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Abstract: Protection for transmission lines is one of crucial problems that urgently to be solved in
constructing the future high-voltage and large-capacity voltage-sourced converter based high voltage
direct current (VSC-HVDC) systems. In order to prevent the DC line fault from deteriorating further
due to the failure of main protection, a novel pilot protection principle for VSC-HVDC transmission
lines is proposed in this paper. The proposed protection principle is based on characteristics of
modulus traveling-wave (TW) currents. Firstly, the protection starting-up criterion is constructed by
using the absolute value of the 1-mode TW current gradient. Secondly, the fault section identification
is realized by comparing the polarities of wavelet transform modulus maxima (WTMM) of 1-mode
initial TW currents acquired from both terminals of the DC line. Then, the selection of fault
line is actualized according to the polarity of WTMM of local 0-mode initial reverse TW current.
A four-terminal VSC-based DC grid electromagnetic transient model based on the actual engineering
parameters is built to assess the performance of the proposed pilot protection principle. Simulation
results for different cases prove that the proposed pilot protection principle is excellent in reliability,
selectivity, and robustness. Moreover, the data synchronization is not required seriously. Therefore,
the proposed novel pilot protection principle can be used as a relatively perfect backup protection for
VSC-HVDC transmission lines.

Keywords: pilot protection; VSC-HVDC; transmission line; modulus traveling-wave current; wavelet
transform modulus maximum; backup protection

1. Introduction

The voltage-sourced converter based high voltage direct current (VSC-HVDC) technologies has
been widely recognized as a practicable solution to implement optimal allocation, wide-area reciprocity,
and flexible consumption of large-scale renewable energy over long distances [1,2]. The use of overhead
transmission lines (OHLs) for power transmission is still considered to be the dominant transmission
form for the future VSC-HVDC systems. However, when compared with alternating current (AC)
system, serious damage to the power electronic components or a complete shutdown of the whole
VSC-HVDC system will be caused by the steep rising fault current, owing to the low impedance of the
short-circuit path. Moreover, temporary faults will occur with a higher probability because of the use
of OHLs in unpredictable and harsh environments [3–5]. Consequently, protection for transmission
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lines is one of crucial problems that urgently to be solved in constructing the future high-voltage and
large-capacity VSC-HVDC systems.

The “low inertia” characteristic of VSC-HVDC systems puts forward an extremely strict
requirement on the action speed of line protection [6]. The main protection should adopt the protection
principle based on single-terminal quantities [7–9] to obtain the fastest action speed, and therefore
serious line faults can be detected and isolated as early as possible [10]. However, the main protection
may be failure due to the lack of sensitivity to high impedance faults and line-terminal faults [11,12].
Therefore, in order to prevent the DC line fault from deteriorating further after the failure of the main
protection, highly sensitive and selective backup protection for VSC-HVDC transmission lines should
be considered.

Recently, some valuable research has been made around the backup protection for
VSC-HVDC transmission lines. A novel current differential protection principle considering the
frequency-dependent characteristic of cable line is proposed in [13]. The proposed protection principle
can not only decrease the effect of the distributed capacitance but also improve the sensitivity of
differential protection remarkably, while a larger amount of calculation and a longer time-delay
are needed. Traveling-wave (TW) based differential protection schemes are proposed in [14,15].
The proposed protection principle can provide the most exact replica of the fault current, and therefore
has very high reliability and selectivity. However, high sampling rate, communication speed, and
the seriously synchronous current data are required. A novel pilot protection for VSC-HVDC
transmission lines based on parameter identification is proposed in [16]. S-transform is utilized
to extract the high-frequency component and then the sudden change value of the fault current
high-frequency components is used to distinguish the internal fault. However, not only a high
sampling frequency is required, but also a matching faulty pole selection is not given in the proposed
method. A traveling-wave-based fault location scheme for MMC-based multi-terminal DC grids is
proposed in [17]. Continuous wavelet transform (CWT) is utilized to extract and quantify the first
arrival current traveling wave and then the fault location is realized with the corresponding TW
characteristics. While, the amount of calculation in faulty pole identification is increased. Moreover,
CWT is not easy to realize in an engineering application. A fast directional pilot protection scheme
for the MMC-based MTDC grid is proposed in [18]. Features of fault voltages on both sides of the
DC reactor are extracted by discrete wavelet transform, then the faulty line selection is realized with
the amplitude ratio of their detail coefficients. However, the action speed will be affected by the data
window of 3 ms to a certain extent.

In this paper, a novel pilot protection principle based on modulus traveling wave currents for
VSC-HVDC transmission lines is proposed. Propagation characteristics of modulus TWs on DC
transmission lines based on frequency-dependent model are firstly analyzed. Then the proposed novel
pilot protection principle composed of protection starting-up criterion, fault section identification, and
faulty line selection is realized on basis of characteristics of the modulus TW currents.

The remainder of this paper is arranged as follows. In Section 2, directional current TWs, modulus
extraction and wavelet analysis theory are introduced, which are the theoretical analysis basis of the
proposed pilot protection principle. Propagation characteristics of modulus TWs on DC transmission
lines based on frequency-dependent model are analyzed in Section 3, the results of which is utilized
to determine the decomposition scale of wavelet transform when extracting fault characteristics.
In Section 4, the detail pilot protection principle is presented, including protection starting-up criterion,
fault section identification and faulty line selection. Extensive simulations are conducted to evaluate
the effectives of the proposed pilot protection in Section 5. Finally, some valuable conclusions are
summarized in Section 6.
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2. Basic Principles

2.1. Directional Current Traveling Waves

The distributed parameter model of a uniform transmission line with a length of ∆x is shown in
Figure 1. The voltage u(x, t) and current i(x, t) at any position on the line are functions of distance and
time [19].
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Assuming that the line parameters do not vary with frequency, the voltage and current on this
line satisfy the wave equations shown in Equation (1). −

∂u(x,t)
∂x = r0i(x, t) + l0

∂i(x,t)
∂t

− ∂i(x,t)
∂x = g0u(x, t) + c0

∂u(x,t)
∂t

(1)

where r0, l0, g0, and c0 are the resistance, inductance, conductance, and capacitance in per unit
length, respectively.

The frequency-domain form of the above wave equations can be expressed as: −
dU(x,ω)

dx = (r0 + jωl0)I(x, ω)

−dI(x,ω)
dx = (g0 + jωc0)U(x, ω)

(2)

The general solution form of Equation (2) is: U(x, ω) = u f (x, ω)e−γ(ω)x + ur(x, ω)eγ(ω)x

I(x, ω) = 1
Zc(ω)

(u f (x, ω)e−γ(ω)x − ur(x, ω)eγ(ω)x)
(3)

According to Equation (3), the forward voltage TW (FVTW) uf (x, ω) and reverse voltage TW
(RVTW) ur(x, ω) can be calculated as:{

u f (x, ω) = 1
2 [U(x, ω) + Zc(ω)I(x, ω)]eγ(ω)x

ur(x, ω) = 1
2 [U(x, ω)− Zc(ω)I(x, ω)]e−γ(ω)x

(4)

where Zc(ω) and γ are the line wave impedance and the corresponding TW propagation coefficient,
respectively, which can be expressed as: Zc(ω) =

√
R+jωL
G+jωC

γ(ω) =
√
(R + jωL)(G + jωC)

(5)

A uniform transmission line based on the distributed parameter model can be shown in Figure 2,
the direction from bus bar to the line is defined as the reference direction for current. For convenience,
the direction from bus bar M to bus bar N is defined as the reference direction for forward current
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TW (FCTW) at relaying point RM and RN, and the reference direction for reverse current TW (RCTW)
is opposite.
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Based on the reference direction, the voltages and currents of both the terminals satisfy boundary
condition shown in Equation (6). 

UM(ω) = U(0, ω)

UN(ω) = U(l, ω)

IM(ω) = I(0, ω)

IN(ω) = −I(l, ω)

(6)

Directional current TWs can be obtained by solving Equations (4) and (6) simultaneously:

IM f (ω) = 0.5[UM(ω)/Zc(ω) + IM(ω)]

IMr(ω) = 0.5[UM(ω)/Zc(ω)− IM(ω)]

IN f (ω) = 0.5[UN(ω)/Zc(ω)− IN(ω)]

INr(ω) = 0.5[UN(ω)/Zc(ω) + IN(ω)]

(7)

where IMf(ω) and IMr(ω) are FCTW and RCTW flowing through relaying point RM at bus bar M. INf(ω)
and INr(ω) are FCTW and RCTW flowing through relaying point RN at bus bar N, respectively.

2.2. Modulus Extraction

For a bipolar VSC-HVDC system, the wave equations with mutual coupling of the line are [20]:{
∂u
∂x = −Ri− L ∂i

∂t
∂i
∂x = −Gu− C ∂u

∂t

(8)

where

u =

[
up

un

]
i =

[
ip

in

]

R =

[
Rs Rm

Rm Rs

]
L =

[
Ls Lm

Lm Ls

]

G =

[
Gs Gm

Gm Gs

]
C =

[
Cs Cm

Cm Cs

]
up and un are positive-pole and negative-pole line voltages. ip and in are positive-pole and negative-pole
line currents. Rs and Rm are the self-resistance and mutual-resistance. Ls and Lm are the self-inductance
and mutual-inductance. Gs and Gm are the self-conductance and mutual-conductance. Cs and Cm are
the self-capacitance and mutual-capacitance of the line.

For wave Equation (8), a decoupling phase-mode transform matrix can be given as:

S =
1√
2

[
1 1
−1 1

]
(9)
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By using the decoupling matrix, Equation (9) can be deduced to:{
∂um
∂x = −S−1RSim − S−1LS ∂im

∂t
∂im
∂x = −S−1GSum − S−1CS ∂um

∂t

(10)

where

um = S−1u =

[
u1

u0

]
im = S−1i =

[
i1
i0

]

S−1RS =

[
R1

R0

]
=

[
Rs − Rm 0

0 Rs + Rm

]

S−1LS =

[
L1

L0

]
=

[
Ls − Lm 0

0 Ls + Lm

]

S−1GS =

[
G1

G0

]
=

[
G0 + 2Gm 0

0 G0

]

S−1CS =

[
C1

C0

]
=

[
C0 + 2Cm 0

0 C0

]
u1 and u0 are 1-mode and 0-mode voltages. i1 and i0 are 1-mode and 0-mode currents. Rj, Lj, Gj, and Cj
are j-mode (j = 0,1) resistance, inductance, conductance, and capacitance, respectively.

2.3. Wavelet Analysis Theory

Wavelet transform has been recognized as an effective tool to detect the local abrupt changes in
transient signals [21–23], so it is very suitable for analyzing and extracting features of non-stationary
high-frequency fault TW signals. Dyadic wavelet transform (DWT) is proverbially utilized to extract
TW wave fronts in virtue of its significant characteristic of translation invariance with respect to time.
Among the wavelet functions corresponding to the DWT, the derivative of the cubic B-spline function
is symmetrical and compactly supported, which implies that perfect time and frequency resolution
can be achieved [24,25].

When DWT is employed to a discrete signal f 0(n), the corresponding low-frequency approximation
and high-frequency detail coefficients can be expressed as:

A2j f0(n) = ∑
k

hk A2j−1 f0(n− 2j−1k)

W2j f0(n) = ∑
k

gk A2j−1 f0(n− 2j−1k)
(11)

where A2j f0(n) and W2j f0(n) are the approximation coefficients and detail coefficients in scale 2j.
hk and gk are the low-pass and high-pass filter coefficients with regard to the aforementioned mother
wavelet function, respectively.

When the derivative of the cubic B-spline function is chosen as the mother wavelet function,
the corresponding filter coefficients hk and gk can be given as:{

hk = {0.125, 0.375, 0.375, 0.125} (k = −1, 0, 1, 2)

gk = {2,−2} (k = 0, 1)
(12)



Energies 2018, 11, 2395 6 of 20

For a discrete signal containing frequencies from 0 to fn, DWT decomposes the frequency band
into two parts in half. The approximation coefficients are located in the frequency band 0 to fn/2, and
the detail coefficients are located in the frequency band fn/2 to fn. The decomposition can be repeated
to achieve multi-resolution analysis for the input signal, as shown in Figure 3.
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Wavelet transform modulus maxima (WTMM) is defined as the local maximum of the
high-frequency detail coefficients. The translation invariance of DWT and singularity detection
theory show that the WTMM points are one-to-one corresponding to the local abrupt changed points
of the signal. Therefore, WTMM is employed to extract the polarities of fault current TW fronts in
this paper.

3. Modulus Traveling-Wave Propagation Characteristics

3.1. Frequency-Dependent Characteristics of DC Transmission Line Parameters

In general, the conductance of transmission line parameters can be ignored and the capacitance of
which does not vary with frequency. However, the resistance and inductance vary greatly with the
frequency due to the skin effect.

Configuration of a 500 kV DC transmission line is shown in Figure 4, and the modulus resistance
characteristic curves after decoupling can be revealed by Figure 5. As shown in Figure 5, there is no
obvious change in both the 1-mode and 0-mode resistances in per unit length within the frequency
band below 10 kHz. While, with the increase of frequency, both the 1-mode and 0-mode resistances in
per unit length in the frequency band above 10 kHz increase rapidly. In addition, the 0-mode resistance
in per unit length is larger than the 1-mode resistance in per unit length at the same frequency.
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The modulus inductance characteristic curves after decoupling can be revealed by Figure 6.
In the frequency band from 1 Hz to 1 MHz, both the 1-mode and 0-mode inductances in per unit
length decrease with the increase of frequency. The 1-mode inductance is only slightly reduced, while
the 0-mode inductance decreases greatly. Besides, the 0-mode inductance in per unit length is larger
than the 1-mode inductance in per unit length at the same frequency.
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Figure 6. Modulus inductance characteristic curves: (a) 1-mode inductance; (b) 0-mode inductance.

3.2. Wave Impedance

According to Equation (5), the frequency-domain form of wave impedance can be expressed as:

Zc(ω) =

√
R(ω) + jωL(ω)

G(ω) + jωC(ω)
(13)
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Based on the frequency-dependent characteristics of DC transmission line parameters that are
mentioned above, the modulus wave impedance characteristic curves after decoupling can be revealed
by Figure 7. In the frequency band from 1 Hz to 1 MHz, the 1-mode wave impedance is approximately
constant, while the 0-mode wave impedance varies greatly.
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Figure 7. Modulus wave impedance characteristic curves: (a) 1-mode wave impedance; (b) 0-mode
wave impedance.

3.3. Propagation Functions

The frequency-domain form of TW wave speed can be expressed as:

v(ω) =
1√

L(ω)C
(14)

Based on the frequency-dependent characteristics of the DC transmission line parameters
mentioned above, the modulus TW wave speed characteristic curves after decoupling can be revealed
by Figure 8. In the frequency band from 1 Hz to 1 MHz, the wave speed of the 1-mode TW is close to
that of light in a vacuum, while the wave speed of the 0-mode TW is obviously smaller than that of the
1-mode TW.
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Figure 8. Modulus wave speed characteristic curves: (a) 1-mode wave speed; (b) 0-mode wave speed.

According to Equation (5), the frequency-domain form of TW propagation coefficient can be
expressed as:

γ(ω) =
√
[R(ω) + jωL(ω)][G(ω) + jωC(ω)] (15)

The TW propagation function can be defined as:

η(ω) = e−γ(ω)x (16)

where x is the TW propagation distance.
The characteristic curves of the modulus TW propagation functions after decoupling at different

distances can be shown in Figure 9. At the same frequency, the longer the propagation distance,
the more serious the TW attenuation. At the same propagation distance, the higher the TW frequency,
the more serious the TW attenuation. Besides, at the same frequency and propagation distance,
the attenuation of 0-mode TWs are more serious.
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Figure 9. Characteristic curves of modulus traveling-wave (TW) propagation functions: (a) 1-mode
propagation function; (b) 0-mode propagation function.

The cut-off frequencies for which the modulus TW attenuating to 0.7 times of its original value
are shown in Table 1. At the same propagation distance, the cut-off frequency of 1-mode TW is much
higher than that of 0-mode TW. Moreover, the cut-off frequencies of modulus TWs gradually decrease
with the increase of propagation distance. On basis of the cut-off frequencies of modulus TWs at
different distances that are shown in Table 1, the scale of wavelet transform can be determined for a
signal with known sampling frequency.
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Table 1. Cut-off frequencies of modulus TWs with different distances.

Distances/km
Cut-off Frequencies

P(ω)/kHz Q(ω)/Hz

200 128.8 1380.4
500 39.8 213.8

1000 16.9 89.1
2000 6.3 47.9
3000 3.2 33.88

4. Protection Scheme

As shown in Figure 10, when a fault f occurs on the DC transmission line, according to the
TW theory, it is equivalent to superimposing an additional DC voltage source uf (t) at the fault
point. With the influence of the additional DC voltage source, high-frequency voltage and current
TWs are generated and hereafter propagate along the DC transmission line from the fault point to
both terminals.
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4.1. Starting-Up Element

Define the absolute value of 1-mode TW current gradient as:

di1(k) =
∣∣∣∣ i1(k)− i1(k− 1)

∆t

∣∣∣∣ (17)

where i1(k) denotes the 1-mode TW current data at this moment, and ∆t is the sampling time interval.
When there is no fault on the line, the fluctuation of 1-mode TW current i1 is small when

considering the measurement error, and therefore the absolute value of its gradient di1 is also small
correspondingly. However, once a fault occurs on the line, the 1-mode TW current i1 will change
drastically, and as a result the absolute value of its gradient di1 increases rapidly. Consequently,
the protection starting-up criterion can be set as:

di1(k) > ∆1 (18)

where ∆1 is the threshold value of the starting-up criterion, which should be greater the normal
operating maximum value of di1(k).

To ensure the reliability, if two consecutive values di1(k) and di1(k + 1) exceed the threshold value
∆1, a starting-up signal will be given out.
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4.2. Fault Section Identification

In general, DC reactors are installed at both terminals of the line in VSC-HVDC systems.
The DC reactors can not only limit the development of fault currents, but also provide natural boundary
conditions for line protection. When a fault occurs on the line, the refraction and reflection will
occur at the DC reactor for the generated fault TWs. As shown in Figure 11, the purple dotted line
denotes the refracted TW, and the blue solid is the reflected TW. Because of the discontinuous wave
impedance presented by the DC reactor, an abrupt change will occur when the TW propagate along
the transmission line to the DC reactor. When an internal fault occurs for the line MN, the abrupt
change polarities of initial 1-mode TW currents detected at both terminals of the line MN are the same.
However, when an external fault occurs for the line MN, the abrupt change polarities of initial 1-mode
TW currents detected at both terminals of the line MN are opposite.
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Supposing that WTMM(iM1) and WTMM(iN1) are the WTMMs of the initial 1-mode TW currents
detected at terminal M and terminal N, respectively. The result of sign function 1 denotes that the
abrupt change polarity of the initial 1-mode TW current is positive and -1 represents a negative abrupt
change polarity. According to the abrupt change polarities of initial 1-mode TW currents detected at
both terminals of the line, fault section identification criterion can be designed.

If
sign[WTMM(iM1)]× sign[WTMM(iN1)] = 1 (19)

is satisfied, the fault can be identified as an internal fault for the line. Otherwise, the fault is identified
as an external fault.

4.3. Faulty Line Selection

For a bipolar VSC-HVDC system, when a positive pole-to-ground short-circuit fault occurs,
the fault superimposed network can be shown in Figure 12.
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According to the boundary conditions, the following equations can be given as:
up = upf − 2ipRf

upf = − Udc

in = 0

(20)

where upf is the additional DC voltage source, and Rf denotes the fault transition resistance.
Substituting the modulus resistance into Equation (20), the initial TW voltages for both poles can

be derived as:  up = −Udc(Z0+Z1)
Z0+Z1+4Rf

un = −Udc(Z0−Z1)
Z0+Z1+4Rf

(21)

Appling the phase-mode transform matrix shown in Equations (9)–(21), the initial modulus TW
voltages can be given as:  u1 = −

√
2UdcZ1

Z0+Z1+4Rf

u0 = −
√

2UdcZ0
Z0+Z1+4Rf

(22)

Furthermore, the corresponding initial modulus TW currents can be obtained: i1 = −
√

2Udc
Z0+Z1+4Rf

i0 = −
√

2Udc
Z0+Z1+4Rf

(23)

where i1 is the 1-mode TW current, and i0 denotes the 0-mode TW current.
In the same manner, when a negative pole-to-ground short-circuit fault occurs, the corresponding

initial modulus TW currents can be given as: i1 = −
√

2Udc
Z0+Z1+4Rf

i0 =
√

2Udc
Z0+Z1+4Rf

(24)

Similarly, for a pole-to-pole short-circuit fault, the initial modulus TW can be expressed as: i1 = −
√

2Udc
Z1+R f

i0 = 0
(25)
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Based on the theoretical analysis mentioned above, the faulty line selection criterion can be
designed as:

f =


positive pole− to− ground fault, WTMM(ir0) < −∆2

negative pole− to− ground fault, WTMM(ir0) > ∆2

pole− to− pole fault, others

(26)

where ir0 is the 0-mode reverse TW current, and ∆2 is the threshold value of the faulty line
selection criterion.

4.4. Flow Chart of Protection Scheme

The flow chart of the protection scheme is shown in Figure 13. The voltage and current data of
positive-pole and negative-pole lines are sampled and stored, and the 1-mode TW current is extracted
in real time. If the starting-up condition is satisfied, data will still be sampled for 1 ms. With the
data 0.5 ms before starting-up, the data of 1.5 ms data window is constituted. Then the phase-mode
transform is employed and the directional 1-mode and 0-mode TW currents are calculated. Thereafter,
wavelet transform is implemented to extract the WTMMs of the initial directional 1-mode and 0-mode
TW currents. Next, WTMMs of the initial directional 1-mode TW currents are exchanged with the
other terminal. If an internal fault is determined, according to Equation (19), then the interference
identification is also needed prevent the protection from malfunction. Finally, for an internal fault,
faulty line selection on the basis of Equation (26) will be executed for tripping.
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5. Simulations

In order to verify the validity of the proposed protection principle, an electromagnetic transient
simulation model of ±500 kV four-terminal bipolar VSC-based DC grid shown in Figure 14 is
established in PSCAD/EMTDC. The DC voltage of station S2 and the active power of other stations
are the reference values for their corresponding control objects. The frequency-dependent transmission
line of which the configuration is shown in Figure 4 is utilized here and the sampling frequency is
200 kHz.

Without a loss of generality, research around the line DL34 is conducted in this paper.
For convenience, faults occurring on the line DL34 are internal faults, while faults occurring on other
positions are defined as external faults. Moreover, based on the cut-off frequencies of modulus TWs at
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different distances shown in Table 1, the initial WTMM in scale 24 (7.813–15.625 kHz) is extracted for
fault characteristic analysis.Energies 2018, 11, x FOR PEER REVIEW  14 of 20 
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Figure 14. ± 500 kV four-terminal voltage-sourced converter (VSC)-based DC grid.

5.1. Performance of the Starting-Up Element

A positive pole-to-ground fault with 300 Ω transition resistance is set at 205.5 km away from
station S3, and the corresponding time-domain waveform of 1-mode TW current that is detected by
R34 is shown in Figure 15. Before the fault, the amplitude of 1-mode TW current has no obvious change.
However, that of the 1-mode TW current increases rapidly after the fault.
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Figure 15. 1-mode TW current.

Results of the protection starting-up element at different distances and different transition
resistances is shown in Table 2. Before the fault, the absolute value of the 1-mode TW current gradient
is small. However, that of the 1-mode TW current gradient is much larger after the fault. Therefore,
the performance of the designed protection starting-up element is reliable.

Table 2. Result of the protection starting-up element.

Distance/km Resistance/Ω
di1

di1(k − 1) di1(k) di1(k + 1)

0.5

0 3.71 863 842
100 3.76 524 420
200 3.83 378 309
300 3.79 297 255
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Table 2. Cont.

Distance/km Resistance/Ω
di1

di1(k − 1) di1(k) di1(k + 1)

75

0 3.97 635 932
100 3.39 386 569
200 3.29 278 410
300 3.18 218 320

150

0 3.34 533 893
100 3.53 319 538
200 3.45 226 383
300 3.35 261 300

205.5

0 3.59 812 1012
100 3.88 523 748
200 3.77 385 602
300 3.81 305 503

5.2. Performance of Fault Section Identification

As shown in Figure 14, metallic external positive pole-to-ground faults f 1 and f 2 are set on the
lines between bus bars and DBs, and internal positive pole-to-ground faults with different transition
resistances are set at 205.5 km away from station S3. According to results that are shown in Figure 16
and Table 3, the WTMMs of 1-mode TW currents at both terminals are the same for the internal fault,
while those are opposite for the external fault. As a result, it is can be concluded that the performance
for fault section identification is accurate and reliable for external faults nearby and internal faults with
transition resistance of at least 300 Ω.
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Figure 16. WTMMs of 1-mode TW current for different fault sections: (a) wavelet transform modulus
maxima (WTMM) for internal fault; (b) WTMM for external fault.
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Table 3. WTMMs of 1-mode TW currents.

Location Resistances/Ω
WTMM(i1)/A

Result
S3 Side S4 Side

f 1 0 −165.5 37.29
External faultf 2 0 56.67 −171.5

DL34

0 82.87 43.17

Internal fault
100 60.84 31.69
200 48.2 25.11
300 40.01 20.87

5.3. Performance of Faulty Line Selection

5.3.1. Different Fault Types

Three typical faults, namely positive pole-to-ground fault, negative pole-to-ground fault, and
pole-to-pole fault are simulated to test the performance of the proposed protection. These faults with
200 Ω transition resistance are set at 150 km away from station S3 respectively. As shown in Figure 17,
WTMMs of the 0-mode initial reverse TW current for the positive pole-to-ground fault is a negative
value. However, that for the negative pole-to-ground fault is a positive value. Moreover, that for the
pole-to-pole fault is 0 when considering measurement error.
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Figure 17. WTMMs of 0-mode reverse TW current for different fault types: (a) WTMM for positive
pole-to-ground fault; (b) WTMM for negative pole-to-ground fault; (c) WTMM for pole-to-pole fault.

5.3.2. Different Transition Resistances

The same three typical faults with different transition resistances are set at 150 km away from
station S3 respectively. As shown in Table 4, WTMMs of the 0-mode initial reverse TW current for
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positive pole-to-ground faults are always negative. However, those for negative pole-to-ground
faults are always positive. Moreover, those for pole-to-pole faults are always 0 when considering
measurement error.

Table 4. WTMMs of 0-mode initial reverse TW current under different fault resistances.

Types Resistance/Ω WTMM(ir0)/A Result

1

0 −761.08
Positive

pole-to-ground fault
100 −467.51
200 −337.33
300 −263.84

2

0 761.24
Negative

pole-to-ground fault
100 467.59
200 337.38
300 263.88

3

0 0.341
Pole-to-pole

fault
100 0.328
200 0.328
300 0.329

5.3.3. Different Fault Distances

The same three typical faults are set at 0.5 km, 75 km, 150 km, and 205.5 km away from station S3,
respectively. The results at different fault distances are shown in Table 5. As expected, WTMMs of the
0-mode initial reverse TW current are always negative for positive pole-to-ground faults. While, those
are always positive for negative pole-to-ground faults. Moreover, those are always 0 for pole-to-pole
faults considering measurement error.

Table 5. WTMMs of 0-mode initial reverse TW current under different fault distances.

Types Distances/km WTMM(ir0)/A Result

1

0.5 −424.4
Positive

pole-to-ground fault
75 −395.2

150 −263.8
205.5 −270.2

2

0.5 425.9
Negative

pole-to-ground fault
75 396.8

150 263.9
205.5 270.6

3

0.5 0.28
Pole-to-pole

fault
75 0.32

150 0.26
205.5 −0.35

5.4. Performance Under Noise Disturbance

5.4.1. Fault Section Identification Under Noise Disturbance

Metallic external positive pole-to-ground fault f 1 is set on the line between bus bar B3 and DB34,
and a positive pole-to-ground fault with 300 Ω transition resistance is set at 205.5 km away from station
S3, respectively. 20dB Gauss white noise is added into the 1-mode TW currents that were acquired by
R34 and R43, respectively. As shown in Figure 18, WTMMs of 1-mode TW currents at both terminals
are opposite for the external fault, and those are still the same for the internal fault.
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Figure 18. Fault section identification under noise disturbance: (a) Noise disturbance for the external
fault; (b) Noise disturbance for the internal fault.

5.4.2. Faulty Line Selection Under Noise Disturbance

Under the same internal fault, 20 dB Gauss white noise is added into the 0-mode reverse TW
current collected by R34. As shown in Figure 19, WTMM of the 0-mode initial reverse TW current
is still a larger negative value, which indicates that an internal positive pole-to-ground fault occurs
on the line.
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Figure 19. Faulty line selection under noise disturbance.

6. Conclusions

The paper proposes a novel pilot protection principle for VSC-HVDC transmission lines based
on modulus TW currents. The absolute value of the 1-mode TW current gradient is constructed for
protection starting-up element. The wavelet transform is employed to extract the WTMMs of modulus
TW currents. The fault section identification is realized by comparing the polarities of WTMMs of
1-mode initial TW currents acquired from both terminals of the DC line. The polarity of WTMM of local
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0-mode initial reverse traveling-wave current is utilized for faulty line selection. The simulation results
prove the excellent performance of the proposed protection under different conditions. Moreover,
the requirement of protection selectivity and sensitivity is satisfied, and the data synchronization is not
required seriously. Therefore, the proposed novel pilot protection principle can be used as a relatively
perfect backup protection for VSC-HVDC transmission lines.

The sequential coordination between the main protection and backup protection for VSC-HVDC
transmission lines will be conducted in the future research.
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