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Abstract: Investment options of transmission expansion planning (TEP) involve different lead times
according to their length, technology, and environmental and social impacts. TEP planners can utilize
the various lead times to deal with the risk of uncertainty. This paper proposes a novel framework
for TEP under an uncertain environment, which includes investment options with various lead times.
A multi-stage model is developed to reflect the different lead times in the planning method. The level
of demand uncertainty is represented using a relative standard deviation. Demand uncertainty in the
presented multi-stage model and its influence on the optimal decision are studied. The problem is
formulated as a mixed integer linear problem to which stochastic programming is applied, and the
proposed framework is illustrated from case studies on a modified Garver’s six-bus system. The case
studies verify the effectiveness of the framework for TEP problems with a mathematically tractable model
and demonstrates that the proposed method achieves better performance than other methods when the
problems involve investment candidates with various lead times under uncertain conditions.

Keywords: transmission expansion planning; lead times; investment options; stochastic programming;
multi-stage model

1. Introduction

Recently, the increasing integration of new components, such as variable energy resources, energy
storage systems, and electric vehicles, has indicated a new direction for temporally managing system
resources. Modern power systems are incorporating temporal characteristics of the components
in their operation and planning strategies. Accordingly, many research areas regarding temporal
characteristics have been actively studied. Primary frequency reserves provided by wind turbines
and energy storage systems were studied in Reference [1], and an optimal control strategy to increase
the utilization of wind power curtailment was proposed. The impact of wind energy integration on
power systems was investigated in Reference [2]. The power reserve requirements required for wind
energy integration were estimated at the regional level. In Reference [3], the strategic operation of
wind power plants was presented to provide energy and flexible ramping products. The optimization
problem decides the operation scheduling of wind power generation in a real-time market. A unit
commitment (UC) problem including uncertainty of wind power and solar power was studied in
Reference [4]. The presented methodology for solving the UC problem was tested on a 24-h UC test
system. Similar studies in transmission expansion planning (TEP) have gained less attention, although
various transmission investment options have considered different time schedules in their planning.
The impact of different lead times on TEP problems is studied in this research.
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Transmission planning activities are divided into several steps according to reliability criteria,
while evaluating long-term reliability of transmission networks requires statistical approaches.
The amount of load shedding is one of the reliability criteria. An objective function minimizes the sum
of the investment cost and expected load-shedding cost [5]. Another reliability criterion is loss of load
expectation [6], in which two probabilistic reliability criteria were applied to transmission planning
activity: the transmission system and its bus/nodal framework. Deterministic reliability criteria are
usually used to evaluate the operating reliability of a transmission network, and the (N-α) contingency
criterion is the most widely used method to evaluate the security of transmission networks [7].
To circumvent investigating the whole contingency set, an adjustable robust optimization approach was
proposed in Reference [8]. Recent changes in power generation mix require that operating reliability
criteria incorporate the characteristics of renewable energy sources. Uncertainty regarding wind power
generation was considered in transmission network expansion planning [9], where a combined Monte
Carlo and probabilistic power flow analysis method was used with a chance-constrained approach.
The interactions of wind power generation and dynamic thermal ratings of transmission lines were
investigated in Reference [10], and the authors suggested that constructing new transmission corridors
may not be the optimal transmission network reinforcement strategy when wind power generation is
connected. Fault analysis and stability analysis are usually the final steps of transmission planning
activities [11]. The technical analysis requires a pre-optimized network configuration and different
types of parameters for generation and transmission. In this step, the engineering feasibility of the
pre-optimized configuration of a transmission network is investigated. This paper focuses on the
long-term characteristics of transmission networks under uncertain environments. The expected cost
of load shedding is utilized as a reliability criterion.

Planning problems are generally divided into two broad categories: static and dynamic.
Static planning has a single decision stage, planning lead time, and a target year. In contrast, dynamic
planning has multiple decision stages and target years. This is also called multi-period or multi-stage
planning in TEP research. Dynamic planning problems reflect real-world planning processes, where
planning decisions are conducted in multiple stages, but have been generally solved by decomposing
them into a sequence of static problems or by using heuristic methods owing to computational
complexity issues [12]. A heuristic method was used to reduce the combinatorial search space of a
multi-stage problem [13]. The strategy is to solve the multi-stage problem by utilizing the solutions
of several static problems. A genetic algorithm was used to solve a multi-stage planning problem in
Reference [14]. Although the optimal solution of the heuristic method was suboptimal, the results
produced lower investment costs than static planning. The aforementioned studies concentrated on
the method for reducing the computational complexity inherent in multi-stage problems and did not
consider different lead times of investment options. This paper presents a new multi-stage model in
which the lead times are reflected to solve transmission planning problems with diverse investment
options. The model is a mixture of static and dynamic planning models, capturing the advantages of
multiple decision stages in the dynamic model, and mathematical tractability in the static model.

Transmission network investment has many aspects: capital-intensive, long payback
period, economy of scale, investment irreversibility, long-run uncertainty, and low adaptability.
Especially, long-run uncertainty leads to greater risk for planners and investors [15]. Investing in
generating units involves the same problem as investing in transmission networks; however, the former
uses market and financial instruments to hedge some of the risk, while there is a lack of such
instruments for the latter [16]. Thus, transmission network planners have the crucial role of
appropriately dealing with uncertainties in the planning process. Accordingly, long-term uncertainty
has been actively studied in the framework of TEP processes to enable planners to cope with risk [17].
The long-term uncertainty in TEP is caused by various sources: demand, generation expansion, market
rules, availability of facilities, etc. Among these, demand uncertainty has been considered as one of the
most decisive factors in TEP problems. In Reference [18], the authors used robust optimization to find
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the worst case in a given interval of possible demand values. In Reference [19], long-term demand
uncertainty was modeled by a generalized version of a deterministic peak demand.

To incorporate the various characteristics of uncertainty, stochastic approaches have also been
used in planning problems. Long-term uncertainty in demand was represented as a Markov chain to
take into account the autocorrelation of demand variation on a planning horizon [20]. The demand
uncertainty was modeled to follow a discrete probability distribution, and it was applied to a stochastic
dynamic programming for generation investment. In Reference [21], the authors addressed the
forecasting uncertainty of peak loads in generation and transmission planning. The uncertainty
was considered using a normal probability distribution with constant values for demand growth
and standard deviation. In Reference [22], scenario construction was applied to take into account
long-term demand uncertainty. A chance-constrained programming approach has been introduced
to model various uncertain factors in static TEP [23]. The authors modeled demand growth and its
uncertainty using normal probability distributions. In Reference [24], a stochastic dynamic model was
used in a real option approach to take long-term uncertainty in load growth into account for generation
investment optimization. These stochastic approaches captured diverse characteristics of the long-term
demand uncertainty, such as autocorrelation, independency, and the mixture of uncertain sources.
However, all the stochastic models above were either used in a static TEP or multi-stage TEP involving
a regular interval.

TEP practices also involve the process of evaluating the impact of long-term uncertainty.
Under restructured electric market environments, generation expansion planning has become a
decentralized planning process where private investors seek to gain profit in electricity markets while
TEP remains a centralized process [25]. However, the new environment has changed some aspects of
TEP activities. In some power systems, private investors are allowed to propose a plan for transmission
reinforcement and expansion for limited applications, although the complete process remains within the
overall framework of centralized planning [26]. As the complexity of power systems increases, coordination
of planning activities becomes more important. The European network of transmission system operators
(ENTSO-e), which aims at achieving a coordinated pan-European approach to electricity system planning,
releases their ten-year network development plan (TYNDP) every two years [27]. The TYNDP includes
a scenario building process to deal with the risks of long-term uncertainty. PJM, a regional transmission
organization in the United States, also follows a scenario planning process in its regional transmission
planning [28]. The procedure examines the impact of long-term uncertainty on the reliability of the
PJM system.

Considering various transmission investment options and their lead times, there have been various
methods proposed to deal with the risk of the long-term uncertainty. An optimal decision of flexible
alternating current transmission systems (FACTS) investment in the framework of a TEP problem was
studied using a real option approach [29]. In Reference [30], the authors considered diverse candidates, such
as phase-shifting transformers, energy storage, and others as transmission investment options. The periods
needed to build the various investment options were included in the study. In Reference [22], the authors
incorporated the duration of transmission construction into the adaptation cost function of a proposed
flexible TEP framework. In Reference [31], coordination of construction periods of transmission lines,
FACTS, and generators was investigated. Various investment candidates considered in this research
may include high voltage AC transmission line construction as well as other methods for expanding
transmission capacity, such as FACTS, high voltage DC, and AC to DC conversion. Technical aspects of
these various planning options are not considered. Instead, the proposed TEP framework considers the
diverse investment candidates in terms of their transmission capacities and lead times.

This paper proposes a novel framework for TEP problems with transmission investment options
involving diverse lead times. The various lead times provide the planner with decision choices at
different time steps for the network configuration of a target year. A multi-stage model is presented to
reflect the advantage of incorporating different lead times in the optimal plan. Long-term uncertainty
of peak demand is modeled using the relative standard deviation. The uncertainty model reflects
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demand variations on the planning horizon, enabling the consideration of uncertainty variation in
the decision stages. The demand uncertainty in the proposed multi-stage model and its influence on
the optimal decision were studied in the transmission expansion planning problem. The proposed
framework is formulated as a mixed integer nonlinear problem. To solve these problems, the nonlinear
constraints are replaced by a linear constraint and stochastic programming is applied to the problem.
Monte Carlo simulations and sample average approximation are utilized to obtain the deterministic
equivalent of the stochastic problem. The main contribution of this paper is presenting a planning
framework that reflects different lead times for investment options using a mathematically tractable
optimization process.

The remainder of this paper is organized as follows. The proposed approach is described in
Section 2. In Section 3, the mathematical formulation and solution methods are explained. Section 4
presents case studies and the discussion. The conclusion is given in Section 5.

2. Proposed Framework

2.1. Multi-Stage Model

In TEP problems, a stage model plays a crucial role because it may reflect time steps of decisions,
target years, and lead times. Various stage models are shown in Figure 1. The model in Figure 1a
shows a traditional single stage model used in static planning problems. It has a single decision stage,
lead time, and target year. On the other hand, Figure 1b represents an example of a multi-stage model.
The model reflects the TEP process, which is conducted on a regular interval assuming that every
investment candidate of the transmission planning process has the same lead time for its construction.
However, in the real world, investment candidates may have different lead times owing to several
reasons, such as the period of construction, the process of gaining right-of-way, the assessment of
environmental impact, and the settlement of social issues. The model shown in Figure 1c considers
them by setting multiple stages according to the different lead times. In the model, investment
decisions take place at multiple stages for the network configuration of a target year.
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The models of both Figure 1b,c have multiple decision stages. However, the model in Figure 1c
is different from the model in Figure 1b in that each investment candidate is considered only at a
single stage. In other words, investment candidates with different lead times belong to different
decision stages. This model allows the proposed problem to require less computational complexity
than dynamic TEP problems with the stage model in Figure 1b, because the complexity of the dynamic
decisions is not reflected in the multi-stage model shown in Figure 1c. Therefore, in our work, the model
in Figure 1c was used to reflect the different lead times for the proposed framework.

Investment decisions are made at each time step of the multiple stages, so forecasting of peak
demand for the target year also takes place at each time step. Transmission network planners need to
utilize all the necessary information available at the initial stage where the planning process begins.
Although the exact peak demand of the target year forecasted at time steps of the middle stages is not
foreknown, the level of forecasting uncertainty may be known at the initial stage because the extent of
the uncertainty can be estimated from historical data as a function of forecasting periods.

2.2. Demand Uncertainty in Multi-Stage Model

Unlike short-term planning, demand uncertainty in the long-term may be difficult to model
owing to a lack of statistical data. However, representing demand uncertainty with non-stochastic
models has limitations, particularly in modeling the behavior of uncertainties in multiple stages over
a planning horizon. Thus, the demand uncertainty has been modeled with stochastic approaches to
incorporate auto-correlated, independent, or stationary characteristics. In this study, the uncertainty of
peak demand in long-term planning is formulated by a stochastic approach.

Predicted growth and the uncertainty of peak demand for the forecasting period are given by a
random variable following a normal distribution as follows:

E ∼ N(µE, σ2
E) (1)

Given the current value of demand d0 at the initial stage, the random variable of the peak demand
at the target year also follows a normal distribution.

D ∼ N(µD, σ2
D) (2)

Here, µD is equal to d0 + µE and σD = σE.
The two random variables in a single stage model are shown in Figure 2.
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To represent the level of the forecasting uncertainty relevant to the expected peak demand,
the relative standard deviation (RSD), also known as the coefficient of variation, is considered in
percentage form as follows:

RSD =
σ

µ
× 100 (3)

RSD is a standardized measure of dispersion of the probability distribution, and the value of
RSD for a forecasting period is estimated from historical data. Given the estimated RSD value and the
forecasted peak demand, the standard deviation can be calculated by rearranging Equation (3).
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It is important to express the uncertainty as the ratio of the standard deviation to the expected
demand rather than using the standard deviation alone because the value of demand may vary to a
great extent over the planning horizon. Note that RSD is different from the mean absolute percentage
deviation (MAPD), which is commonly used in the real world to represent the forecasting uncertainty
in percentage form. For a normal probability distribution, MAPD is related to RSD as follows:

MAPD =
E[|X− µ|]

µ
× 100 =

√
2
π

RSD (4)

The value of uncertainty is estimated from historical data and can be expressed as a function of
the forecasting period.

RSDp = RSDp,y; ∀y ∈ ΩY, ∀p ∈ ΩP (5)

Equation (5) indicates that the extent of uncertainty depends on the forecasting period, regardless
of the year in which forecasting is conducted.

For demand uncertainty in the proposed multi-stage model, a family of random variables for
peak demand growth is formulated by the forecasting periods and years of the stages.

EY(p) ∼ N(µy,p, σ2
y,p); p ∈ ΩP, y ∈ ΩY (6)

In (6), µy,p represents the expected demand growth from year y for period p and σy,p indicates the
standard deviation. σy,p is calculated using Equation (3) with the values of RSDp and the forecasted
peak demand for the year y + p.

Then, a family of random variables for future peak demand is indexed by years.

DY ∼ N(µy, σ2
y ); y ∈ ΩY (7)

An example of a multi-stage model is shown in Figure 3. Here, Dy1 is the peak demand random
variable at year y1 forecasted at decision stage 0, and Dyt is the peak demand random variable at the
target year forecasted at decision stage 1. The two random variables are given by

Dy1 = d0 + Ey0(p1) (8)

Dyt = Dy1 + Ey1(p2) (9)

Note that if the peak demand of the target year is forecasted at the initial stage, the random
variable may be different from Dyt in Equation (9) owing to the different forecasting periods for the
two random variables.

Energies 2018, 11, x FOR PEER REVIEW  6 of 19 

 

It is important to express the uncertainty as the ratio of the standard deviation to the expected 
demand rather than using the standard deviation alone because the value of demand may vary to a 
great extent over the planning horizon. Note that RSD is different from the mean absolute 
percentage deviation (MAPD), which is commonly used in the real world to represent the 
forecasting uncertainty in percentage form. For a normal probability distribution, MAPD is related 
to RSD as follows: 

[ ] 2100
E X

MAPD RSD
μ

μ π
−

= × =  (4)

The value of uncertainty is estimated from historical data and can be expressed as a function of 
the forecasting period. 

, ; ,p p y Y PRSD RSD y p= ∀ ∈Ω ∀ ∈Ω  (5)

Equation (5) indicates that the extent of uncertainty depends on the forecasting period, 
regardless of the year in which forecasting is conducted. 

For demand uncertainty in the proposed multi-stage model, a family of random variables for 
peak demand growth is formulated by the forecasting periods and years of the stages. 

2
, ,( ) ~ ( , );    ,Y y p y p P YE p N p yμ σ ∈Ω ∈Ω  (6)

In (6), ,y pμ  represents the expected demand growth from year y  for period p  and ,y pσ  
indicates the standard deviation. ,y pσ  is calculated using Equation (3) with the values of pRSD  
and the forecasted peak demand for the year y p+ . 

Then, a family of random variables for future peak demand is indexed by years. 
2~ ( , );    Y y y YD N yμ σ ∈Ω  (7)

An example of a multi-stage model is shown in Figure 3. Here, 1yD  is the peak demand 
random variable at year y1 forecasted at decision stage 0, and ytD  is the peak demand random 
variable at the target year forecasted at decision stage 1. The two random variables are given by 

1 0 0 1( )y yD d E p= +  (8)

1 1 2( )yt y yD D E p= +  (9)

Note that if the peak demand of the target year is forecasted at the initial stage, the random 
variable may be different from ytD  in Equation (9) owing to the different forecasting periods for 
the two random variables. 

 
Figure 3. Demand uncertainty in multi-stage model. 

As shown in Figure 3, the stochastic process YD  involves independent increments; 
non-overlapping increments s tD D−  and u vD D−  are independent random variables when s t>  
and u v>  for , , , Ys t u v∈ Ω . The increments are random variables defined as ( )YE p . For 
non-overlapping forecasting periods, the random variables ( )YE p  are independent because their 
parameters are independently determined. Based on the independent increment property, the 

Figure 3. Demand uncertainty in multi-stage model.

As shown in Figure 3, the stochastic process DY involves independent increments;
non-overlapping increments Ds − Dt and Du − Dv are independent random variables when s > t and
u > v for s, t, u, v ∈ ΩY. The increments are random variables defined as EY(p). For non-overlapping
forecasting periods, the random variables EY(p) are independent because their parameters are
independently determined. Based on the independent increment property, the values of expected
peak demands are forecasted at the initial stage and are assumed to be fixed for the planning horizon.
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In the presented multi-stage model, there are middle stages where forecasting can be conducted again
for the remaining years of the planning horizon, which may lead to newly forecasted peak demands.
There is no possible way to foreknow the future forecasted values at the initial stage, but the level of
the forecasting uncertainty can be estimated from historical data.

Under this condition, peak demands on the presented multi-stage model are expressed as the
sum of a series of independent random variables. The succession of random steps by independent
normally distributed random variables is represented as:

Z ∼ N(µX + µY, σ2
X + σ2

Y) (10)

where Z is equal to X + Y, and X ∼ N(µX , σ2
X), Y ∼ N(µY, σ2

Y).
Accordingly, the discrete-time stochastic process Dy is a collection of random variables following

normal distributions at all future stages.

2.3. TEP Problems with Multi-Stage Model

The uncertainty of the problem is not concerned with individual investment decisions, but with the
optimal solution. In the presented framework, a TEP problem is solved for the network configuration
of a target year. Thus, the last decision stage, where the optimal plan for the network configuration is
completed, decides the overall uncertainty of the plan.

An example of the multi-stage model in a TEP problem is illustrated in Figure 4. Dp1
yt is the peak

demand random variable of the target year forecasted at decision stage 0, whereas Dp3
yt is the peak

demand random variable of the target year forecasted at decision stage 1. In this problem, investment
options are assumed to have a lead time of either p1 or p3. Thus, there are two decision stages.
For the sake of simplicity, three assumptions are used; RSDp = k× p; k ∈ R1

+andp ∈ ΩP, p2 = p3,
and µy0,p1 = µy0,p2 = µy1,p3 = 0.

Energies 2018, 11, x FOR PEER REVIEW  7 of 19 

 

values of expected peak demands are forecasted at the initial stage and are assumed to be fixed for 
the planning horizon. In the presented multi-stage model, there are middle stages where 
forecasting can be conducted again for the remaining years of the planning horizon, which may 
lead to newly forecasted peak demands. There is no possible way to foreknow the future forecasted 
values at the initial stage, but the level of the forecasting uncertainty can be estimated from 
historical data. 

Under this condition, peak demands on the presented multi-stage model are expressed as the 
sum of a series of independent random variables. The succession of random steps by independent 
normally distributed random variables is represented as: 

2 2~ ( , )X Y X YZ N μ μ σ σ+ +  (10)

where Z  is equal to X Y+ , and 2 2~ ( , ) , ~ ( , )X X Y YX N Y Nμ σ μ σ . 
Accordingly, the discrete-time stochastic process yD  is a collection of random variables 

following normal distributions at all future stages. 

2.3. TEP Problems with Multi-Stage Model 

The uncertainty of the problem is not concerned with individual investment decisions, but 
with the optimal solution. In the presented framework, a TEP problem is solved for the network 
configuration of a target year. Thus, the last decision stage, where the optimal plan for the network 
configuration is completed, decides the overall uncertainty of the plan. 

An example of the multi-stage model in a TEP problem is illustrated in Figure 4. 1p
ytD  is the 

peak demand random variable of the target year forecasted at decision stage 0, whereas 3p
ytD  is the 

peak demand random variable of the target year forecasted at decision stage 1. In this problem, 
investment options are assumed to have a lead time of either p1 or p3. Thus, there are two decision 
stages. For the sake of simplicity, three assumptions are used; 1;p PRSD k p k R and p+= × ∈ ∈ Ω , 

2 3p p= , and 0, 1 0, 2 1, 3 0y p y p y pμ μ μ= = = . 

 
Figure 4. Example of multi-stage model in a TEP problem. 

This problem may face different levels of uncertainty depending on the optimal solution. If the 
optimal plan of the TEP problem only consists of investment options with lead time p1, then the 
plan will face the uncertainty of 1p

ytD . On the other hand, if the optimal plan includes an investment 
candidate with lead time p3, then the optimal decision will be completed at decision stage 1 and 
faces the uncertainty of 3p

ytD . For each solution, the uncertainty level of the expected peak demand 
is computed as 

1
0, 1 0, 1

0 0, 1 0

100 100p
yt

y p y p
D

y p

RSD
d d

σ σ
μ

= × = ×
+

 (11)

3

2 2
0, 2 1, 3 0, 2

0 0, 2 1, 3 0

2
100 100p

yt

y p y p y p
D
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Figure 4. Example of multi-stage model in a TEP problem.

This problem may face different levels of uncertainty depending on the optimal solution. If the
optimal plan of the TEP problem only consists of investment options with lead time p1, then the
plan will face the uncertainty of Dp1

yt . On the other hand, if the optimal plan includes an investment
candidate with lead time p3, then the optimal decision will be completed at decision stage 1 and
faces the uncertainty of Dp3

yt . For each solution, the uncertainty level of the expected peak demand is
computed as

RSD
Dp1

yt
=

σy0,p1

d0 + µy0,p1
× 100 =

σy0,p1

d0
× 100 (11)

RSD
Dp3

yt
=

√
σ2

y0,p2 + σ2
y1,p3

d0 + µy0,p2 + µy1,p3
× 100 =

√
2σy0,p2

d0
× 100 (12)

Here, σy0,p2 is equal to σy1,p3 because the forecasting period of the two stages is assumed to be
equal. Because σy0,p1 is equal to 2σy0,p2 under the assumption of linearly increasing RSD, then RSD

Dp1
yt
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is equal to
√

2RSD
Dp3

yt
. Figure 5 depicts an estimated RSD curve and the RSD value of each solution.

The RSD curve is a function of the forecasting period. Then, the RSD values are calculated based
on the curve. Note that the value of RSD

Dp3
yt

depends on both the number of stages and the periods

between stages. This method can be easily extended to general cases with varying expected demand
growth, multiple stages with different periods, and any RSD curve estimated from historical data.
In the proposed framework, the random variables of peak demand are modeled to follow normal
distributions. Other probability distributions where stochastic approaches are applicable can be used
in the proposed model.

Energies 2018, 11, x FOR PEER REVIEW  8 of 19 

 

Here, 0, 2y pσ  is equal to 1, 3y pσ  because the forecasting period of the two stages is assumed to 
be equal. Because 0, 1y pσ  is equal to 0, 22 y pσ  under the assumption of linearly increasing RSD, then 

1p
ytD

RSD  is equal to 32 .p
ytD

RSD  Figure 5 depicts an estimated RSD curve and the RSD value of each 

solution. The RSD curve is a function of the forecasting period. Then, the RSD values are calculated 
based on the curve. Note that the value of 3p

ytD
RSD  depends on both the number of stages and the 

periods between stages. This method can be easily extended to general cases with varying expected 
demand growth, multiple stages with different periods, and any RSD curve estimated from 
historical data. In the proposed framework, the random variables of peak demand are modeled to 
follow normal distributions. Other probability distributions where stochastic approaches are 
applicable can be used in the proposed model. 

 
Figure 5. Estimated RSD curve and calculated RSD values. 

3. Mathematical Formulation and Solution Procedure 

3.1. Model Formulation 

The typical formulation of TEP deterministic problems is given in Reference [32]. The objective 
is to minimize the sum of investment and load-shedding costs. To consider demand uncertainty, 
stochastic approaches are needed [5]. Then, the objective function is the sum of the investment cost 
and the expected load-shedding cost. The proposed framework is a stochastic problem. The 
formulation is modified to incorporate the proposed multi-stage model as follows: 

0 0( )

1 1min ( )]
(1 ) (1 )peak

tly ytY G DL

Gen Lsh
l l g g dy y y yD x

y g dl

z I x E C p C r
a a

α
−

− −
∈Ω ∈Ω ∈Ω∈Ψ

 
= + + + + 
     (13) 

subject to 

| ( ) | ( )
( ),

n n
G D

node
g l l d d

l i l n l j l ng d

p f f D r
ψ ψ= =∈ ∈

− + = −     Nn∀ ∈ Ω  (14) 

max max ,l l l l lx f f x f− ≤ ≤  Ll∀ ∈ Ω  (15) 

( ) ( )( ),l l l i l j lf x B θ θ= −  Ll∀ ∈ Ω  (16) 

max0 ,g gp p≤ ≤  Gg∀ ∈ Ω  (17) 

Figure 5. Estimated RSD curve and calculated RSD values.

3. Mathematical Formulation and Solution Procedure

3.1. Model Formulation

The typical formulation of TEP deterministic problems is given in Reference [32]. The objective
is to minimize the sum of investment and load-shedding costs. To consider demand uncertainty,
stochastic approaches are needed [5]. Then, the objective function is the sum of the investment cost and
the expected load-shedding cost. The proposed framework is a stochastic problem. The formulation is
modified to incorporate the proposed multi-stage model as follows:

minz = ∑
y∈ΩY

∑
l∈Ψyt−y

L

1
(1 + a)y−y0

Il xl + αEDpeak(xl)

[
1

(1 + a)yt−y0
( ∑

g∈ΩG

CGen
g pg+ ∑

d∈ΩD

CLshrd)]

]
(13)

subject to

∑
g∈ψn

G

pg − ∑
l|i(l)=n

fl + ∑
l|j(l)=n

fl = ∑
d∈ψn

D

(Dnode
d − rd), ∀n ∈ ΩN (14)

− xl f max
l ≤ fl ≤ xl f max

l , ∀l ∈ ΩL. (15)

fl = xl Bl(θi(l) − θj(l)), ∀l ∈ ΩL (16)

0 ≤ pg ≤ pmax
g , ∀g ∈ ΩG (17)

0 ≤ rd ≤ rmax
d , ∀d ∈ ΩD (18)

− π ≤ θi(l) − θj(l) ≤ π, ∀l ∈ ΩY (19)
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xl = 1, ∀l ∈ ΩL\Ψ+
L (20)

xl ∈ (0, 1), ∀l ∈ Ψ+
L (21)

The objective function in Equation (13) represents the sum of annualized investment costs and
expected costs of generation and load shedding. The stochastic variable Dpeak(xl), which is the peak
demand random variable of the target year, represents the uncertainty of the plan. The generation
and load-shedding costs are dependent on the realization of the stochastic variable Dpeak, whose
parameters are determined by investment decisions. The objective function can be rewritten as the
formulation of a stochastic programming application [33]:

minctx + EDpeak(x)[Q(x, d)] (22)

Applying the general stochastic programming method to the problem requires specific parameters
for Dpeak(x).

In Equation (14), the constraint states the power balances at every node. The constraint in
Equation (15) sets the limitation of maximum flow for each transmission line and the constraint in
Equation (16) indicates a DC power flow model. The maximum capacity of the generators and the
possible maximum load shedding value are stated in Equations (17) and (18), respectively. Equation (19)
limits the phase angle between two nodes. Equation (20) means that xl is 1 for existing transmission
lines and Equation (21) states that xl is a binary variable for investment candidates.

The mathematical model presented in Equations (13)–(21) is a mixed integer nonlinear problem
owing to the constraint in Equation (16). The constraint can be replaced using a linear disjunctive
model [34]:

− (1− xl)M ≤ fl + B(θi(l) − θj(l)) ≤ (1− xl)M, ∀l ∈ ΩL (23)

where M is called a disjunctive parameter. Note that the constraint stated by Equation (23) is equivalent
to Equation (16) when xl is equal to 1. Otherwise, the constraint becomes:

−M ≤ fl + B(θi(l) − θj(l)) ≤ M (24)

In Equation (24), the disjunctive parameter M must be large enough to avoid forcing a limit on
the voltage angle difference between nodes i(l) and j(l). When the value of M is too large, numerical
instability may occur. The method for the appropriate selection of the disjunctive parameter is
discussed in Reference [35].

3.2. Stochastic Mixed Integer Linear Problem

The formulation in Equations (13)–(21) is a stochastic problem in which the parameters of the
stochastic variable Dpeak are dependent on the decision variable xl . With a fixed set of parameters for
the stochastic variable and the linearized constraint in Equation (23), the problem is formulated as a
stochastic mixed integer linear problem, as follows:

minzp = ∑
l∈Ψ

(yt−yk)+
L

1
(1 + a)yk−y0

Il xl + αEDpeak

[
1

(1 + a)yt−y0
( ∑

g∈ΩG

CGen
g pg+ ∑

d∈ΩD

CLshrd)]

]
(25)

subject to

∑
g∈ψn

G

pg − ∑
l|i(l)=n

fl + ∑
l|j(l)=n

fl = ∑
d∈ψn

D

(Dnode
d − rd), ∀n ∈ ΩN (26)

− xl f max
l ≤ fl ≤ xl f max

l , ∀l ∈ ΩL (27)

− (1− xl)M ≤ fl + B(θi(l) − θj(l)) ≤ (1− xl)M, ∀l ∈ ΩL (28)

0 ≤ pg ≤ pmax
g , ∀g ∈ ΩG (29)
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0 ≤ rd ≤ rmax
d , ∀d ∈ ΩD (30)

− π ≤ θi(l) − θj(l) ≤ π, ∀l ∈ ΩY (31)

xl = 1, ∀l ∈ ΩL\Ψ+
L (32)

xy
l ∈ (0, 1), ∀l ∈ Ψ+

L (33)

∑
l∈Ψ

yt−yk
L

xl ≥ 1 (34)

In the objective function Equation (25), the set Ψ(yt−yk)+
L is a subset of ΩL and consists of

investment options with lead times longer than or equal to (yt − yk). The constraint in Equation (34)
ensures that at least one investment candidate with lead time (yt − yk) is built. The uncertainty level
of the planning problem is determined at the last decision stage where the network configuration of
the target year is completed. Thus, the constraint in Equation (34) ensures a fixed set of parameters for
the stochastic variable Dpeak. The problem in Equations (25)–(34) finds the optimal solution among the
investment candidates with lead times longer than or equal to (yt − yk) under the uncertainty level
determined by lead time (yt − yk). To find the optimal solution of the problem, all sets of parameters
for the stochastic variable Dpeak need to be considered. In the end, the problem in Equations (25)–(34)
is repeatedly solved for all periods of lead times. Among the set of investment decisions, the solution
with the minimum cost is the optimal plan.

minzp; ∀p ∈ ΩP (35)

Here, the forecasting period p is equal to (yt − yk).
Dpeak is a continuous random variable. To solve these problems, the variable must be discretized

using Monte Carlo simulations and a sample average approximation. Then, the deterministic
approximation of the stochastic problem can be obtained in the optimization model. Although the
proposed framework is mathematically tractable, the optimization problem is combinatorial and
stochastic. Applying the proposed method to large systems may require additional techniques such as
scenario reduction.

3.3. Solution Procedure

Figure 6 depicts the procedure followed by the proposed TEP framework. The dotted box shows
the process of obtaining parameters µ and σ of the random variables EY(p) and DY. Here, the value of
RSD can be estimated from historical data, whereas the peak demand growth is forecasted for each
year. With the obtained variables and parameters, the problem is formulated as a stochastic mixed
integer problem. The solution method (mixed integer linear programming) is applied to the problem
after linearization and deterministic approximation.
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4. Case Studies

To verify the effectiveness of the proposed framework, case studies were conducted on a modified
Garver’s six-bus system. The original data of Garver’s system is given in Reference [36] and more
detailed data is given in Reference [32]. This system has been frequently used in TEP studies owing to
the system’s capability to incorporate the characteristics of TEP problems. The stochastic problem was
converted to a deterministic approximation by discretizing the continuous probability distribution
representing the uncertainty of the peak demand. Monte Carlo simulations and a sampling average
approximation were applied in the approximation. One thousand samples were used for each
probability distribution in the sampling process. The parameter α was set as 8760 because annualized
costs were used throughout the case studies. Three simulations were implemented on the system to
illustrate the proposed TEP framework. The first simulation examined the validity of the proposed
framework. The second simulation showed the impact of RSD curve shapes in the proposed framework.
The last simulation analyzed how different lead times influence the optimal solution of the proposed
framework. The problems were solved in a general algebraic modeling system (GAMS). A computer
with a 2.8 GHz processor and 4 GB RAM was used to conduct the simulations, and the average
simulation time for the problems was 5 min.

4.1. Modified Garver’s Six-Bus System

The configuration of Garver’s network is shown in Figure 7. The planning horizon was 10 years.
The initial peak demand was 190 MW and annually increased by 4.94%, reaching 500 MW at the
target year. The generation, load, and branch data are given in Tables 1 and 2. The cost functions
for the generating units were assumed to be linear, and initially six circuits exist in the system: 1–2,
1–4, 1–5, 2–3, 2–4, and 3–5. The existing six right-of-ways and two more right-of-ways (2–6, 4–6) were
considered as new transmission investment candidates. Bus 6 was isolated in the initial configuration.
Thus, the construction costs of transmission lines connecting to the bus and the associated construction
lead times were assumed to be larger than the others, as shown in Table 2.
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Table 1. Generation and load data.

Bus No. Max. Generation (MW) Generation Cost ($/MW) Load (MW) Load Shedding Cost ($/MW)

1 150 21 80 150
2 0 0 240 150
3 360 17 40 150
4 0 0 160 150
5 0 0 240 150
6 600 10 0 150

Table 2. Branch data.

From–To Lead Time (year) Susceptance (S) fmax
l (MW) Cost (105$)

1–2 5 250 100 10
1–4 5 167 80 10
1–5 5 500 100 10
2–3 5 500 100 10
2–4 5 250 100 10
2–6 10 333 100 20
3–5 5 500 100 10
4–6 10 333 100 20

4.2. Simulation: Validity of the Proposed Framework

In this simulation, the validity of the proposed framework was examined. Three different models
were used for the purpose: deterministic (Case 1), a stage model with a single lead time (Case 2),
and the presented multi-stage model (Case 3). The first model represented deterministic approaches
to solving TEP problems. In the simulation, a typical deterministic formulation was used, as given
in Reference [32]. The second model represented conventional stochastic approaches with a single
lead time. The last model was a stochastic approach with the proposed multi-stage model, which
was capable of reflecting different lead times at different decision stages. The forecasting uncertainty
was assumed to annually increase by 1.5%, reaching 15% in the final year of the planning horizon.
The objective of each problem was to minimize the total expected cost. The simulation results are
shown in Table 3 and Figure 8.
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Table 3. Results for different approaches.

Case
Added Circuits

Investment Cost (105$) Total Expected Cost (105$)
L23 L35 L26 L46

1 1 1 0 0 20 863
2 0 1 2 0 50 854
3 1 1 0 1 40 839
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The cheapest generator was located at bus 6. Because bus 6 was isolated in the initial condition,
L26 or L46 was/were constructed only when the benefit of cheap generation was greater than the cost
of construction and load shedding. Moreover, the two transmission lines had a longer construction
lead time than other transmission lines.

In Case 1, the total generation cost was not high enough to justify an investment to connect the
cheap generating unit at bus 6. Thus, the optimal solution was to build two circuits in the existing
right-of-ways and satisfy all demand with the generating units at buses 1 and 3. Although the
investment cost was the least among the three cases, the solution was not prepared for the uncertainty
of demand at all. Accordingly, under demand uncertainty, the generation cost was more expensive
than in the other cases, which led to the highest total expected cost.

In Case 2, decisions were made only at the initial stage because the model assumed a single lead
time for all investment candidates. Thus, the problem faced the forecasting uncertainty of a 10-year
period. The optimal solution was to construct three circuits, two of which connected the generating
unit at bus 6 to the initial system. The two circuits were more expensive than other solutions, but the
relatively large uncertainty in peak demand may have led to a large amount of load shedding without
them. The investment cost was the highest while the expected generation cost was the lowest in this
case. The total expected cost of Case 2 was higher than that of Case 3 because Case 2 was exposed to a
relatively large uncertainty.

In Case 3, the proposed approach was applied. The different lead times of investment candidates
enabled the planner to make decisions at two stages: the initial year and the fifth year. The optimal
solution was to build three circuits as in Case 2. However, the optimal network configuration was
largely different. The optimal solution was completed at the second stage, when it was decided to
build L23 and L35. Therefore, the optimal solution was exposed to less uncertainty than in Case 2.
Only one circuit connecting the generating unit at bus 6 was built because circuit L46 was sufficient to
cover the uncertainty in this case. The total expected cost was also the least in this case, indicating that
the proposed approach showed better performance in dealing with the risk of uncertainty. Figure 9
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shows an RSD curve estimated from historical data and the calculated RSD values. The value of
RSDCase3

Dyt
was 10.6%, while the value of RSDCase2

Dyt
was 15%.

The results of the case studies yielded several implications. First, the proposed approach ensured that
transmission network planners face less uncertainty than in conventional stochastic approaches with a
single lead time. Second, considering lead times in the planning process may lead to a significant change in
the optimal network configuration. This suggests that considering the lead times of investment candidates
in the optimization process is important. Third, the case studies imply the importance of the RSD curve
estimated from historical data and the lead times of investment candidates. In the simulation, the level of
uncertainty was assumed to linearly increase every year. Then the RSD values were calculated based on
the RSD curve. In the real world, the RSD curve can take any shape as long as it is an increasing function,
and the lead times of investment candidates can be varied. The following simulations show the in-depth
study of the proposed approach in terms of RSD curves and lead times.
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4.3. Simulation: Various RSD Curve Shapes

In this simulation, the impact of the RSD curve on the optimal solution was studied. Unlike the
assumption of a linearly increasing RSD curve in the previous simulation, the uncertainty curve
estimated from historical data can be any of various increasing functions in the real world. Three shapes
were compared: linear, square root, and quadratic. The proposed approach was applied to all three
cases. The curve shapes are shown in Figure 10, and the simulation results are provided in Table 4.

Compared to the linear curve, the uncertainty level of the square root curve rapidly increased
for the first few years. The level of forecasting uncertainty for a 5-year period was 10.1% and the
forecasting uncertainty at the second stage (RSDsquar

Dyt
) was 14.3%. Even though the problem of the

square root curve had a middle decision stage, the forecasting uncertainty at this stage was so large
that the optimal solution was the same as that of the single-stage problem in Case 2. On the other hand,
a quadratic RSD curve slowly increased for the first few years. Compared to the linear curve, the value
of RSDDyt in the quadratic curve was smaller. Thus, the total expected cost was less than the linear
curve, although the optimal solution was the same as for the linear curve.

The results of this simulation yielded two implications. First, the three cases based on curve types using
the proposed method all had a lower RSDDyt than the single stage approach in Case 2. The different lead
times of investment candidates offered the planner the opportunity to face less uncertainty in the optimal
solution. Second, the shape of the RSD curve estimated from historical data was crucial for assessing
uncertainty in the presented multi-stage model. It should be noted that the degree of advantage of having
multiple decision stages in the proposed framework was dependent on the shape of the RSD curve.
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Figure 10. Various shapes of RSD curves.

Table 4. Results for various RSD curves.

Type
Added Circuits RSDy1 (%) RSDyt (%)

L23 L35 L26 L46

Linear 1 1 0 1 7.5 10.6
Square Root 0 1 2 0 10.1 14.3
Quadratic 1 1 0 1 5.5 7.8

4.4. Simulation: Various Lead Times

Investment options for transmission planning may possess different characteristics: available
technology, length, environmental impact, and right-of-way. These characteristics influence the
lead times of the investment candidates. In this simulation, the effects of different lead times on
the proposed approach were investigated. A linearly increasing RSD curve was assumed in the
problem. Three different scenarios for lead times and the results of the scenarios are shown in Tables 5
and 6, respectively.

Table 5. Different lead times of investment candidates.

From-To 1–2, 1–4, 1–5, 2–3, 2–4, 3–5 2–6, 4–6

Lead Time (year)
Scenario 1 1 10
Scenario 2 3 10
Scenario 3 5 10

Table 6. Results for three scenarios.

Scenario
Added Circuits

RSDDyt (%) Total Expected Cost (105$)
L23 L35 L26 L46

S1 0 1 2 0 13.6 851
S2 1 1 0 1 11.4 841
S3 1 1 0 1 10.6 839
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S1 had the shortest lead time for construction of existing transmission lines. However, the level of
uncertainty and the total expected cost were the highest among the three scenarios. Although the lead
times of the transmission lines were short, the demand at the time step of the last decision stage already
included a large uncertainty. Thus, the result indicated that the level of uncertainty depended on not only
the periods of the lead times but also on the time steps of the decision stages. S2 and S3 produced the same
optimal solution. However, the uncertainty of S2 was slightly higher than that of S3 owing to the time
step of the last decision stage. The three scenarios demonstrated that both the lead times of investment
candidates and the time steps of decision stages were important in the proposed framework.

5. Conclusions

In this paper, we proposed a TEP framework with a multi-stage model under an uncertain
environment. The framework considered transmission investment options for diverse lead times.
In the presented multi-stage model, decision stages were determined by the diverse lead times of
planning candidates. The level of uncertainty was represented using a relative standard deviation,
and the uncertainty in the multi-stage model was studied. The proposed approach was formulated
as a stochastic mixed integer linear problem. Mixed integer linear programming and stochastic
programming were used in solving the optimization problem. Simulations were conducted on the
modified Garver’s six-bus system. The results showed how the investment candidates involving
various lead times affected the optimal decision under an uncertain environment. The proposed
method achieved better performance than other methods in dealing with the risk of uncertainty.
The shape of an RSD curve and the lead times of investment candidates were also shown to play
a crucial role for evaluating uncertainty in the multi-stage model. The proposed method was
mathematically tractable, but the combinatorial and stochastic problem required additional techniques
for its application to large systems. Based on these results, the proposed framework was capable of
incorporating any transmission investment options involving the addition of transmission capacity
to deal with the risk of uncertainty. Transmission network planners can utilize the framework in the
integrated planning of various technologies and lead times.
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Nomenclature

Indices
y Years
l Transmission lines
d Demands
n Nodes
g Generating Units
p Forecasting periods, i.e., lead times
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Sets
ΩY Years of stages
ΩN Nodes
ΩG Generating units
ΩD Demands
ΩL Transmission lines
ΩP Forecasting periods, i.e., lead times
Ψyt−y

L Transmission investment candidates with lead time (yt − y)

Ψ(yt−yk)+
L Transmission investment candidates with a lead time longer than or equal to (yt − yk)

Ψ+
L Transmission line candidates

Ψn
D Demands located at node n

Ψn
G Generating units located at node n

i(l) Sending-end node n of Transmission line l
j(l) Receiving-end node n of Transmission line l
Parameters
µE Expected demand growth
σE Standard deviation of µE

µD Expected demand
σD Standard deviation of µD

Il Annualized investment cost of transmission line l ($/MW)
a Discount rate
α Dimension factor
y0 Beginning year of the planning process
yt Terminal year of the planning process
CGen

g Generation cost of generating unit g ($)
CLsh Load shedding cost ($)
Bl Susceptance of transmission line l (S)
f max
l Maximum transmission capacity of line l (MW)

pmax
g Maximum generation capacity of unit g (MW)

rmax
d Upper bound of load shedding for demand d (MW)

Binary Variable
xl Binary variable that is 1 for the construction of transmission line l, 0 otherwise
Continuous Variables
pg Power produced by generating unit g (MW)
rd Load shedding of demand d (MW)
fl Power flow through transmission line l (MW)
θn Voltage phase angle at node n (rad)
Stochastic Variables
Dpeak Stochastic variable for peak demand
Dnode Stochastic variable for node demand
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