacity, OCV-SOC and terminal voltage was simulated. As ambient
temperature varies, the response of SOC deviates from the reference or experimental data (by Ah
counting method). However, the proposed cell model with temperature-dependent terms is capable of
estimating SOC despite the variation in ambient temperature as seen in Figures 22 and 23.
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Similar phenomena can be seen in Figures 24 and 25 at different ambient temperatures for the
terminal voltage. Without the temperature-dependent terms in the battery cell model, the terminal
voltage is higher than the actual terminal voltage (that does not represent the characteristic of the
battery cell where the terminal voltage can exhibit a lower value).
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The results of the SOC estimation and terminal voltage using the proposed model with EKF
based SOC estimation method (with and without considering the ambient temperature) is shown
in Table 3. The model without the ambient temperature-dependent term in static capacity, Utemp

and RC parameters (R0, R1, C1), gives a less RMSE as compared to the non-temperature-dependent
model. Both model with and without ambient temperature term used the same Uoc in (6).
The non-temperature-dependent model adopted the fixed RC parameters [51,64–66]: R0 = 0.0823,
R1 = 0.0042, C1 = 52.2. The similar phenomena can be seen in the terminal voltage where lower RSME
can be observed (except for 25 ◦C and 35 ◦C). It may be due to the modelling was mostly performed
at 25 ◦C, and thus improvement is not prominent. Nevertheless, the increased in RMSE is not more
than 5%. In addition, there exists at least 57% improvement in SOC estimation at a lower temperature.
For the case of terminal voltage, the improvement is around 56% at a lower temperature of 5 ◦C. There
is no improvement at ambient temperature of 25 ◦C.

In summary, the proposed cell model can estimate the SOC and terminal voltage under the
different and aging thermal effect on the battery cell at a low (i.e., 5 ◦C and 15 ◦C) and high ambient
temperature (45 ◦C). Note that the results depend on the type of battery cell used. However, a similar
approach can be applied in various applications [71,72].

Table 3. RMSE comparison between the proposed model using EKF for SOC and terminal
voltage estimation.

Models Parameters
RMSE

5 ◦C 15 ◦C 25 ◦C 35 ◦C 45 ◦C

With temperature
SOC

0.0166 0.1197 0.2932 0.2919 0.1132
Without temperature 0.3002 0.2785 0.2801 0.2788 0.2784

Percent improvement 94.0% 57.0% (5.00%) (5.00%) 59.0%

With temperature Terminal Voltage 0.0593 0.1186 0.138 0.1268 0.1082
Without temperature 0.1344 0.1199 0.1352 0.1281 0.127

Percent improvement 56.0% 1.08% (2.07%) 1.00% 15.0%

7. Conclusions

The effects of the ambient temperature, cell temperature, hysteresis voltage and thermal aging
on capacity due to multiple charging and discharging was considered in the battery cell model of
the cylindrical lithium iron phosphate battery cells (ANR26650M1-B). The temperature-dependent
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extended Kalman filter (EKF) algorithm was used to estimate the state-of-charge (SOC) of the battery
cell. The effectiveness of the proposed scheme was validated experimentally on actual battery cell under
different ambient temperatures. As compared with cell model without the ambient temperature term
in the SOC model, the proposed battery temperature-dependent model gave a less root-mean-square
error at low (i.e., 5 ◦C and 15 ◦C) and high ambient temperature (45 ◦C). For future works, the battery
packs will be simulated and tested. The reliability of the SOC estimation under varying conditions of
the battery pack will be examined. The prismatic or pouch cell will be examined.
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