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Abstract: An experiment was conducted to explore the flickering parameters under varying mass
flow rate of fuel ṁF with spatial analysis and global analysis. The parameters include mean value,
flickering weighted average frequency F, flickering coefficient of variation cv (firstly introduced),
skewness s, and kurtosis k. From the spatial analysis, it was found that the brightest part of flame
is located in its core, and the brightness gradually decreased from the inside out. The distributions
of high levels of F, cv, s, and k are almost consistent, all lying in the flickering edge, which is a
thin layer where the parameters sharply declined. From the global analysis, with the increment of
ṁF, the global F decreased slightly; the global cv declined uniformly, which means the oscillation
amplitude diminished and thus the flame became more stable; the global s linearly reduced; and
the global k also showed a decreasing trend. The decreasing global s indicates that the number
distribution gradually became symmetric, and the decreasing global k indicates that the number
distribution progressively became flat. Consequently, the number distribution progressively tends to
normal distribution at larger ṁF.

Keywords: flame flickering; partially premixed flame; varying mass flow rate of fuel; spatial
analysis and global analysis; flickering weighted average frequency; flickering coefficient of variation;
skewness and kurtosis

1. Introduction

As can be observed in many combustion processes, flame always exhibits an oscillatory behavior
at any moment, and flame structure changes randomly even under stabilized supplies of fuel and
oxidizer. This phenomenon is usually entitled as flame flickering, flame puffing, or flame pulsation [1].
It is triggered by large vortices moving around the flame surface owing to buoyancy, which is known as
the Kelvin–Helmholtz instability [2]. Flame flickering plays a significant part in combustion properties,
such as combustion efficiency, flame size, flame radiation, and air entrainment. Under the acute cases,
flame extinction and device failure can be induced due to the oscillation. It is, therefore, essential to
understand the flame flickering for better control of combustion [3].

In recent decades, numerous studies have been carried out on the characteristics of flame flickering,
primarily under diffusion flame. Bahadori et al. [4] and Durox et al. [5] explored influence of gravity
level g on flickering frequency f. They discovered a relationship of power function between f and g
respectively, that is, f ∝ g0.5 from the former but f ∝ g0.67 from the latter. Arai et al. [6] explained that
the increment in f at larger g is the result of the increase in wave velocity and decrease in wavelength.
The effects of burner diameter d on f were studied by different investigators, they proposed a consistent
model as f = Cd−0.5 [7], while C is constant but varying among various experiments. For instance, C is
1.5 in Cetegen and Kasper [8], 1.68 in Malalasekera et al. [1], 1.52 in Pagni [9], and 1.73 in Bejan [10].
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Yilmaz et al. [11] performed an in-depth visual analysis to oscillatory flame by acquiring flow field
oscillation during the flickering process using particle image velocimetry (PIV). Yilmaz et al. [12] used
a light sensitive device named cadmium sulfide photocell to measure the variation in light resulted
from flame pulsation, suggesting that the mechanisms responsible for flame pulsation are strongly
dependent on burner configuration. Pan et al. [2] performed an experiment to examine the flickering
behavior of a bluff-body, and found that flickering frequency gradually enlarges with the rising flow
velocity of the annular air. Tang et al. [13] explored puffing frequency under varying aspect ratio of
rectangular burner; the results revealed that the frequency amplified as the aspect ratio increased.
Gotoda et al. [14] measured the pulsation frequency and amplitude of flame tip under various
concentrations of oxygen. It was concluded that, with the increment in oxygen concentration, the
frequency increases monotonically while the amplitude reduces sharply. Fang et al. [15] experimentally
analyzed the flickering characteristics under different air pressure (less than atmosphere). They pointed
out that the pool fire at low air pressure is more buoyant, resulting in a larger flickering frequency and
stronger oscillation level. In addition, other experiments conducted in sub-atmospheric conditions can
also be found in other studies [16,17], and those conducted in a confined compartment can be seen in
various studies [18–20].

Moreover, serval studies on flame flickering of premixed flames were performed. Kostiuk and
Cheng [21] observed the flickering under normal gravity g, microgravity, and reverse gravity (-g),
reporting that the root cause behind the puffing is the buoyant force. Gotoda et al. [22] explored
the pulsation of flame structure using methane–air mixture and propane–air mixture, respectively,
as fuels; they found that the flame oscillation occurs only when the Lewis number of the mixture is
higher than one. Durox et al. [23] studied the oscillating behavior of premixed flames under varying
pressure, flow velocity, and equivalence ratio. Fujisawa et al. [24] examined the influence of co-flow on
flame flickering and concluded that the pulsation frequency increases and amplitude declines with the
increase in the velocity of co-flow, while the amplitude enlarges as the equivalence ratio grows.

This section briefly summarized the studies on flame flickering under diffusion flames and
premixed flames. However, little work has been reported on the flickering characteristics of partially
premixed flame, which has been widely applied in numerous combustion devices because of its high
stability. The partially premixed flame is generated when a sub-stoichiometric portion of air (as also
named primary air) is premixed with the fuel before combustion, and the mixture burns with an
initially separated secondary air [25].

The aim of this work is to analyze the flickering behavior in a partially premixed combustor by
conducting an experiment under varying mass flow rate of fuel. Using image processing methodology,
for each case, we performed a spatial analysis and global analysis to five parameters. These parameters
included mean value, flickering weighted average frequency, flickering coefficient of variation,
skewness, and kurtosis. The present analysis exerts an effect to provide more detailed information on
flame flickering of partially premixed combustion.

2. Experimental Setup

For this investigation, a combustion test rig was installed, as shown in Figure 1. This device
consists of serval parts, which are briefly introduced as follows, more details can be found in our
previous research [26]. The gas holder supplies methane as the fuel, and a mass flow controller (MFC)
is used for fuel measurement and control. The compressor provides air, measured with a flow meter.
The combustor has an axisymmetric cylindrical structure, in which a swirl burner is used to organize
burning. A small portion of air (i.e., primary air, 5% of the total air, sub-stoichiometric) enters a
radial swirler tangentially, premixes with the injected fuel, and carries it into the combustion chamber.
Although, the mixing level of the mixture is still insufficient because of the short mixing distance.
The rest of air (i.e., secondary air) flows through the cooling slot and arrives in the combustor to sustain
combustion and cool the wall. The mixture of fuel and primary air burns with the secondary air to
form a partially premixed flame. A high-speed camera (i speed 3, Olympus, Essex, UK) coupled with
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an optical filter (BG 38, HB-OPTICAL, Shengyang, China) was used to record the flame structure.
The flame zone was determined with the help of CO2* chemiluminescence; this method was established
in many previous studies and thoroughly reviewed by Samaniego et al. [27]. We measured the flame
structure under varying fuel mass flow rate

.
mF (i.e.,

.
mF = 8 g/min, 10 g/min, 12 g/min), with a fixed

primary air mass flow rate (85 g/min).
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3. Analysis Technology

3.1. Analysis Parameters

The recording video was processed using a MATLAB program (matlab 2016b, The MathWorks
Inc., Natick, MA, USA) to obtain its frames (i.e., instantaneous grayscale images). A frame can be
described by a digital matrix M (x, y), in which x and y represents the number of vertical and horizontal
pixels, respectively. A total of x*y pixel elements (rectangular units) compose the M, each pixel element
indicates a location at which a gray value is stored. The gray value in the range of 0–255 is an indicator
of the brightness of a grayscale image. The brightness increases progressively from 0 (indicating black
color) to 255 (indicating a white color).

The signal of flame luminosity is usually employed to study flame flickering [2,3,12,28]. Giving a
discrete time luminance signal l(ti) (ti is time instant, i = 1 . . . N), some oscillation parameters including
mean value, flickering weighted average frequency, flickering coefficient of variation, skewness,
and kurtosis were determined as follows.

1. Mean value l: calculated as Equation (1).

l =
1
N

N

∑
i=1

l(ti) (1)

2. Flickering weighted average frequency F [29,30]: the flickering spectrum contains multiple
frequencies with large amplitudes, as will be displayed in the latter section. Therefore,
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a comprehensive parameter F is defined to consider the contributions of all components over the
entire spectrum. It is a weighted average frequency and can be obtained by Equation (2).

F =

N−1
∑

m=0
|X( fm)| · fm

N−1
∑

k=0
|X( fm)|

(2)

where fm is the mth frequency component, that is, fm = mfs/N; fs is the image sampling rate (frame
rate); and X(fm) is the DFT (discrete Fourier transformation) calculating result of fm, which is
determined by Equation (3).

X( fm) =
N

∑
i=1

l(ti) · exp(− j2π fmti) (3)

3. Flickering coefficient of variation cv: the standard deviation σ is a well-known parameter to
evaluate the variability or dispersion within a set of data. In general, a small σ indicates that the
values approach the average, while a large σ implies that the data distribute over a large range of
values. However, when the comparison is performed within different data groups, the use of σ

has an assumption that their mean values are equal (or approximately equal). If the mean values
of compared data sets have a significant difference, the σ is not suitable because it will bring large
errors. To replace the position of σ under this situation, the coefficient of variation cv is firstly
introduced to estimate the oscillation amplitude. The cv is a dimensionless parameter, which is
defined as the normalized standard deviation, that is, the σ normalized by mean value, as shown
in Equation (4). By employing cv, the effects of diverse mean values can be eliminated. In present
investigation, the flame mean luminosity varies considerably under varying mass flow rate of the
fuel, and the distribution of mean gray value for a pixel also differs significantly, as exhibited in
the latter section. Therefore, the coefficient of variation cv is applied.

cv =
σ

l
=

√
1
N

N
∑

i=1
(l(ti)− l)2

l
(4)

4. Skewness s: used to evaluate the asymmetry of the probability distribution of a data group
around the mean value, which is defined by Equation (5). The s can be 0, positive, or negative.
s = 0 indicates that the distribution is perfectly symmetric. s < 0 implies that the number of the
values above the mean are larger than that below the mean, and the distribution is said to be
left-skewed. On the contrary, s > 0 represents that the number of the values below the mean are
larger than that above the mean, and the distribution is said to be right-skewed.

s =

1
N

N
∑

i=1
(l(ti)− l)3

σ3 (5)

5. Kurtosis k: used to describe the ‘peakedness’ of a distribution in comparison with its
corresponding normal distribution, as defined by Equation (6). The value of k for normal
distribution is 3, k > 3 indicates the shape of the distribution is sharper than normal distribution.
A large value of k implies a strong peakedness in distribution values.

s =

1
N

N
∑

i=1
(l(ti)− l)4

σ4 (6)
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3.2. Analysis Methods

Two types of analysis methods were implemented to explore the local and overall information of
flame flickering; they are presented as the following.

1. Spatial analysis: for the same pixel in each image, the gray values registered by all pixels constitute
a time luminance signal, with a length of N (i.e., the number of image series). For each operating
condition, a total of x*y (as mentioned above) time signals are calculated for the oscillation
parameters as defined before. The calculation result is an image, which reveals the spatial
distribution of flame flickering.

2. Global analysis: for each image, the gray values all over an image are summed as a total
luminosity, all total luminosities from a series of images make up a global time luminance signal
for each case, which is processed to obtain global oscillation information.

In the present measurement setup, the frame rate of a video recorded with the high-speed
camera was 400 fps (frame per second). The original resolution of a frame grabbed from the video
was 1280 H × 1024 V pixels. To reduce the unnecessary calculation cost, its size was trimmed to
431 H × 601 V pixels. In each case, a sequence of continuous 512 images were employed to perform
spatial analysis and global analysis, while the corresponding time length was 1.28 s.

4. Results and Discussion

4.1. Flicker Shape

Flame flickering is a consequence of the flame-vortex interaction, as displayed in Figure 2.
The vortices are generated outside the flame surface, because of the effect of buoyancy produced by
the difference of density between hot combustion products and cool ambient air. These vortices move
upward around flame front, forming a structure of bulge and necking. Old vortices shed from the
flame tip, new vortices formed at the flame root and continue to travels along the flame surface, leading
to the flame flickering. More details of flickering dynamics can be found in previous research [26].
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4.2. Spatial Analysis

4.2.1. Flickering Signal for a Pixel

The time variation in gray value for a pixel (as an example) is shown in Figure 3a, and the
corresponding magnitude–frequency curve (by the DFT) is presented in Figure 3b. It can be observed
that multiple peak values exist in the spectrum, mainly concentrated on the range of 0–110 Hz,
the components larger than 110 Hz were relatively small and can be negligible. Therefore, the frequency
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domain of 0–110 Hz was applied to calculate F according to Equation (2). For each case, a total of
601 × 431 signals (with a length of 512 for each signal) was processed to obtain the spatial distributions
of the parameters.Energies 2018, 11, x 6 of 14 
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4.2.2. The Distribution of Mean Value

Figure 4 shows the influence of the mass flow rate of fuel
.

mF on the averaged flame image.
The mean flame appearance is comparatively regular, even though the flicker shape at each instant
was irregular (as displayed in Figure 2). One can see that the distribution of flame averaged brightness
for all cases is similar, that is, the brightest part is located in the core of flame zone, and the brightness
gradually decreases from the inside out. With the increment of

.
mF, the flame shape expanded because

more air entrainment was required to burn the fuel. Moreover, the high levels of luminosity and its
region were enhanced at larger

.
mF, which indicated that the combustion intensity was increased as

.
mF increased.
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4.2.3. The Distribution of Flickering Weighted Average Frequency

Figure 5 displays the spatial arrangement of the flickering weighted average frequency F under
varying mass flow rate of fuel. It can be found that, for all cases, the largest F mainly lay in the
flickering edge, with a value of about 55 Hz. This means the velocity of pulsation at the edge is the
fastest. This place corresponds to the position where minimal mean value existed, as can be seen in
Figure 4. Meanwhile, the F diminished from the flicker outside in, the lowest F in all cases was close to
40 Hz, which was significantly observed inside the flickering under

.
mF = 12 g/min. The distribution

in interior zone was not continuous, and was composed of many discrete small regions with diverse
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values of F. Also, with the increment of
.

mF, the distribution area enlarged as the flame zone became
larger at higher

.
mF. Altogether, the overall F all over the distribution declined as

.
mF increased.Energies 2018, 11, x 7 of 14 
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4.2.4. The Distribution of Flickering Coefficient of Variation

As the mean value for a pixel in Figure 4 was varying with pixel, the coefficient of variation cv

(i.e., normalized standard deviation by mean value) was thus (firstly) applied to measure the flickering
oscillation amplitude, as introduced in the previous section. The calculation result of cv under varying
mass flow rate of fuel is exhibited in Figure 6. It can be noticed that, for all conditions, high levels of
cv (10–20) is positioned in the flickering edge, which is only a small region. From the edge outside
in, the value of cv sharply declines, most part of flickering inner region shows a low magnitude of cv

(0–5), with a smooth distribution. This is not coincident with the distribution of F at the same zone in
Figure 5, which presented a scattered distribution as stated before. The distribution of cv indicated
that the strongest fluctuation occurs at the flickering border, while the inner zone is relatively stable.
Moreover, for the flickering edge, as

.
mF increased from 8 g/min to 10 g/min, the distribution shape

seems basically unchanged; but as
.

mF increased from 10 g/min to 12 g/min, the area where highest
value of cv is located (cv ≥ 20, red color part in the Figure) reduced. This implied that the flickering
has better stability at high mass flow rate of fuel.
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4.2.5. The Distribution of Skewness

With regard to skewness s, its calculation result is depicted in Figure 7. It can be observed that,
for all conditions, the distribution of skewness at the flickering border is almost identical to that of the
coefficient of variation in Figure 6, even the range of value is nearly the same. That is to say, the largest
value of s also concentrated on flickering edge, which indicates the data sets at this small region are
the most skewed. A large proportion of the flickering region had a positive value, which implies
the major parts are right-skewed, that is, the values are concentrated below the mean. Meanwhile,
there is a noticeable region in which the values of s are negative. The region was found in the core
of the flickering zone under the cases when

.
mF = 10 g/min and

.
mF = 12 g/min, as presented by

white color in the Figure 7. This negative-s region is left-skewed, that is, the values are concentrated
above the mean. At the same time, it corresponds to the brightest parts in Figure 4. Moreover, no
negative value of s was found for

.
mF = 8 g/min. As

.
mF increased from 8 g/min to 10 g/min, a small

region with s < 0 appeared in the center of flickering; as
.

mF increased from 10 g/min to 12 g/min, the
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4.2.6. The Distribution of Kurtosis

Concerning the kurtosis k, its spatial arrangement under varying mass flow rate of fuel is presented
in Figure 8. One can observe that the distribution of kurtosis is accordant with that of the coefficient
of variation in Figure 6 and the skewness in Figure 7 at the flickering edge. It is a thin layer through
which a sharp change in k occurs (from 200 to 500), which indicates the data groups with large
peakedness of probability distribution are situated in the flickering border. While the most flickering
area has a low value of k (k < 100), where the probability distribution of data sets has a relatively
small peakedness. When

.
mF increased from 8 g/min to 10 g/min, the distribution shape remained

unchanged appropriately; but when
.

mF increased from 10 g/min to 12 g/min, the area where highest
value of k locates (k ≥ 400, red color part in the Figure) diminished.
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4.3. Global Analysis

To perform a global analysis, the gray values all over an image were summed as a total
luminosity and thus generated one global time luminance signal for each case, as exhibited in
Figure 9a,c,e—the corresponding spectrums (y the DFT) are presented in Figure 9b,d,f, respectively.
The magnitude–frequency curve for all cases displays a multifrequency behavior. This may be
attributed to the effects of swirl flow and partially premixing. The non-swirl flame always produces a
single-peak spectrum [1,3]. Moreover, Huang et al. [29] found in their experimental results that the
spectrum of a pure diffusion flame displays a single-peak behavior, but the spectrum of a premixed
flame shows numerous peak values. Therefore, the swirl partially premixing could induce the
multifrequency phenomenon. The frequency components for all cases are primarily concentrated in
the range of 0–110 Hz (equal to that for a pixel), so other components were ignored while calculating
the weighted average frequency F of global signals. The global signals were processed to obtain the
global parameters; the calculation result is shown in Figure 10.
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As illustrated in Figure 10, with the increase of
.

mF, the mean luminosity of global signal ltot

intensified as the heat-release intensity increased. This is consistent with the observation from Figure 4.
With regard to the global flickering weighted average frequency F, it slightly decreased from 39 Hz to
37 Hz as

.
mF increased. Though this variation in F is not much (in the range of 2 Hz) yet, the spectrums

as well as the dominant frequencies are entirely different. As we observed in previous research [26],
the most dominant frequency increased with

.
mF. However, the weighted average F in the present

investigation did not follow this increasing trend because it was determined by all the selected
components, therefore, its variation trend can be different from the most dominant frequency. Moreover,
the values of global F are lower than that of local F from the distribution in Figure 5 (40–55 Hz).

Regarding the coefficient of variation cv, it declined uniformly from 0.37 to 0.18 with the increment
of

.
mF, which means the oscillation amplitude diminished and thus the flame became more stable

at larger
.

mF. This agrees with the previous observation of normalized peak-to-peak amplitude [26],
which also displayed a decreasing tendency with

.
mF.
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With respect to the skewness s and kurtosis k, the s linearly reduced as
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mF increased, and the k also
had a decreasing trend with
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mF. The values of s for all cases are larger than 0, which means the number
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of the values below the mean are larger than that above the mean. Also, the values of k for all cases are
larger than 3 (k is 3 for normal distribution), which implies the peakedness of number distributions
are higher than the relevant normal distribution, as presented in Figure 11. The decreasing s indicates
the number distribution becomes increasingly more symmetric, and the decreasing k indicates the
number distribution becomes increasingly more flat. Both parameters jointly indicate that as

.
mF

increases, the number distribution progressively tends to normal distribution, that is, the normality of
distribution improves, this can be easily observed in the Figure.
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5. Conclusions

Based on an experiment, the flickering parameters under varying mass flow rate of fuel
.

mF
were investigated using two kinds of methods: spatial analysis and global analysis. The results
can help in understanding flame oscillation in theory and can also be taken as reference in practical
implementation. The primary conclusions of this work are summarized as follows:

1. From the spatial analysis, the brightest part of flame was located in its core, and the brightness
gradually decreased from the inside out. As

.
mF increased, high levels of luminosity and its

corresponding region were enhanced.
2. The largest flickering weighted average frequency F mainly lay in the flickering edge, where

the velocity of pulsation was the fastest. Meanwhile, F diminished from the flicker outside in,
the distribution in interior zone was not continuous, which was composed of many discrete small
regions with diverse values of F.

3. The coefficient of variation cv was firstly introduced to measure the flickering oscillation
amplitude. High levels of cv were also positioned in the flickering edge, where the strongest
fluctuation occurs. From the edge outside in, the value of cv sharply declined, and the most part
of flickering inner region showed a low magnitude with a smooth distribution.

4. Likewise, the largest value of skewness s concentrated on flickering border, where the datasets
were the most skewed. Most of the flickering region has a positive value, which implies the major
parts are right-skewed. While the negative-s region is also found in the core of the flickering zone,
it is left-skewed and corresponds to the brightest parts. As

.
mF became larger, the negative-s region

was expanded rapidly, which means the flickering region becomes increasingly more left-skewed.
5. The distribution of kurtosis k was in accordance with that of the cv, the data groups with large

peakedness of probability distribution were situated in the flickering border. While the most
flickering area had a low value, where the probability distribution of data sets had a relatively
small peakedness.

6. From the global analysis, with the increment of
.

mF, the global F slightly decreased while the global
cv declined uniformly, which means the oscillation amplitude diminished and thus the flame
became more stable. The global s linearly reduced and the global k also had a decreasing trend.
The decreasing global s indicates the number distribution gradually became symmetric, and the
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decreasing global k indicates the number distribution progressively became flat. Consequently,
the number distribution progressively tends to normal distribution at larger

.
mF.
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