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Abstract: More renewable energy resources have been connected to the grid with the promotion
of global energy strategies, which presents new opportunities for the current electricity market.
However, the growing integration of renewable energy also brings more challenges, such as power
system reliability and the participants’ marketable behavior. Thus, how to coordinate integrated
renewable resources in the electricity market environment has gained increasing interest. In this paper,
a bilevel bidding model for load serving entities (LSEs) considering grid-level energy storage (ES) and
virtual power plant (VPP) is established in the day-ahead (DA) market. Then, the model is extended
by considering contingencies in the intraday (ID) market. Also, according to the extended bidding
model, a remedial strategic rescheduling approach for LSE’s daily profit is proposed. It provides
a quantitative assessment of LSE’s loss reduction based on contingency forecasting, which can be
applied to the power system dispatch to help LSEs deal with coming contingencies. Simulation
results verify the correctness and effectiveness of the proposed method.

Keywords: energy storage; virtual power plant; remedial strategic scheduling; mathematical program
with equilibrium constraints; electricity market

1. Introduction

More sustainable sources have been introduced into the smart grid due to the falling cost
of renewable energy integration and the incentive of government energy policies [1]. However,
renewable energy resources have significant uncertainties in the power output [2], which raises
higher requirements on system generation reserves for reliability reasons [3–5]. Also, some renewable
resources are small-scale and nondispatchable. They neither provide a stable power supply nor act in
the electricity market as individual participants.

To address these issues, energy storage (ES) technology has attracted attention for its flexibility
in power system dispatch and adjustment [6,7]. In recent years, with significant improvements in
performance and cost, ES has been not only integrated into insular power networks [8], but also
promoted to grid level [9]. It contributes to peak-shaving and valley-filling applications due to the
rapid charging and discharging characteristics [10,11]. Simultaneously, since ES can arrive at grid
level, it has more potential in the wholesale electricity market. Thus, ES owners can gain more
profits by using energy arbitrage [12–15]. In addition to grid-level ES, virtual power plant (VPP)
technology provides another approach to solve the issues above. In the US, VPPs can deal with
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the supply side, help manage demand, and ensure the reliability of grid functions through demand
response (DR) and other load-shifting schemes [16,17]. Also, with a central energy management
system, VPPs can coordinate the load demand and renewable energy sources [18], achieve energy
trading on the wholesale electricity markets, and provide grid operators with ancillary services on
behalf of small-scale and nondispatchable renewable resources [19].

The combination of grid-level ES and VPP can not only address the reliability issue of power
systems with high renewable energy penetration but also help ES and VPP owners to obtain more
profits in electricity market activities. However, research on smart scheduling strategies of grid-level ES
and VPP is rarely done. Most of the traditional work is focused on the individual behaviors of ES/VPP
and applied to energy arbitrage, operation scheduling, and demand response strategies. In [20] an
ES operation and sizing approach with wind power integrated in a market environment is provided.
To deal with the high wind power penetration, an ES stochastic bidding model for optimal energy
and reserve on power grids is proposed in [21]. Examples of VPP behavior are studied in [22–24].
The research in [22,23] aims at maximizing VPP profit by incorporating demand response schemes.
Multiple VPPs are considered as individual participants in the electricity market and game theory is
utilized to optimize each VPP’s dispatching in [24].

Also, all the research above was done under stable operating conditions without considering the
contingencies, which have a series of impacts on the scheduling of ES and VPP in the current electricity
market mechanisms. Meanwhile, the interactive characteristic makes the owner’s scheduling strategy
more complex under a coordinated operation environment. There is no significantly effective approach
regarding coordinated scheduling considering contingencies due to the limitations of current electricity
market mechanisms. In the US, most independent system operators (ISOs) implement two market
mechanisms at present: the day-ahead (DA) market and the real-time (RT) market [25]. The DA market
is responsible for clearing the majority of trades, while the RT market aims at balancing the power
system by rescheduling the generating units. Note that when there are significant deviations of system
operation in the RT market, a large number of adjustments will be brought into the rescheduling
process within a short time horizon, along with heavy computational burden. Also, the adjustments
may not be made economically or efficiently in the RT market [26]. The intraday (ID) market [27] is now
established between the DA market and the RT market in European countries to address this issue.

While most electricity is traded in the DA market, producers and consumers can use the ID
market to adjust their supply and demand commitments according to updated forecasts closer to the
time of delivery [28]. With more rescheduling time, the adjustments can be made more efficiently,
reducing the balancing burden in the RT market. Additionally, since some contingencies that lead to
deviations of practical system operation can be predicted several hours ahead of the delivery time
in the ID market, LSEs can change their bidding strategy to respond to the upcoming contingencies,
reducing losses or even gaining more profits. Although the ID market is not yet established in the US,
the urgency for this kind of market mechanism is sensed by ISOs [24].

In this paper, we focus on the coordinated scheduling of grid-level ES and VPP in the DA
market and adjustments of ES and VPP rescheduling in the ID market through a remedial strategic
bidding approach. The novelty of the paper includes: (1) a bilevel strategic bidding model considering
grid-level ES and VPP established in the DA market is used; (2) by including the ID market, the strategic
bidding model in the DA market is extended, considering contingencies; and (3) a remedial strategic
rescheduling approach for the daily profits of LSEs is proposed to deal with forecast contingencies.

The major objective of this paper is to help LSEs reduce losses due to contingencies in the ID
market. Also, hypotheses are made during the modelling process. We assume that contingencies can
be predicted several hours ahead by advanced sensor technology. Meanwhile, considering model
complexity and computation efficiency, the recovery cost of a specific contingency is not included in
the LSE’s remedial strategic rescheduling approach. Furthermore, the bilevel strategic bidding model
considering grid-level ES and VPP is the foundation of the entire remedial strategic rescheduling
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approach. This bilevel problem is transformed into a mixed-integer linear programming (MILP)
problem, which can be effectively solved by commercial optimization software like CPLEX.

The rest of the paper is organized as follows: Section 2 formulates the strategic bidding approach
for LSEs daily profit in the DA market and the remedial strategic rescheduling approach in the ID
market based on a bilevel bidding model. Section 3 provides the corresponding mathematical solution
to the bilevel optimization problem. Section 4 verifies the effectiveness of the proposed strategy
with simulation results. Section 5 discusses the results and the hypotheses. Finally, Section 6 draws
conclusions of the presented study and provides directions for future research.

2. Strategic Scheduling Model for LSEs

In this section, the entire model for the LSE’s remedial strategic scheduling is established.
An overview of the implementation process is presented in Figure 1. We first formulate the grid-level
ES model and VPP model in Sections 2.1 and 2.2, respectively. Then, the bilevel LSE’s strategic
scheduling model is presented in Section 2.3, with consideration of grid-level ES and VPP.
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Figure 1. Overview of the remedial strategic scheduling model. ES, energy storage; IBDR-VPP,
interruptible load-based demand response virtual power plant; LSE, load serving entity.

2.1. Grid-Level ES Model

The ES model is established based on its charging (or discharging) status, charging (or discharging)
power, charging (or discharging) efficiency, maximum charging (or discharging) rate, self-discharging
rate, and state of charge. It can be expressed as:

xi,t + yi,t = 1 (1a)

0 ≤ Pch
i,t ≤ Pch

i,rated × xi,t (1b)

0 ≤ Pdis
i,t ≤ Pdis

i,rated × yi,t (1c)

Gch
i,t = ηch

i × Pch
i,t × ∆t (1d)

Gdis
i,t = 1/ηdis

i × Pdis
i,t × ∆t (1e)

Gch
i,t ≤ Gch

i,cont (1f)

Gdis
i,t ≤ Gdis

i,cont (1g)

Esel f
i,t = Estored

i,t−1 × (1− ri) (1h)

Estored
i,1 = Estored

i,init − Esel f
i,1 + Gch

i,1 − Gdis
i,1 (1i)

Estored
i,t = Estored

i,t−1 − Esel f
i,t + Gch

i,t − Gdis
i,t (1j)
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SOCi,min ≤ Estored
i,t /Ei,max ≤ SOCi,max (1k)

Constraint (1a) requires that the status of ES must be either charging or discharging at a particular
period t. Constraints (1b) and (1c) ensure that the ES’s charging or discharging power in period t
is limited by the charging or discharging status and the maximum rates. Constraints (1d) and (1e)
represent the charging or discharging capacity of ES considering the efficiency in period t; ∆t in (1d)
and (1e) is equal to 1 h. Constraints (1f) and (1g) require that the charging/discharging capacity must
be less than the upper charging/discharging capacity due to the contract with the ISO. Constraint
(1h) represents the self-discharging energy in period t. Constraints (1i) and (1j) represent the stored
energy at the end of each period. Constraint (1k) imposes the maximum and minimum state of charge
constraints for ES.

2.2. Interruptible Load-Based Demand Response Virtual Power Plant Model

A virtual power plant is a system in which different types of small-scale power generation sources,
such as wind turbines, small hydro, photovoltaics, natural gas-fired reciprocating engines, and micro
combined heat and power systems, are integrated. With a central authority, a VPP integrating a cluster
of dispatchable and nondispatchable sources can not only provide a reliable power supply but also
participate in the wholesale electricity market.

We modelled the VPP by DR resources. An interruptible load-based DR (IBDR) is chosen in
this paper. According to the responding mechanism, DR programs are usually classified into two
main categories: price-based and incentive-based. The IBDR above is an incentive-based DR. In the
price-based DR mechanism, customers can obtain the provided rebates by willingly reducing their
power demand. In contrast, in the incentive-based DR mechanism, customers can get compensated for
their passive electricity interruptions. Therefore, the incentive-based DR provides a more convenient
way of timely dispatching in power systems.

We assume that by signing a contract with IBDR customers, LSEs can shed the load at the
compensatory price βi,t for no longer than the maximum response time Tmax

up,i . Also, the contract
requires that the period between two adjacent interruptions must be no less than the minimum time
interval Tmin

down,i. Thus, constraints on the status of IBDR-VPP can be expressed as follows:

To f f
i

∑
t=1

vi,t = 0 (2a)

k+Tmin
down,i−1

∑
t=k

(1− vi,t) ≥ Tmin
down,i(vi,k−1 − vi,k), ∀k = To f f

i + 1, · · · , TΩ − Tmin
down,i + 1 (2b)

TΩ

∑
t=k

[1− vi,t − (vi,k−1 − vi,k)] ≥ 0, ∀k = TΩ − Tmin
down,i + 1, · · · , TΩ (2c)

k+Tmax
up,i

∑
t=k

vi,t

 ≤ Tmax
up,i , ∀k = To f f

i + 1, · · · , TΩ − Tmax
up,i (2d)

∀TΩ ∈
{

TN , TP, TO
}

(2e)

Constraint (2a) sets the initial status of the VPP according to the previous operations. Constraint
(2b) ensures that the VPP stays offline for at least Tmin

down consecutive hours once it shuts down.
Constraint (2c), as a complement to (2b), further ensures that the VPP stays offline until the end
of the period in question if the rest hours are less than Tmin

down. Constraint (2d) requires that the VPP
must not stay online for more than Tmax

up consecutive hours.
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2.3. Bilevel Electricity Market Models

In this section, the day-ahead/intraday and remedial strategic scheduling approaches for LSEs
are based on the bilevel strategic model, in which the upper level represents the process of the LSE’s
profit maximization and the lower level simulates the process of the ISO’s market clearing.

2.3.1. Day-Ahead Strategic Scheduling Model

We assume that the grid-level ES and IBDR-VPP have comparable capacities as conventional
power plants. In other words, they are participators rather than price-takers in the electricity market
environment. They are able to make both price and quantity bids in the electricity market.

Thus, from the perspective of an LSE owning grid-level ESs and IBDR-VPPs, the optimization
objective is formulated as:

max
T

∑
t=1

N

∑
i=1

(
πi,t,DA(GV

i,t,DA + Gdis
i,t,DA)− βi,tGV

i,t,DA − γi,tGch
i,t,DA

)
(3a)

subject to:
grid-level ES constraints in (1a)–(1k) (3b)

IBDR-VPP constraints in (2a)–(2e) (3c){
πi,t,DA, GV

i,t,DA, Gdis
i,t,DA

}
∈ arg

{
min

T

∑
t=1

N

∑
i=1

(
αV

i,t,DAGV
i,t,DA + αdis

i,t,DAGdis
i,t,DA + αC

i,t,DAGC
i,t,DA

)
(3d)

∑
i

(
GV

i,t,DA + Gdis
i,t,DA + GC

i,t,DA

)
= ∑

i

(
Di,t + Gch

i,t,DA

)
: λt,DA, ∀t (3e)


GV

i,min ≤ GV
i,t,DA ≤ GV

i,max : ωV_min
i,t,DA , ωV_max

i,t,DA , ∀i∀t
Gdis

i,min ≤ Gdis
i,t,DA ≤ Gdis

i,max : ωdis_min
i,t,DA , ωdis_max

i,t,DA , ∀i∀t
GC

i,min ≤ GC
i,t,DA ≤ GC

i,max : ωC_min
i,t,DA , ωC_max

i,t,DA , ∀i∀t
(3f)

−Limitl ≤∑
i

GSFl,i × (GV
i,t,DA + Gdis

i,t,DA + GC
i,t,DA − Gch

i,t,DA − Di,t) ≤ Limitl : µmin
l,t,DA, µmax

l,t,DA, ∀t∀l

}
(3g)

ψ =

(
∑
i,t

αV
i,t,DAGV

i,t,DA+αdis
i,t,DAGdis

i,t,DA + αC
i,t,DAGC

i,t,DA

)
−∑

i
λt,DA

(
∑
i

(
GV

i,t,DA + Gdis
i,t,DA + GC

i,t,DA

)
−∑

i
Di,t

)
−∑

l,t
µmin

l,t,DA

(
∑
i

GSFl,i × (GV
i,t,DA + Gdis

i,t,DA + GC
i,t,DA − Di,t)− Limitl

)
−∑

l,t
µmax

l,t,DA

(
Limitl −∑

i
GSFl,i × (GV

i,t,DA + Gdis
i,t,DA + GC

i,t,DA − Di,t)

)
−∑

i,t
ωV_min

i,t,DA

(
GV

i,t,DA − GV
i,min

)
−∑

i,t
ωV_max

i,t,DA

(
GV

i,max − GV
i,t,DA

)
−∑

i,t
ωdis_min

i,t,DA

(
Gdis

i,t,DA − Gdis
i,min

)
−∑

i,t
ωdis_max

i,t,DA

(
Gdis

i,max − Gdis
i,t,DA

)
−∑

i,t
ωC_min

i,t,DA

(
GC

i,t,DA − GC
i,min

)
−∑

i,t
ωC_max

i,t,DA

(
GC

i,max − GC
i,t,DA

)
(3h)

πi,t,DA =
∂ψ

∂Di,t
= λt,DA + ∑

i
GSFl,i × (µmin

l,t,DA − µmax
l,t,DA) (3i)

The objective function of the upper level expressed in constraint (3a) aims to maximize the
LSE’s daily profit, and the objective function of lower level in constraint (3d) is the process of market
clearing, which is managed by an ISO. In this model, the ISO can minimize the total cost of electricity
purchased from conventional generators, grid-level ESs, and virtual generators. Constraint (3e)
represents the power-balancing constraint for each time interval. Constraint (3f) ensures that the
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outputs of conventional generators, ESs, and virtual generators are limited by each other’s maximum
and minimum outputs. Constraint (3g) requires that the bidirectional power of each transmission line
must be less than the transmission line power rate. Constraint (3h) is the Lagrangian function based
on (3d)–(3g), and the LMP πi,t,s can be calculated according to (3h)–(3i).

2.3.2. Intraday Strategic Scheduling Model

It is feasible that if there is no deviation in price and quantity bids, the power system scheduling
in the ID market will be the same as that in the DA market. Nevertheless, there are many factors, such
as contingencies and weather variations, in the ID market. Thus, the ID market scheduling should be
recalculated according to the actual grid operation status. Hence, the ID market can be viewed as a
complementary part of the DA market, although the ID market is closer to the time of delivery.

In this section, we aim to quantify the impact of contingencies on ID market rescheduling and
LSE’s daily profit. Virtual generators, ESs, and conventional generators are assumed to participate in
the ID market rescheduling process with the rest of their capacity. Meanwhile, we assume that the
contingencies in question consist of ES outage and IBDR-VPP outage. Note that although this paper
only proposes an ES/IBDR-VPP outage model, similar modeling methods such as deficiency of DR
can also be taken into consideration with regard to contingency.

The DA market bidding process is considered as an input to the ID market optimization, and a
scenario (denoted by s∗) with a specific contingency is realized. Then, the optimization problem of
LSE’s daily profit can be expressed as:

max
T

∑
t=1

N

∑
i=1

fDA(i, t, s∗) +
T

∑
t=tO

(
N

∑
i=1

πi,t,ID(GV
i,t,ID + Gdis

i,t,ID)−
N

∑
i=1

βi,tGV
i,t,ID−

N

∑
i=1

γi,tGch
i,t,ID

)
(4a)

subject to:
updated grid-level ES constraints in (1a)-(1e) (4b)

Gch
i,t,ID ≤ Gch

i,cont − Gch
i,t,DA (4c)

Gdis
i,t,ID ≤ Gdis

i,cont − Gdis
i,t,DA (4d)

Estored
i,t,s∗ = Estored

i,t,DA + Gch
i,t,ID − Gdis

i,t,ID (4e)

SOCi,min ≤ Estored
i,t,s∗ /Ei,max ≤ SOCi,max (4f)

updated IBDR-VPP constraints:
To f f

i,s∗

∑
t=1

vi,t = 0 (4g)

k+Tmin
down,i−1

∑
t=k

(1− vi,t) ≥ Tmin
down,i(vi,k−1 − vi,k), ∀k = To f f

i,s∗ + 1, · · · , TΩ − Tmin
down,i + 1 (4h)

constraints in (2c)–(2e) (4i)

{πi,t,ID , GV
i,t,ID, Gdis

i,t,ID

}
∈ arg

{
min∑

i,t
αV

i,t,IDGV
i,t,ID+αdis

i,t,IDGdis
i,t,ID + αC

i,t,IDGC
i,t,ID (4j)

∑
i

(
GV

i,t,ID + Gdis
i,t,ID + GC

i,t,ID + GV
i,t,DA + Gdis

i,t,DA + GC
i,t,DA

)
= ∑

i

(
Di,t + Gdis

i,t,ID + Gdis
i,t,DA

)
: λt,ID, ∀t (4k)


GV

i,min − GV
i,t,DA ≤ GV

i,t,ID ≤ GV
i,max − GV

i,t,DA : ωV_min
i,t,ID , ωV_max

i,t,ID , ∀i∀t

Gdis
i,min − Gdis

i,t,DA ≤ Gdis
i,t,ID ≤ Gdis

i,max − Gdis
i,t,DA : ωdis_min

i,t,ID , ωdis_max
i,t,ID , ∀i∀t

GC
i,min − GC

i,t,DA ≤ GC
i,t,ID ≤ GC

i,max − GC
i,t,DA : ωC_min

i,t,ID , ωC_max
i,t,ID , ∀i∀t

(4l)
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−Limitl ≤ ∑
i

GSFl,i × (GV
i,t,ID + Gdis

i,t,ID + GC
i,t,ID + GV

i,t,DA + Gdis
i,t,DA + GC

i,t,DA − Gch
i,t,ID − Gch

i,t,DA − Di,t)

≤ Limitl : µmin
l,t,ID, µmax

l,t,ID, ∀t∀l
} (4m)

πi,t,ID = λt,ID + ∑
i

GSFl,i × (µmin
l,t,ID − µmax

l,t,ID) (4n)

Similar to the bilevel day-ahead strategic scheduling model in the previous section, the upper-level
objective function expressed in (4a) is to maximize the LSE’s daily profit. Note that ∑

i,t
fDA(i, t, s∗) is a

constant representing the LSE’s profit in the DA market. For completeness, it is added in (4a). The
lower-level objective function in (4j) simulates the process of market clearing. In (4c)–(4f), constraints
for the ES’s charging/discharging capacity, stored energy, and state of charge constraints are updated.
In addition, (4g) and (4h) represent the updated constraints for the IBDR-VPP’s status. Constraints
(4k)–(4m) for power balancing, virtual generators, ES and conventional generator output limits, and
transmission line power limit are also updated to accommodate the ID market rescheduling process.

2.3.3. LSE’s Remedial Strategic Scheduling Model

There is neither enough time nor adequate capacity for the LSE’s generating units (including
virtual generators, ESs) to reschedule after its inner contingency. In other words, the electricity
deficiency due to ES/IBDR-VPP outage may not be compensated only by rescheduling the other ESs
or IBDR-VPPs in good condition. Then, the conventional generators belonging to other LSEs will
participate in the rescheduling process with the rest of their capacity. From the perspective of daily
profit, if an LSE have more time to reschedule all of its units before a specific contingency occurs, the
loss will be further reduced.

We assume that a contingency can be predicted several hours ahead by advanced sensor
technology. Thus, during the contingency anticipation time, the LSE can reduce the loss due to
the contingency by rescheduling not only the good generator units but also the unit that will have
an outage several hours later. This remedial strategic scheduling model can be established based
on the intraday strategic scheduling model in Section 2.2. With some modifications to (4a), the new
optimization problem is expressed as:

max
T

∑
t=1

N

∑
i=1

fDA(i, t, s∗) +
tO

∑
t=tP

N

∑
i=1

f ID,P(i, t, s∗) +
T

∑
t=tO

N

∑
i=1

f ID,O(i, t, s∗) (5a)

subject to:

N

∑
i=1

f ID,φ(i, t, s∗) =
N

∑
i=1

πi,t,ID(GV
i,t,ID + Gdis

i,t,ID)−
N

∑
i=1

βi,tGV
i,t,ID−

N

∑
i=1

γi,tGch
i,t,ID, ∀φ ∈ {P, O} (5b)

constraints in (4b)–(4n) (5c)

3. Mathematical Solutions

The bilevel strategic model is the basis of the LSE’s strategic scheduling approach in both the DA
and ID markets. Also, except for the differences between the bidding capacities of generating units in
the DA and ID markets, the main mathematical formulation steps are similar. The general solution
processes for the bilevel mode are presented in the following subsections.

3.1. Formulation of a Mathematic Program with Equilibrium Constraints (MPEC)

max∑
i,t

(
πi,t,ψ(GV

i,t,ψ + Gdis
i,t,ψ)− βi,tGV

i,t,ψ − γi,tGch
i,t,ψ

)
(6a)
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subject to:
constraints in (3b) and (3c) (6b)

αV
i,t,ψ = λt,ψ +

(
ωV_min

i,t,ψ −ωV_max
i,t,ψ

)
+ ∑

i
GSFl,i × (µmin

l,t,ψ − µmax
l,t,ψ)

αdis
i,t,ψ = λt,ψ +

(
ωdis_min

i,t,ψ −ωdis_max
i,t,ψ

)
+ ∑

i
GSFl,i × (µmin

l,t,ψ − µmax
l,t,ψ)

(6c)

 0 ≤ ωV_min
i,t,ψ ⊥

(
GV

i,t,ψ − GV
i,min

)
≥ 0, ∀i∀t

0 ≤ ωV_max
i,t,ψ ⊥

(
GV

i,max − GV
i,t,ψ

)
≥ 0, ∀i∀t

(6d)

 0 ≤ ωdis_min
i,t,ψ ⊥

(
Gdis

i,t,ψ − Gdis
i,min

)
≥ 0, ∀i∀t

0 ≤ ωdis_max
i,t,ψ ⊥

(
Gdis

i,max − Gdis
i,t,ψ

)
≥ 0, ∀i∀t

(6e)

 0 ≤ ωC_min
i,t,ψ ⊥

(
GC

i,t,ψ − GC
i,min

)
≥ 0, ∀i∀t

0 ≤ ωC_max
i,t,ψ ⊥

(
GC

i,max − GC
i,t,ψ

)
≥ 0, ∀i∀t

(6f)


0 ≤ µmin

l,t,ψ⊥∑
i

GSFl,i × (GV
i,t,ψ + Gdis

i,t,ψ + GC
i,t,ψ − Gch

i,t,ψ − Di,t)− Limitl ≥ 0, ∀i∀t

0 ≤ µmax
l,t,ψ⊥Limitl −∑

i
GSFl,i × (GV

i,t,ψ + Gdis
i,t,ψ + GC

i,t,ψ − Gch
i,t,ψ − Di,t) ≥ 0, ∀i∀t

(6g)

∀ψ ∈ {DA, ID} (6h)

The bilevel optimization problem is transformed into an MPEC integrating the lower-level
problem with Karush–Kuhn–Tucker (KKT) conditions as extra complementarity constraints in (6c)–(6g).

3.2. Mixed-Integer Linear Programming (MILP) Solution

To formulate an MILP problem, the nonlinearities must be eliminated. The model expressed in
(6a)–(6g) is nonlinear because of πi,t,ψ(GV

i,t,ψ + Gdis
i,t,ψ) in (6a) and a series of complementarity constraints

in (6c)–(6g). The objective function of the primary problem is equal to that of the corresponding dual
problem according to the strong duality theory. Thus, the lower-level objective in (3d) at each period
can be expressed as:

∑
i

(
αV

i,ψGV
i,ψ + αdis

i,ψGdis
i,ψ + αC

i,ψGC
i,ψ

)
= λψ∑

i
Di −∑

i
ωV_max

i,ψ GV
i,max + ∑

i
ωV_min

i,ψ GV
i,min −∑

i
ωdis_max

i,ψ Gdis
i,max

+∑
i

ωdis_min
i,ψ Gdis

i,min −∑
i

ωC_max
i,ψ GC

i,max + ∑
i

ωC_min
i,ψ GC

i,min

+∑
l

µmin
l,ψ

(
∑
i

GSFl,i × Di − Limitl

)
−∑

l
µmin

l,ψ

(
∑
i

GSFl,i × Di + Limitl

)
(7a)

Also, based on constraints (6d)–(6f), Equations (7b)–(7d) are obtained:{
ωV_min

i,ψ GV
i,ψ = ωV_min

i,ψ GV
i,min

ωV_max
i,ψ GV

i,ψ = ωV_max
i,ψ GV

i,max
(7b)

{
ωdis_min

i,ψ Gdis
i,ψ = ωdis_min

i,ψ Gdis
i,min

ωdis_max
i,ψ Gdis

i,ψ = ωdis_max
i,ψ Gdis

i,max
(7c)

{
ωC_min

i,ψ GC
i,ψ = ωC_min

i,ψ GC
i,min

ωC_max
i,ψ GC

i,ψ = ωC_max
i,ψ GC

i,max
(7d)
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Then, the nonlinear product term πi,t,ψ(GV
i,t,ψ + Gdis

i,t,ψ) can be rewritten with (3i), (6c), and
(7b)–(7d):

∑
i

πi,ψ(GV
i,ψ + Gdis

i,ψ ) = ∑
i
(αV

i,ψGV
i,ψ + αdis

i,ψGdis
i,ψ )−∑

i

((
ωV_min

i,ψ −ωV_max
i,ψ

)
GV

i,ψ +
(

ωV_min
i,ψ −ωV_max

i,ψ

)
GV

i,ψ

)
= ∑

i
(αV

i,ψGV
i,ψ + αdis

i,ψGdis
i,ψ )−∑

i

(
ωV_min

i,ψ GV
i,min −ωV_max

i,ψ GV
i,max

)
−∑

i

(
ωdis_min

i,ψ Gdis
i,min −ωdis_max

i,ψ Gdis
i,max

) (7e)

Substituting (7a) into (7e), Equation (7f) can be obtained:

N
∑

i=1
πi,ψ(GV

i,ψ + Gdis
i,ψ ) = λψ

N
∑

i=1
Di −

N
∑

i=1
ωC_max

i,ψ GC
i,max +

N
∑

i=1
ωC_min

i,ψ GC
i,min +

M
∑

l=1
µmin

l,ψ

(
N
∑

i=1
GSFl,i × Di − Limitl

)
−

M
∑

l=1
µmin

l,ψ

(
N
∑

i=1
GSFl,i × Di + Limitl

)
−

N
∑

i=1
αC

i,ψGC
i,ψ

(7f)

Finally, the MILP problem that is converted from the MPEC in (6a)–(6f) can be expressed as:

max∑
i,t

(
πi,t,ψ(GV

i,t,ψ + Gdis
i,t,ψ)− βi,tGV

i,t,ψ − γi,tGch
i,t,ψ

)
= ∑

t

[
λt,ψ∑

i
Di,t −∑

i
ωC_max

i,t,ψ GC
i,t,max + ∑

i
ωC_min

i,t,ψ GC
i,t,min + ∑

l
µmin

l,t,ψ

(
N
∑

i=1
GSFl,i × Di,t − Limitl

)
−∑

l
µmin

l,t,ψ

(
N
∑

i=1
GSFl,i × Di,t + Limitl

)
−∑

i
αC

i,t,ψGC
i,t,ψ −∑

i
βi,tGV

i,t,ψ −∑
i

γi,tGch
i,t,ψ

] (8a)

subject to:
constraints in (6b) and (6c) (8b)

0 ≤ GV
i,t,ψ − GV

i,min ≤ BigMV_min
ω νV_min

ω,i,t , ∀i∀t

0 ≤ ωV_min
i,t,ψ ≤ BigMV_min

ω

(
1− νV_min

ω,i,t

)
, ∀i∀t

0 ≤ GV
i,max − GV

i,t,ψ ≤ BigMV_max
ω νV_max

ω,i,t , ∀i∀t

0 ≤ ωV_max
i,t,ψ ≤ BigMV_max

ω

(
1− νV_max

ω,i,t

)
, ∀i∀t

(8c)



0 ≤ Gdis
i,t,ψ − Gdis

i,min ≤ BigMdis_min
ω νdis_min

ω,i,t , ∀i∀t

0 ≤ ωdis_min
i,t,ψ ≤ BigMdis_min

ω

(
1− νdis_min

ω,i,t

)
, ∀i∀t

0 ≤ Gdis
i,max − Gdis

i,t,ψ ≤ BigMdis_max
ω νdis_max

ω,i,t , ∀i∀t

0 ≤ ωdis_max
i,t,ψ ≤ BigMdis_max

ω

(
1− νdis_max

ω,i,t

)
, ∀i∀t

(8d)



0 ≤ GC
i,t,ψ − GC

i,min ≤ BigMC_min
ω νC_min

ω,i,t , ∀i∀t

0 ≤ ωC_min
i,t,ψ ≤ BigMC_min

ω

(
1− νC_min

ω,i,t

)
, ∀i∀t

0 ≤ GC
i,max − GC

i,t,ψ ≤ BigMC_max
ω νC_max

ω,i,t , ∀i∀t

0 ≤ ωC_max
i,t,ψ ≤ BigMC_max

ω

(
1− νC_max

ω,i,t

)
, ∀i∀t

(8e)



0 ≤ Limitl + ∑
i

GSFl,i × (GV
i,t,ψ + Gdis

i,t,ψ + GC
i,t,ψ − Gch

i,t,ψ − Di,t) ≤ BigMmin
µ νmin

µ,l,t , ∀l∀t

0 ≤ µmin
l,t,ψ ≤ BigMmin

µ

(
1− νmin

ω,l,t

)
, ∀l∀t

0 ≤ Limitl −∑
i

GSFl,i × (GV
i,t,ψ + Gdis

i,t,ψ + GC
i,t,ψ − Gch

i,t,ψ − Di,t) ≤ BigMmax
µ νmin

µ,l,t , ∀l∀t

0 ≤ µmax
l,t,ψ ≤ BigMmax

µ

(
1− νmax

ω,l,t

)
, ∀l∀t

(8f)

where BigMV_min
ω , BigMV_max

ω , BigMdis_min
ω , BigMdis_max

ω , BigMC_min
ω , BigMC_max

ω , BigMmin
µ , and

BigMmax
µ are big constants, and νV_min

ω,i,t , νV_max
ω,i,t , νdis_min

ω,i,t , νdis_max
ω,i,t , νC_min

ω,i,t , νC_max
ω,i,t , νmin

µ,l,t , and νmax
µ,l,t are the

auxiliary binary variables that are related to the aforementioned dual variables.
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4. Case Study

The verification study was done in two cases, a six-bus test system and a modified IEEE 118-bus
test system, to demonstrate the effectiveness of the proposed strategy. The simulation time horizon
was set to 24 h with intervals of 1 h.

4.1. Six-Bus Test System

The six-bus test system was designed based on the system in [29]. This system has three
conventional nonstrategic generators, seven transmission lines, two grid-level ESs, and two IBDR-VPPs.
The locations of these components can be found in Figure 2. The LSE owns all the grid-level ESs and
IBDR-VPPs in this system. Also, the total power load is assigned to buses 3, 4, and 5 based on the
distribution factors (0.5, 0.3, and 0.2, respectively).
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To demonstrate the impact of different scenarios on the daily profit of LSE, we designed three
cases, where each case consists of several subcases:

• LSE’s basic strategic scheduling with ES and IBDR-VPP in the DA market;
• Impact of ES/ IBDR-VPP outage on LSE’s strategic scheduling without contingency anticipation

time (CAT) in the ID market;
• LSE’s remedial strategic scheduling with CAT under the impact of ES/ IBDR-VPP outage.

Case 1:

In this case, the daily profit of the LSE is optimized based on the day-ahead strategic scheduling
model established in Section 2.3.1. Since the impact of ES/IBDR-VPP outage is not taken account
into this case, the whole system can be seen in normal operating status during the period in question.
With a charging price that is obviously lower than the other conventional generator unit marginal
costs, ES owners are stimulated to participate in electricity market activities. Thus, we assume that
the contract price for ES charging is $25/MW within the first 12 h and $40/MW within the last 12 h.
Similarly, the contract price for IBDR-VPP compensation is set at $20/MW within the first 12 h and
$35/MW within the last 12 h. Also, Tmin

down and Tmax
up are set to 6 h and 4 h, respectively. The LSE’s daily

profit is $32,816 in the simulation process. The scheduling of the two VPPs can be seen in Table 1.
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Table 1. Hourly optimal scheduling of VPPs in the modified six-bus test system.

Time 1 2 3 4 5 6 7 8 9 10 11 12

VPP 1 40 0 0 0 0 0 0 26.62 34.48 40 0 0
VPP 2 40 40 38.51 32.57 0 0 0 0 0 0 40 40

Time 13 14 15 16 17 18 19 20 21 22 23 24

VPP 1 0 0 0 0 40 40 40 40 0 0 0 0
VPP 2 40 40 0 0 0 0 0 0 40 40 40 35.06

VPP 1 starts at time 8, then stays online for the next three hours which is shorter than Tmax
up . Thus,

the VPP does not always stay online until the maximum online hours run out to gain more profit.
In contrast, the scheduling of VPPs is to maximize the LSE’s daily profit along with ES scheduling.
Also, a subcase without VPPs is simulated to analyze the impact of VPP integration on ES scheduling.
Figure 3 shows the comparison between ES scheduling without VPP and with the two VPPs.
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Figure 3. Stored energy of ESs with/without VPP integration.

It can be observed that the scheduling of ESs is significantly changed with the integration of VPPs.
Note that both ESs are in discharging mode at the peak load hour (time 1) and in charging mode at
the valley load hour (time 7), regardless of the integration of VPPs, which is consistent with the ES’s
original intention of peak-shaving and valley-filling. Also, with 40 MW·h virtual energy of each VPP’s
input, the discharging energy of ES 1 reduces from 35 MW·h to 14.62 MW·h, while that of ES 2 reduces
from 35 MW·h to 29.35 MW·h at the peak load hour. Thus, the VPP has a supplemental function of
peak-shaving and valley-filling when it cooperates with the ES.

Case 2:

In the previous case, the LSE’s daily profit is maximized in the DA market. However, contingencies
in the ID market, such as ES outage and insufficient response of VPP, may have consequences
for the optimal process, resulting in fluctuations of both ES and VPP scheduling and diminishing
profit. Thus, contingencies should be taken into account, since they are an important factor in LSE’s
strategic scheduling.

In this paper, the insufficient response of VPP is considered as a VPP outage to simplify the
demand response model. Also, virtual generators, ESs, and conventional generators are assumed to
participate in the ID market rescheduling process with the rest of their capacities. Compared with
case 1, there is a start time t0 when the specific contingency occurs. Except for this, other parameters
remain unchanged. Four contingencies, ES 1 and 2 outage and VPP 1 and 2 outage, are simulated
in the case. Under each contingency, two schemes are adopted to maximize the LSE’s daily profit.
In scheme 1, we assume that the status (including charging/discharging status of ESs and on/off
status of VPPs) of nonoutage units is fixed after a specific outage occurs. The scheduling values are
optimized according to the model established in Section 2.3.2. By contrast, both the status and outputs
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of the units participate in the optimizing process in scheme 2. The ES 1 and 2 outage and VPP 1 and 2
outage are represented by C1, C2, C3, and C4, respectively. Simulations under C2 and C4 outage are
selected to illustrate the differences of ES/VPP scheduling between scheme 1 and scheme 2.

Comparisons of ES stored energy and VPP output under the two contingencies are shown in
Figures 4 and 5, respectively. It can be observed that each contingency brings a series of consequences
to the scheduling of both ES and VPP. LSE’s daily profit in scheme 2 is higher than the profit in
scheme 1, which can be found in Table 2. In other words, rescheduling both the status and output of
ESs and VPPs can help the LSE reduce losses caused by ES or VPP outage.

Table 2. Daily profit under different contingencies ($).

Contingency No. C1 C2 C3 C4

Scheme 1 23,556 23,133 29,447 22,167
Scheme 2 23,556 23,605 29,447 27,282
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Figure 4. Comparisons of ES 1 stored energy, VPP 1 output, and VPP 2 output under C2. (a) ES 1 stored
energy, VPP 1 output, and VPP 2 output in case 1 and case 2 (with scheme 1); (b) ES 1 stored energy,
VPP 1 output, and VPP 2 output in case 1 and case 2 (with scheme 2).
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Case 3:  

From the perspective of contingency forecasting, it is very helpful for LSEs to take measures 
ahead of time, i.e., if a specific contingency has been predicted, then the period before the contingency 
could be adequately utilized to reduce losses with a new schedule.  

The remedial strategic scheduling process for the LSE’s daily profit is simulated based on the 
contingencies listed in case 2. CAT is considered in this case with the contingency anticipation time 
tP set to 6–12 consecutively. Also, scheme 2 is selected to reschedule both ESs and VPPs. The 
quantitative evaluation for the LSE’s daily loss according to the remedial strategic scheduling is 
shown in Table 3. It can be observed that the LSE’s loss will generally be lower with more remedial 
time under all listed contingencies.  

Table 3. LSE’s daily loss with contingency anticipation time in the modified six-bus test system ($). 

CAT tP = 6 tP = 7 tP = 8 tP = 9 tP = 10 tP = 11 tP = 12 

C1 –1027 –1629 –2342 –3816 –5470 –7274 –9257 
C2 1664 –361 –1925 –2707 –4146 –6528 –9208 
C3 –3123 –3123 –3123 –3123 –3123 –3369 –3369 
C4 –5287 –5287 –5287 –5287 –5287 –5531 –5531 

It is interesting that under C2, with six hours of the CAT, the LSE’s daily profit is higher than 
that under the noncontingency scenario. Note that when there is no contingency, ES 2 is in charging 
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Figure 5. Comparisons of ES 1 stored energy, ES 2 stored energy, and VPP 1 output under C4. (a) ES
1 stored energy, ES 2 stored energy, and VPP 1 output in case 1 and case 2 (with scheme 1); (b) ES 1
stored energy, ES 2 stored energy, and VPP 1 output in case 1 and case 2 (with scheme 2).

Case 3:

From the perspective of contingency forecasting, it is very helpful for LSEs to take measures
ahead of time, i.e., if a specific contingency has been predicted, then the period before the contingency
could be adequately utilized to reduce losses with a new schedule.

The remedial strategic scheduling process for the LSE’s daily profit is simulated based on the
contingencies listed in case 2. CAT is considered in this case with the contingency anticipation time tP
set to 6–12 consecutively. Also, scheme 2 is selected to reschedule both ESs and VPPs. The quantitative
evaluation for the LSE’s daily loss according to the remedial strategic scheduling is shown in Table 3.
It can be observed that the LSE’s loss will generally be lower with more remedial time under all
listed contingencies.

Table 3. LSE’s daily loss with contingency anticipation time in the modified six-bus test system ($).

CAT tP = 6 tP = 7 tP = 8 tP = 9 tP = 10 tP = 11 tP = 12

C1 –1027 –1629 –2342 –3816 –5470 –7274 –9257
C2 1664 –361 –1925 –2707 –4146 –6528 –9208
C3 –3123 –3123 –3123 –3123 –3123 –3369 –3369
C4 –5287 –5287 –5287 –5287 –5287 –5531 –5531

It is interesting that under C2, with six hours of the CAT, the LSE’s daily profit is higher than that
under the noncontingency scenario. Note that when there is no contingency, ES 2 is in charging status
from time 6 to time 12, which results in negative profit for the LSE during this period. It is reasonable
from the perspective of the LSE’s daily profit. To have enough energy to trade in the market, ES 2
should choose to charge when there is a lower purchasing price according to the contract. However,
once the ES 2 outage has been predicted, ES 2 can change its charging status and provide stored energy
to the market as much as possible.
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4.2. IEEE 118-Bus Test System

To verify the effectiveness of the proposed model on a large system, a simulation study was also
done with a modified IEEE 118-bus system. The system consists of 186 transmission lines and 91 load
buses with peak load set to 7 GW. We assume that all IBDR-VPPs and grid-level ESs are owned and
dispatched by the LSE; the locations of VPPs and ESs can be seen in Figure 6. The contract price for
the ES charging and IBDR-VPP compensation remains the same. Tmin

down and Tmax
up are set to 6 h and

4 h, respectively.
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The simulation cases include: (1) the LSE’s basic strategic scheduling with ES and IBDR-VPP in
the DA market; and (2) the LSE’s remedial strategic scheduling with CAT under the impact of different
ES/IBDR-VPP outages.

It can be observed from Table 4 that the scheduling of VPPs is also reasonable in the IEEE 118-bus
test system. Note that VPP 7 starts at time 2 and then shuts down at time 3, which indicates that it
stays online for just 1 h (shorter than Tmax

up ). Meanwhile, VPP 9 shuts down at time 2 and stays offline
for the next 7 h (longer than Tmin

down) until it restarts at time 9. This implies that the VPP does not always
stay online within the maximum online hours or restart as soon as the minimum offline hours run out.

The loss-redeeming process utilizing the LSE’s remedial strategic scheduling with CAT is also
observed in the IEEE 118-bus test system. VPP and ES outages are represented by Cv,i (i = 1, 2, ··· 10)
and Ce,j (j = 1, 2, ···, 12), respectively. To illustrate the effectiveness of the remedial strategic scheduling,
typical contingencies are selected, and the corresponding quantitative evaluation for the LSE’s daily
loss are listed in Table 5.
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Table 4. Hourly optimal scheduling of VPPs in the modified IEEE 118-bus system.

Time 1 2 3 4 5 6 7 8 9 10 11 12

VPP 1 0 0 0 0 0 0 0 0 40 40 40 40
VPP 2 0 0 0 0 0 0 0 40 40 40 40 0
VPP 3 0 0 0 0 0 0 0 0 40 40 40 40
VPP 4 0 0 0 0 0 0 0 0 40 40 40 40
VPP 5 16.8 0 0 0 0 0 0 0 40 40 40 40
VPP 6 40 0 0 0 0 0 0 0 40 40 40 40
VPP 7 0 23.14 0 0 0 0 0 0 40 40 40 40
VPP 8 40 40 0 0 0 0 0 0 40 40 40 40
VPP 9 40 0 0 0 0 0 0 0 40 40 40 40

VPP 10 40 40 0 0 0 0 0 0 40 40 40 40

Time 13 14 15 16 17 18 19 20 21 22 23 24

VPP 1 0 0 0 0 0 0 40 40 40 40 0 0
VPP 2 0 0 0 0 0 0 40 40 40 40 0 0
VPP 3 0 0 0 0 0 0 40 40 40 40 0 0
VPP 4 0 0 0 0 0 0 40 40 40 40 0 0
VPP 5 0 0 0 0 0 0 40 40 40 40 0 0
VPP 6 0 0 0 0 0 0 40 40 40 40 0 0
VPP 7 0 0 0 0 0 0 40 40 40 40 0 0
VPP 8 0 0 0 0 0 0 40 40 40 40 0 0
VPP 9 0 0 0 0 0 0 40 40 40 40 0 0

VPP 10 0 0 0 0 0 0 40 40 40 40 0 0

Table 5. LSE’s daily loss with contingency anticipation time in the modified IEEE 118-bus system ($).

CAT tP = 6 tP = 7 tP = 8 tP = 9 tP = 10 tP = 11 tP = 12

Cv,1 –800 –800 –800 –800 –800 –800 –800
Cv,5 –800 –800 –800 –800 –800 –800 –800
Ce,1 3738 3721 3680 918 918 –2338 –5518
Ce,4 5983 3951 1221 –1103 –1176 –1202 –4357
Ce,9 4616 2058 328 260 –1103 –2921 –2921
Ce,12 4039 1481 1431 1363 –1103 –1825 –5005

It can be seen that although daily loss remains the same under the contingencies with VPP outage,
it will be significantly reduced with more remedial time under the contingencies with ES outage.
Similarly, most ESs in the IEEE 118-bus test system are in charging mode before the contingency
happens. Then, because of the LSE’s remedial rescheduling scheme, the operation status of ESs
changes, tending to discharge within the CAT. It contributes to the loss redeeming, resulting in extra
daily profit for the LSE.

5. Discussion

In this section, the simulation results and working hypotheses are discussed. From the case study
above, the following can be observed.

• With the integration of VPPs in the modified six-bus test system, the output of ES 1 reduces
from 35 MW·h to 14.62 MW·h (58.22% lower), and the output of ES 2 reduces from 35 MW·h
to 29.35 MW·h (16.14% lower) at the peak load hour. The VPPs significantly support the ESs
(especially ES 1) on the peak-shaving objective.

• With the rescheduling process in the ID market, LSEs can reduce more losses using scheme 2
than scheme 1. For instance, under the ES 2 outage and VPP 2 outage in the modified six-bus test
system, the LSE’s daily profits after using scheme 1 as the rescheduling strategy are $23,133 and
$22,167, respectively. By contrast, the daily profits with scheme 2 are $23,605 ($472 higher) and
$27,282 ($5115 higher), respectively.



Energies 2018, 11, 2420 16 of 19

• With more contingency anticipation hours, the LSE will further reduce the losses based on the
proposed remedial strategic scheduling approach. Typical results are selected to illustrate this
viewpoint. In the modified six-bus test system, under the ES 1 outage, the daily losses of the LSE
with 6 h CAT and 1 h CAT are $1027 and $7274, respectively. In the modified IEEE 118-bus test
system, under the ES 4 outage, the daily losses of the LSE with 3 h CAT and 1 h CAT are $1103
and $4357, respectively.

In addition, hypotheses are made regarding the LSE’s remedial strategic scheduling model. In the
model, we assume that the contingency anticipation time can be provided by the sensor. It is a
reasonable hypothesis due to the advancement of failure detection and communication technology.
Meanwhile, we assume that in the simulation process of remedial scheduling, the outage recovery
cost, like the ES’s maintenance cost, is not included. It becomes a limitation of the model presented
here. It is also another important reason why, under several contingencies of both the modified six-bus
test system and IEEE 118-bus test system, the losses are negative after utilizing the remedial strategic
scheduling approach, i.e., if the recovery cost were considered and set high enough, the LSE would
not gain profit. However, the recovery cost is difficult to judge, since it contains many uncertainties
related to the occurrence probability and severity of a specific outage. Also, this paper is focused on
a quantitative assessment of the LSE’s loss reduction after using the remedial strategic scheduling
approach. Thus, considering model complexity and computation efficiency, we simplify the model of
the remedial strategic scheduling. However, it is definitely a significant extension for this work.

In the future, we plan to combine the risk probability with our framework and make the proposed
model appropriate for the scenario considering uncertainties.

6. Conclusions

In this paper, a remedial strategic scheduling approach for the daily profit of LSEs is presented
based on a bilevel optimization model. First, a day-ahead strategic scheduling model with the
interaction of grid-level ESs and IBDR-VPPs is established. Second, the intraday rescheduling model
considering ESs and VPPs is integrated into the LSE’s daily profit model. Finally, the remedial
strategic scheduling approach considering contingency anticipation time is modeled, and case studies
demonstrate the quantitative loss assessment.

From work presented in this paper, general conclusions are made as follows:

1. VPP integration has a notable impact on ES scheduling. Meanwhile, when coordinated with ES,
VPP has a supplemental function of peak-shaving and valley-filling.

2. The rescheduling process in the ID market is capable of reducing the LSE’s loss caused by
contingencies. Also, the LSE will further reduce the loss with more contingency anticipation time
based on the remedial strategic scheduling approach.

3. The remedial approach provides a quantitative assessment of the LSE’s loss redeeming, which
can be applied in the power system dispatching to help the LSE deal with contingencies.
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Nomenclature

Indices
i Index of buses
l Index of lines
t Index of hours
Parameters
Estored

i,init Initial energy stored in the ES on bus i (MW·h)
ri Self-discharged factor of the ES on bus i
ηch

i /ηdis
i Charging/discharging efficiency of the ES on bus i

Pch
i,rated/Pdis

i,rated Rated charging power of the ES on bus i (MW)
βi,t Contract price for IBDR customers on bus i at time t provided by the LSE ($/MW·h)
γi,t Contract price for ES charging on bus i at time t provided by the ISO ($/MW·h)
Gch

i,cont/Gdis
i,cont Upper charging/discharging capacity of the ES on bus i due to the contract (MW·h)

T Daily scheduling hour
αC

i,t Biding price for the conventional generator on bus i at time t ($/MW·h)
GV

i,max/GV
i,min Upper/lower power limit of the VPP on bus i (MW·h)

Gdis
i,max/Gdis

i,min Upper/lower power limit of the ES on bus i in discharging model (MW·h)
GC

i,max/GC
i,min Maximum/minimum output of the conventional generator on bus i (MW·h)

GSFl,i Generation shift factor
Limitl Limit of the transmission line l (MW)
Variables
Estored

i,t Stored energy in the ES on bus i at time t (MW·h)

Esel f
i,t Self-discharged energy in the ES on bus i at time t (MW·h)

Gch
i,t /Gdis

i,t Charging/discharging capacity of the ES on bus i at time t (MW·h)
Pch

i,t /Pdis
i,t Charging power of the ES on bus i at time t (MW)

xi,t, yi,t
Binary variables corresponding to ES status on bus i at time t (xi,t = 1 represents that
ES is in charging mode, and yi,t = 1 represents that ES is in discharging mode)

vi,t Status of the virtual power plant on bus i at time t
To f f ,i Number of hours the VPP on bus i must stay offline due to the previous status
Tmin

down,i Minimum offline hours of the VPP on bus i
Tmax

up,i Maximum online hours of the VPP on bus i
πi,t Locational marginal price (LMP) of bus i at time t ($/MW·h)
GV

i,t Output of the VPP on bus i at time t (MW·h)
GC

i,t Output of the conventional generator on bus i at time t (MW·h)
αV

i,t Biding price for the VPP on bus i at time t ($/MW·h)
αdis

i,t Biding price for the ES on bus i at time t ($/MW·h)
Di,t Power demand on bus i at time t (MW)
λt Dual variable regarding the power balance at time t
ωV_max

i,t /ωV_min
i,t Dual variables regarding the maximum/minimum output of the VPP on bus i at time t

ωdis_max
i,t /ωdis_min

i,t
Dual variables regarding the maximum/minimum output of the ES (in discharging
model) on bus i at time t

ωC_max
i,t /ωC_min

i,t
Dual variables regarding the maximum/minimum output of the conventional
generator on bus i at time t

µmax
l,t /µmin

l,t
Dual variables regarding the maximum/minimum capacity of transmission line l at
time t

GV
i,t,ID The rest of the virtual generator’s capacity at time t (MW·h)

Gch
i,t,ID/Gdis

i,t,ID The rest of the ES’s charging/discharging capacity at time t (MW·h)
GC

i,t,ID The rest of the conventional generator’s capacity at time t (MW·h)
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