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Abstract: Potential machine-grid interactions caused by large-scale wind farms have drawn much
attention in recent years. Previous work has been done by analyzing the small–signal modeling of
doubly-fed induction generators (DFIGs) to obtain the oscillation modes. This paper, by making use
of the metered power data of wind generating sets, studies the correlation between oscillation modes
of the DFIG system and influence factors which includes wind speed and grid voltage. After the
metered data is segmented, the Prony algorithm is used to analyze the oscillation modes contained
in the active power. Then, the relevant oscillation modes are extracted in accordance with the
small-signal analysis results. Meanwhile, data segments are clustered according to wind speed and
grid voltage. The Apriori algorithm is finally used to discuss the association rules. By training the
mass of data of wind generating sets, the inevitable association rules between oscillation modes and
influence factors can be mined. Therefore, the prediction of oscillation modes can be achieved based
on the rules. The results show that the clustering number quite affects the association rules. When the
optimal cluster number is adopted, part of the wind speed/voltage clusters can analyze the certain
oscillation modes. The predicted results are quite consistent with the practical data.

Keywords: wind power; oscillation mode; correlation analysis; Apriori algorithm

1. Introduction

According to the 2016 Global Wind Power Development Outlook Report, the wind power market
will reach 100 GW by 2020, and the cumulative wind power market will reach 879 GW [1]. With the
continuous increase of wind power penetration, the machine-grid interaction has attracted increasing
attention. It is found that the interaction is usually reflected in the oscillation of active power [2].
The oscillation modes can be divided into sub-synchronous interaction and low frequency oscillation.
The former can be categorized into sub-synchronous control interaction (SSCI) and sub-synchronous
torque interaction (SSTI). SSTI includes sub-synchronous oscillation (SSO) [3] and sub-synchronous
resonance (SSR) [4]. Since the 1960s, accidents caused by machine-grid interactions have occurred in
Europe, America and other countries. The first SSCI accident caused by an interaction between the
rotor-side converter and the fixed string compensation system of the doubly-fed induction generator
(DFIG) happened in Texas (USA). It resulted in damage to the wind turbines and internal lever
circuits [5].

At present, research on the machine-grid interaction is mainly based on modeling and simulation.
For instance, Reference [6] proposes a unified modularized small signal dynamic model of wind farm
based on an induction motor. It can simulate a random number of fixed speeds, some variable speed
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(doubly-fed) induction motor wind turbine, providing a lot of flexibility for wind turbines and their
controllers. In [7], a small-signal model of the direct-drive permanent magnet synchronous generator is
established to study the stability of the grid-connected wind generating sets after the small disturbance,
and the parameters of the controller are designed effectively. Reference [8] aimed at the suppression of
torsional vibrations caused by small electrical disturbances from the grid side in a DFIG-based wind
turbine system. The Prony algorithm is a complementary method used in the time-domain model
system. It decomposes time-domain signals into damped sinusoids with four parameters per mode:
frequency, damping, amplitude and phase. Compared with small-signal analysis, the Prony analysis
shows an advantage when the system turns complicated because the former has difficulty solving
high-order matrix [9,10]. All the papers above investigated the wind power oscillation mechanism and
suppression method by modeling methods. However, the operation of wind generating sets is affected
by factors which are more complex than the modeling simulation. A more direct and convenient way
is to directly use the metered data.

With the advent of the big data era, the vast amounts of data collected from wind farms conceals
vast information [11]. Data mining and machine learning theory including correlation analysis,
cluster analysis, classification analysis, have brought new ideas to power research [12]. Among them,
the Apriori algorithm, one of the correlation algorithms, provides an effective solution for exploring
the association relationship between large data item-sets. In the power industry, correlation analysis is
mainly used for transformer fault diagnosis. The Apriori algorithm is a common tool of correlation
analysis. The Apriori algorithm is a hierarchical algorithm, which seeks frequent item-sets in the
increasing item number order. The algorithm can be divided into two steps. The first step is to generate
frequent item-sets with minimum support condition. The second step is to produce association
rules with minimum confidence condition [13,14]. In [15], a data-driven method of association
rule mining for transformer state parameters is proposed by combining the Apriori algorithm and
probabilistic graphical model. Paper [16] proposes a new fault diagnosis method based on Set Pair
Analysis and association rules. Via analyzing the relationship of fault symptoms and fault types,
the corresponding association rules are established. In addition, cluster analysis, as an unsupervised
classification method, provides a solution for the information mining of large quantity unknown
data [17]. Reference [18] clusters the photovoltaic power station according to the geographical
space and analyzes the evolution characteristics of cluster center and cluster radius to predict the
spatio-temporal expansion of photovoltaic power supply. Based on new wind pattern recognition
technologies, Reference [19] proposes a short-term wind power predicting method for a wind power
farm. The correlation between wind power data and numerical weather prediction is used to cluster
the meteorological grid data first, and then to construct artificial neural network and support vector
machine model for each cluster to improve the accuracy of prediction. However, limited research has
been done into the oscillation of wind generating sets through big data technology.

In this paper, metered actual output power data of wind generating sets will be used to mine the
association rules between oscillation modes and influence factors. Based on the mode analyzing results
via the small-signal modeling of DFIG, the information of the machine-grid interaction embedded
in the actual operation data will be mined. The Prony algorithm will be used as the fundamental
signal analysis method to do the preliminary signal decomposition. As a big data analysis technology,
the Apriori algorithm will be introduced to make further efforts on the association rules mining
and oscillation prediction. The association rules between clusters and oscillation modes through the
analysis of metered data will be obtained. The prediction reveals the comprehensive impact of wind
speed and voltage factors on the oscillation modes that may be contained in wind power.

The novelty of this paper is that it: (i) combines the modeling method and data analysis method
to mine the oscillation information in the practical data of wind power; (ii) establishes the association
analyzing modeling based on the Apriori algorithm to analyze the association rules between wind
speed/voltage fluctuation clusters and oscillation modes; (iii) proposes a prediction method for the
wind power oscillation modes.
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The rest of the paper is organized as follows: Section 2 introduces the research methods of the
oscillation modes of wind generating sets from two aspects: modeling and data analysis. Section 3
establishes the data correlation analysis model of the wind generating sets. The data is segmented
by the wind speed and the segments are clustered according to the wind speed and the voltage
fluctuation. Section 4 is a case analysis, where the impact of cluster number set on association rules is
analyzed, and the predict is done according to the association rules between wind power and wind
speed/voltage clusters, and the conclusion is given finally.

2. Study of Oscillation Modes of Grid-Connected DFIG System

Based on the structure of a grid-connected DFIG system, the small-signal system of DFIG has been
established and used to analyze the oscillation modes to obtain the results of the modeling analysis.
Meanwhile, the Prony algorithm is introduced to analyze the metered power data and the result is
compared with the characteristic frequencies obtained from the modeling analysis.

2.1. Oscillation Modes Analysis Based on the Small-Signal Model

The detailed structure of the grid-connected DFIG system is shown in Figure 1.
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Figure 1. The structure of grid-connected DFIG system. Subscript s and r is the mark of the stator side 
parameter and the rotor side respectively. Subscript g is the mark of the grid side parameter. Subscript 
d and q is the mark of d axis parameter and q axis respectively. 

Three-mass block model, which is more suitable for dynamic analysis, is applied here. The 
mechanical rotation system of the DFIG can be divided into three parts namely blade, low-speed shaft 
and high-speed shaft. The low-speed shaft connects the blades to the gearbox, and the high-speed 
shaft connects the gearbox to the induction generator unit. In addition, the output of the rotor circuit 
enters the power grid via the converter device, while the stator circuit is directly connected to the 
external power grid [8,20]. 

The main objective of the machine-side converter control is to stabilize the active power and 
machine voltage of DFIG. Vector control is adopted based on stator flux orientation, and the 
coordinate system of which d-axis and stator flux are coincident is introduced. The active power and 
voltage are controlled by uqr and udr, respectively. The control goal of the network-side converter is to 
stabilize the DC side voltage and reactive power. The current component idg and iqg are used to realize 
the control respectively by the grid-side converter. The rotating coordinate system is consistent with 
the generator. The symbols of electric parameters do not make a distinction in the coordinate system. 
The control block diagrams of the machine-side converter and network-side converter are shown in 

Figure 1. The structure of grid-connected DFIG system. Subscript s and r is the mark of the stator side
parameter and the rotor side respectively. Subscript g is the mark of the grid side parameter. Subscript
d and q is the mark of d axis parameter and q axis respectively.

Three-mass block model, which is more suitable for dynamic analysis, is applied here.
The mechanical rotation system of the DFIG can be divided into three parts namely blade, low-speed
shaft and high-speed shaft. The low-speed shaft connects the blades to the gearbox, and the high-speed
shaft connects the gearbox to the induction generator unit. In addition, the output of the rotor circuit
enters the power grid via the converter device, while the stator circuit is directly connected to the
external power grid [8,20].

The main objective of the machine-side converter control is to stabilize the active power and
machine voltage of DFIG. Vector control is adopted based on stator flux orientation, and the coordinate
system of which d-axis and stator flux are coincident is introduced. The active power and voltage are
controlled by uqr and udr, respectively. The control goal of the network-side converter is to stabilize
the DC side voltage and reactive power. The current component idg and iqg are used to realize the
control respectively by the grid-side converter. The rotating coordinate system is consistent with the
generator. The symbols of electric parameters do not make a distinction in the coordinate system.
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The control block diagrams of the machine-side converter and network-side converter are shown in
Figure 1. Based on the system structure above, the small-signal model of grid-connected DFIG is
shown in Figure 2.
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By using the small-signal model, the distribution of the system eigenvalue can be analyzed.
The characteristic values corresponding to non-oscillatory form and high-frequency resonance are
eliminated to focus on the machine-grid interaction. The characteristic frequency to be reserved is
between 0 and 100 Hz. The result is shown in Table 1 [20].

Table 1. Eigenvalues of DFIG connected to grid.

Type Eigenvalues Mode Frequency (Hz) Damping Ratio

SSR
−23.63 ± 498i 79.25 0.0474

−16.75 ± 147i 23.40 0.1132

SSO
−1.477 ± 77.97i 12.41 0.0189

−11.72 ± 12.08i 1.92 0.6963

SSCI
−51.17 ± 285.1i 45.37 0.1767

−8.91 ± 27.45i 4.37 0.3087

Low frequency oscillation −0.319 ± 3.177i 0.51 0.1

In the analysis below, these mode frequencies will be used as reference values for frequency
screening to classify metered data.

2.2. Study of Oscillation Modes Based on Metered Data

2.2.1. Prony Algorithm

For time series generated by interval sampling, Prony algorithm is commonly used for curve
fitting with the linear combination of exponent items [10]. Its discretization expression is:

x̂(n) =
p

∑
i=1

bizn
i =

p

∑
i=1

Ai exp(αin) sin(2π fin + ϕi) (1)

in which: {
bi = Ai exp(jϕi)

zi = exp[(αi + j2π fi)∆t]
(2)
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where, Ai, αi, fi, φi (i = 1, 2, . . . , n) respectively represent the amplitude, attenuation factor, frequency
and initial phase Angle of the ith fitting component; p is the component number of fitting functions;
n = 1, 2, ..., N − 1, N is the number of fitting points.

The Prony algorithm is a fitting algorithm, and the objective function is the error function shown
in (3):

min

[
ε =

N−1

∑
n=0
|x(n)− x̂(n)|2

]
(3)

Using the least squares method, the value of the unknown parameter in Equation (1) can be
obtained. The original sequence can be decomposed into attenuation components and DC components.

2.2.2. The Oscillation Modes Analysis under Fixed Wind Speed Using the Prony Algorithm

Based on the metered data of the wind generating sets, the output power curve is plotted in
Figure 3.
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The analysis results of the Prony algorithm are shown in Table 2. The oscillation frequencies
higher than 100 Hz are eliminated for exceeding the frequency range between 0 and 100 Hz of
machine-grid interactions.

Table 2. Results of the Prony analysis.

Amplitude Frequency (Hz) Damping Ratio (%)

190,696 0.143 (low-frequency oscillation) −37.127
75,562 19.466 3.712
63,194 40.545 4.535
62,034 50.307 6.586
36,437 0 100
34,919 35.2 2.06
28,455 6.748 6.501
26,792 20.582 1.218
24,909 10.449 11.286
24,175 40.556 1.65
22,959 15.242 2.607
16,312 8.433 5.332
14,049 26.189 2.883
13,875 17.107 −0.473
12,269 32.948 0.082
11,490 63.518 0.154
10,384 68.174 1.121
9987 3.107 −2.071
9528 23.523 (SSR) 0.008
9465 12.404 (SSO) 0.865
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It can be concluded from the above data that the low frequency oscillation, SSCI, SSO, and SSR
exist in the process of actual system operation. However, the frequencies obtained by the metered
data slightly deviate from the characteristic frequency calculated by the small-signal model. Therefore,
frequency filtrating rules are designed in Table 3.

Table 3. Frequency filtrating rules.

Machine-Grid
Interaction Type

Oscillation Modes from
Small Signal Model (Hz)

Filtrate Range of Prony
Analysis Result (Hz)

Correlation Analysis
Mark Tag

Low-frequency
oscillation

0.1–1.8 Hz
[0.1, 1.8] 1

other 0

SSCI
4.37 Hz

[4.17, 4.57] 1
other 0

45.37 Hz
[44.57, 46.17] 1

other 0

SSO
12.41 Hz

[11.91, 12.91] 1
other 0

1.92 Hz
[1.82, 2.02] 1

other 0

SSR
79 Hz

[77.5, 80.5] 1
other 0

23 Hz
[22.4, 23.6] 1

other 0

When the oscillation frequency in the Prony analysis result appears in a certain screening range
in Table 3, it can be considered that the analyzed object contains the corresponding oscillation
mode component.

3. Modeling of the Correlation Analysis of Wind Speed/Voltage Factors and Oscillation Modes

3.1. K-Means Clustering

According to the project observation, the machine-grid interaction of the wind turbine often
occurs at low wind speeds. Meanwhile, the voltage change at the PCC point also has the same effect.
Thus, the K-Means algorithm is used to find out the influence of both two factors on the oscillation
mode by clustering the metered data according to wind speed and voltage. As a result, influence
factors in the same cluster have the same characteristics.

The K-Means algorithm is an iterative clustering algorithm. The given data set is divided into the
specified k clusters [11]. In the data transformation process, influencing factors include wind speed
and three-phase voltage fluctuation. To explore the effects of these whole factors on the oscillation
modes, clustering can be done first for the same cluster has the same characteristics and influence
on the oscillation modes. When the factors number to be considered is d, the input object is the
d-dimensional point set and the output is to assign each point to one cluster. The entire analysis object
can be represented by the set C, and one element in C can be expressed as (4):

C(i) = c(xi1, xi2, · · · , xid) (4)

in which, xij (j = 1, 2, . . . , d) represents wind speed, three-phase voltage fluctuation and so on.
The Euclidean distance between two d-dimensional vectors is shown in (5):

d12 =

√√√√ d

∑
k=1

(x1k − x2k)
2 (5)
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The K-Means algorithm minimizes the total Euclidean distance between each point and the
cluster center. In this paper, the optimal cluster number is first selected with fewer sampling data. It is
necessary to record the cluster center of the optimal cluster number to be set as the initial cluster center
in the later analysis, which ensures the consistency of clustering results.

3.2. Association Rules and the Improved Apriori Algorithm

Assume that set D represents the wind power data set, which is the input data of the correlation
analysis. If there is association rule “Cluster1→SSTI”, it means that when the influencing factors
are clustered in cluster 1, it is very likely that the output power oscillation mode contains “SSTI”.
“Cluster1” and “SSTI” are both wind power data item set. The item set is also likely to be the clustering
combination like “Cluster1& Cluster2” or oscillation modes like “SSR”.

According to [14,15], for the association rule “Cluster1→SSTI”, the support degree
“support(Cluster1→SSTI)” is the percentage of transactions that “Cluster1” and “SSTI” occurs at
the same time to the total transactions, shown in (6):

support(Cluster1→ SSTI) =
count(Cluster1∩ SSTI)

count(D)
(6)

Confidence coefficient confidence(Cluster1→SSTI) is the proportion of appearance of “SSTI”
given that “Cluster1” happens, shown in (7):

confidence(Cluster1→ SSTI) =
support(Cluster1∩ SSTI)

support(Cluster1)
(7)

In transaction set D, the rule satisfying the minimum support condition minsup and the minimum
confidence condition minconf is the strong association rule.

In this paper, the time cost of scanning can be reduced because the preceding item is limited in
the cluster item-set and the subsequent item is limited in oscillating mode item-set. The first step is to
use the hierarchical sequential search method which is the same as the Apriori algorithm.

The difference is that the frequent 1 item-set is searched in the oscillating modes, while from
frequent 2 item-set, the search area is reduced to the cluster item-set. The frequent k item-set are then
used to generate frequent (k + 1) item-set. The circulation is done until the new frequent sets cannot
be found. When producing frequent k item-set, Apriori mainly accomplishes two tasks, connecting
and cutting. The connection process happens when a candidate item-set is generated by connecting
the frequent k − 1 item-sets. The cutting process is to get rid of nonfrequent item-set according to the
minimum support threshold. Thus, the frequent k item-set is obtained.

Due to the limitation in the first step, the frequent item set contains only one oscillation mode
as consequent denoted by q. After all the frequent item-sets are found, the second step is to generate
association rules by corresponding the different subset pji (i = 1, 2, ..., n) of frequent preceding item-set
pj (j = 1, 2, ... m) with q exclusive to different subsequent item-set qj, and then calculating the confidence
level by (8):

support(qj)

support(pji)
≥ mincon f (8)

when the inequality is satisfied, the rule “ pji → qi ”can be output. The improved algorithm flow is
shown in Figure 4. To show the advantages of the Improved algorithm more clearly, comparison
tabulation between ‘Improved Apriori Algorithm’ and ‘Apriori algorithm’ is given by Table 4.
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Table 4. Comparison between ‘Improved Apriori Algorithm’ and ‘Apriori algorithm’.

Comparison Item Search Method Item Restriction Time Cost

Apriori Algorithm Traverse the data set The preceding item and
subsequent item are unrestricted High

Improved Apriori
Algorithm

Search in the
appointed data set

The preceding item and
subsequent item are restricted Low

3.3. Modeling of the Correlation Analysis

Based on the algorithm above, the correlation analysis model of wind speed/voltage fluctuation
clusters and oscillation modes is established. The modeling process is shown in Figure 5.

In this paper, the data wind generating sets of is based on the sampling frequency of 4000 Hz,
including wind speed, grid-connected voltage and current information.

Firstly, the raw data is cleaned, and then the original data is clustered by K-Means cluster
algorithm to find out and eliminate the noise data. Then, the mean of the data before and after the
vacant is used to fill the empty data.

To study the influence of wind speed and voltage on the oscillation modes of wind generating
sets, the preprocessed data was firstly divided into segments according to the wind speed, and the
sectional flow chart is shown in Figure 6.
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Figure 6. Flowchart of data division by wind speed.

Original data is read and written into a data segment according to wind speed value in sampling
sequence. When wind speed change rate is more than 0.05 m/s, a new data segment is built and
used to record the subsequent data. This circulation is done until the final data segment is obtained.
The sampling point of each data segment is approximately 4000. The sampling data in the same data
segment is analyzed. Records can be extracted from each data segment time sequence, and act as the
input of correlation analysis. After the data is segmented according to wind speed, the mean of wind
speed in each segment is recorded in the corresponding record.

The voltage effective value is calculated according to the sliding window principle. The influence
of voltage fluctuation on the power oscillation modes is required to be observed, so in each data
segment, the difference between the maximum and the minimum of the three phase rms voltage is
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used as the indicator of the voltage fluctuations is shown in (9). Total voltage fluctuation takes the
average of three phase fluctuations as is shown in (10):

∆VA = VArmsmax −VArmsmin

∆VB = VBrmsmax −VBrmsmin

∆VC = VCrmsmax −VCrmsmin

(9)

∆V = (∆VA + ∆VB + ∆VC)/3 (10)

Thus, each data segment record stores a wind speed value, three phase voltage fluctuation
indicators, and a total voltage fluctuation value. In order to study the combined effects of these
factors, the data segments studied were clustered according to wind speed, ∆VA, ∆VB, ∆VC, and ∆V.
The clustering results are recorded in are the corresponding data segment. When k = 6, if a data
segment is clustered in cluster 1, the cluster tag of this data segment is [cluster 1, cluster 2, cluster 3,
cluster 4, cluster 5, cluster 6] = [1, 0, 0, 0, 0, 0].

Meanwhile, Prony analysis is performed on each data segment. The mode analysis results of the
small-signal model in the second part are used to filtrate oscillation frequency within a certain error
range and the filtering rules are shown in Table 3.

The oscillation mode tag data and the cluster tag data are summarized to be the input data of
correlation analysis. Then the association rules can be analyzed. Finally, the association rules can
be obtained.

4. Correlation Analysis between Wind Speed/Voltage Cluster and Oscillation Modes of Wind
Generating Sets

In this part, 807 data segments are chosen to be the sampling segments to select an optimal
clustering number. Association results using different k values are compared first and the optimal one
is chosen for further analysis.

4.1. Influence of Cluster Number k on Correlation Analysis Result

807 data segments are used as a sample to seek the optimal k value. The data segments are
clustered by different k values namely k = 6, k = 8, and k = 10. The clustering results are shown in
Figure 7 below.
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Figure 7. Clustering results with different k values. (a) k = 6; (b) k = 8; (c) k = 10.

When k = 6, it can be seen from Figure 7a that the 807 5-dimensional data points are divided
into six clusters. Cluster 1 is the black data point set in the graph, which has the characteristics of
3~5 m/s wind speed and 1.7~2.5 V total voltage fluctuation. Cluster 2 is the red data point set in the
figure, which has the characteristics of more than 3.5 m/s wind speed and 0~0.8 V voltage fluctuation.
Cluster 3 is the green data point set in the graph. This cluster has the characteristics of wind speed
greater than 5 m/s and the voltage fluctuation greater than 2 V. Cluster 4 is the dark blue data point
set in the picture, and it is also the most abundant cluster and is the state that occurs most often.
The wind speed of cluster 4 is 3.5~4.5 m/s, and the voltage fluctuation is normal 1~1.7 V. Cluster 5 is
the light blue data point set in the figure. The wind speed of the cluster is less than 3.5 m/s and the
voltage fluctuation is between 1~1.7 V. Cluster 6 is the red data point set in the graph. The cluster has
the characteristics of voltage fluctuation greater than 2.2 V and wind speed of 4~5.5 m/s. Therefore,
after clustering, data points with the same characteristics of wind speed and voltage fluctuation are
clustered into the same cluster.

When k = 8, as shown in Figure 7b, clusters 1, 3, and 6 in Figure 7a are subdivided into 4 clusters.
The cluster 4 and 5 in Figure 7a are subdivided into three clusters. And when k = 10, as is shown in
Figure 7c, the cluster 2 in Figure 7b is further subdivided into two clusters, clusters 2 and cluster 3
respectively. There are only three points in cluster 3, and the voltage fluctuation is less than 0.4 V, which
can be considered as the abnormal data point. These points are filtered out and ignored in subsequent
correlation analysis under minimal support condition. In addition, the cluster 9 in Figure 7b is further
subdivided into clusters 8 and 9 in Figure 7c, and the range of cluster 8 and 9 is intersected. The wind
speed, three-phase voltage fluctuation and total voltage fluctuation are considered in the clustering,
but the subdivision is not necessary in terms of the total voltage fluctuation and wind speed. Therefore,
nine clusters scene is likely to be the best case from the clustering result. The data is clustered again
with k = 9 and the clustering results are shown in Figure 8.
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Figure 8. The clustering result (k = 9).
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To further determine the optimal cluster number, a new comparison is made by comparing the
correlation analysis results of different k values namely k = 8, k = 9 and k = 10.

4.1.1. The Same Data Segment Correspondence

To study the effect of wind speed and voltage fluctuation on the oscillation frequency in the same
data segment, the cluster tag data is set as input and the oscillation mode tag in the same data segment
is the target. Different clustering numbers namely k = 8, k = 9 and k = 10 achieve different association
rules as is shown in Table 5.

Table 5. Association rules (the same data segment correspondence).

k No. Preceding Item Subsequent Item Support (%) Confidence (%)

8

1 0.1–1.8 Hz cluster 3 6.1958 42.0000
2 23 Hz cluster 4 18.0917 41.0959
3 45.37 Hz cluster 7 9.7893 39.2405
4 12.41 Hz cluster 3 6.1958 38.0000
5 45.37 Hz cluster 1 4.9566 37.5000
6 23 Hz cluster 8 42.2553 36.9501
7 45.37 Hz cluster 8 42.2553 36.6569
8 23 Hz cluster 3 6.1958 36.0000
9 0.1–1.8 Hz cluster 4 18.0917 34.9315

10 23 Hz cluster 7 9.7893 34.1772
11 0.1–1.8 Hz cluster 5 4.2131 32.3529
12 45.37 Hz cluster 5 4.2131 32.3529

9

1 0.1–1.8 Hz cluster 6 6.0719 42.8571
2 23 Hz cluster 5 20.4461 41.8182
3 45.37 Hz cluster 7 9.4176 40.7895
4 12.41 Hz cluster 6 6.0719 38.7755
5 45.37 Hz cluster 2 4.9566 37.5000
6 23 Hz cluster 7 9.4176 36.8421
7 45.37 Hz cluster 3 37.6704 35.8553
8 23 Hz cluster 3 37.6704 35.8553
9 23 Hz cluster 6 6.0719 34.6939

10 0.1–1.8 Hz cluster 5 20.4461 34.5455
11 45.37 Hz cluster 4 6.9393 33.9286
12 23 Hz cluster 4 6.9393 30.3571

10

1 45.37 Hz cluster 5 8.4263 42.6471
2 23 Hz cluster 1 20.4461 41.8182
3 45.37 Hz cluster 4 4.9566 37.5000
4 23 Hz cluster 5 8.4263 36.7647
5 0.1–1.8 Hz cluster 1 20.4461 34.5455

The threshold is adjusted so that the associated rules of output will have higher confidence
and support. The support value should not be set too large, or it will result in missing some strong
association rules. Therefore, a small support threshold is set at first, and the output rules are sorted by
confidence level. The rules with high confidence level are selected and the lowest support value among
them is chosen as the support threshold. And the confidence threshold can be set as the minimum
confidence value among the selected rules. After the adjusting, the minsup is set as 4, and minconf is
30. For comparison convenience, the main parameters of the rules with different k are presented in
Table 6, including the number of rules, minimum support and confidence, maximum support and
confidence, mean percentage of support and confidence, the standard deviation percentage of support
and confidence, and so on.
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Table 6. Statistics comparison of association rules with different k values (the same data segment
correspondence).

Comparison Item k = 8 k = 9 k = 10

Rule number 12 12 5
Minimum support 4.213% 4.957% 4.957%
Maximum support 42.255% 37.67% 20.446%

Average support (%) 14.3536 14.3432 12.5403
the standard deviation of support 13.8834 12.1143 7.3547

Mid-value of support 7.9926 8.1784 8.4263
Minimum confidence 32.353% 30.357% 34.545%
Maximum confidence 42.0% 42.857% 42.647%

Average confidence (%) 36.7715 36.9848 38.6551
standard deviation of confidence 3.0745 3.6034 3.4546

Mid-value of confidence 36.8035 36.3487 37.5000

From the view of the rule number, both k = 8 and k = 9 can produce 12 rules, involving the
relationship between multiple frequency components and speed as well as voltage. When the cluster
number is 10, there are only five rules, and these five rules only involve three frequency components.
Therefore, k = 10 is excluded. Then k = 8 and k = 9 are compared. From the perspective of the support
level, their statistical indicators are very close, and their standard deviations are large too which means
both of them are not centralized. From the point of confidence level, compared with k = 8, k = 9 has
smaller minimum confidence, almost the same maximum confidence and a larger standard deviation.
This indicates that considering rules with a confidence level, k = 9 has a higher confidence level than k
= 8. Hence, k = 9 brings higher quality association rules.

4.1.2. The Adjacent Data Segments Correspondence (for Prediction)

When studying the factor influence of the previous data segment on the oscillation mode of the
next data segment, the target data becomes the oscillation modes in the next segment. Input data is
still the cluster tag. Like the analysis of the same segment, correlation analysis is done under different
clustering numbers, namely k = 8, k = 9 and k = 10. After adjusting, the minsup is set as 6, and the
minconf is 29. Results are shown in Table 7.

Table 7. Association rules (the adjacent data segments correspondence).

k No. Preceding Item Subsequent Item Support (%) Confidence (%)

8

1 45.37 Hz cluster 4 & cluster 8 4.71464 47.3684
2 12.41 Hz cluster 4 & cluster 8 4.71464 42.1053
3 23 Hz cluster 4 & cluster 8 4.71464 42.1053
4 23 Hz cluster 4 18.1141 37.6712
5 23 Hz cluster 8 42.1836 37.0588
6 45.37 Hz cluster 8 42.1836 36.4706
7 45.37 Hz cluster 4 18.1141 35.6164
8 23 Hz cluster 7 9.8015 35.4430
9 45.37 Hz cluster 1 4.9628 35
10 45.37 Hz cluster 7 9.8015 32.9114
11 45.37 Hz cluster 5 4.2184 32.3529
12 23 Hz cluster 5 4.21836 32.3529
13 45.37 Hz cluster 3 6.2035 32
14 23 Hz cluster 3 6.2035 32
15 12.41 Hz cluster 6 10.67 31.3953
16 23 Hz cluster 1 4.9628 30
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Table 7. Cont.

k No. Preceding Item Subsequent Item Support (%) Confidence (%)

9

1 23 Hz cluster 5 20.4715 38.7879
2 23 Hz cluster 3 37.7171 38.1579
3 23 Hz cluster 7 9.4293 36.8421
4 45.37 Hz cluster 4 6.9479 35.7143
5 45.37 Hz cluster 2 4.9628 35
6 45.37 Hz cluster 5 20.4715 33.9394
7 45.37 Hz cluster 7 9.4293 32.8947
8 23 Hz cluster 6 6.0794 32.6531
9 45.37 Hz cluster 3 37.7171 32.5658
10 12.41 Hz cluster 1 10.6700 31.3953
11 45.37 Hz cluster 6 6.0794 30.6122
12 12.41 Hz cluster 5 20.4715 30.3030
13 23 Hz cluster 2 4.9628 30

10

1 23 Hz cluster 1 20.4715 38.7879
2 23 Hz cluster 5 8.43672 38.2353
3 45.37 Hz cluster 4 4.9628 35
4 45.37 Hz cluster 1 20.4715 33.9394
5 45.37 Hz cluster 5 8.4367 33.8235
6 12.41 Hz cluster 1 20.4715 30.3030
7 12.41 Hz cluster 6 10.6700 30.2326
8 23 Hz cluster 4 4.9628 30

The same comparison is given in Table 8.

Table 8. Statistics comparison of association rules with different k values (the adjacent data segments
correspondence).

Comparison Item k = 8 k = 9 k = 10

Rule number 16 13 8
Minimum support 4.218% 4.963% 4.963%
Maximum support 42.184% 37.717% 20.471%

Average support (%) 12.2364 15.0315 12.3604
the standard deviation of support 12.5273 11.6484 6.9741

Mid-value of support 6.2035 9.4293 9.5533
Minimum confidence 30.0% 30.0% 30.0%
Maximum confidence 47.368% 38.788% 38.788%

Average confidence (%) 35.7407 33.7589 33.7902
the standard deviation of confidence 4.7163 2.9510 3.4930

Mid-value of confidence 35.2215 32.8947 33.8815

From the view of rule number, k = 10 produces the least number of rules and can be excluded;
k = 8 can generate 16 rules, where the first three rules both have the previous item with two Clusters;
k = 9 produces 13 association rules, less than k = 8, and the statistics of the rule confidence are all less
than k = 8. Therefore, in the adjacent segment analysis, k = 8 brings higher quality association rules.

4.2. Association Rule Analysis of Wind Speed/Voltage Cluster And Oscillation Modes

Further analysis of the association rules between wind speed/voltage clusters and oscillation
modes of wind generating sets is carried out with 1500 data segments. According to the analysis in
Section 4.1.1, k = 9 is taken. The clustering results are shown in Figure 9.
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Figure 9. The clustering result with 1500 data segments (k = 9).

The clustering result is basically consistent with 807 points. The cluster center parameters of these
nine clusters are shown in Table 9. The clustering center will affect the result of clustering. In the
subsequent analysis with more data segments, the initial values of the cluster center should be set
consistently to achieve the same clustering effect.

Table 9. Cluster center (k = 9).

Cluster Wind Speed V-A V-B V-C Voltage Fluctuation

cluster 1 5.3710 2.2746 2.1476 2.1994 2.2072
cluster 2 4.1656 0.4119 0.3693 0.4125 0.3979
cluster 3 5.0864 2.7239 2.5004 2.5306 2.5850
cluster 4 2.1246 1.3252 1.2975 1.3173 1.3133
cluster 5 4.0849 1.1553 1.1468 1.1374 1.1465
cluster 6 4.4625 2.2289 2.1224 2.1684 2.1732
cluster 7 4.3226 1.4596 1.4068 1.4241 1.4302
cluster 8 3.2341 1.4214 1.3658 1.3975 1.3949
cluster 9 6.1592 2.4109 2.3131 2.3499 2.3580

The clustering results are transformed into tag data, and the final association input data is obtained.
After the Apriori correlation analysis, the association rules are achieved and are shown in Table 10.

Table 10. Association rules of 1500 data segments.

No. Preceding Item Subsequent Item Support (%) Confidence (%)

1 45.37 Hz cluster 9 8.1142 41.6667
2 12.41 Hz cluster 3 6.7618 41.1111
3 45.37 Hz cluster 8 15.9279 40.0943
4 0.1–1.8 Hz cluster 3 6.7618 36.6667
5 23 Hz cluster 7 15.7776 35.7143
6 45.37 Hz cluster 5 24.1172 35.2025
7 23 Hz cluster 5 24.1172 34.5794
8 23 Hz cluster 3 6.7618 34.4444
9 23 Hz cluster 6 8.6401 33.9130
10 45.37 Hz cluster 6 8.6401 33.0435
11 45.37 Hz cluster 1 13.7491 32.2404
12 23 Hz cluster 1 13.7491 30.6011
13 23 Hz cluster 9 8.1142 30.5556
14 45.37 Hz cluster 7 15.7776 30.4762
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As Table 10 indicates, the association rules are mainly concentrated in the three modes: 45.37 Hz,
23 Hz and 12.41 Hz. In the correlation analysis results, there is no association rule of 1.92 Hz, 79 Hz
and 4.37 Hz. It shows that in the output power of the wind generating sets, the oscillation components
of these three frequencies occupy less.

Among the 14 association rules, rule “cluster 9→45.37 Hz” has the maximum confidence level
which is 41.67%. According to the clustering results, the “cluster 9” has the characteristics of
5.5~6.75 m/s wind speed and 2.0~2.6 V voltage fluctuation. This rule indicates that the wind speed and
voltage fluctuation cluster will rapidly cause the 45.37 Hz frequency component, and the probability of
occurrence is over 40%. The confidence level of the rule “cluster 3→12.41 Hz” ranks the second, 41.11%.
The clustering results show that the “cluster 3” has the characteristics of high voltage fluctuation
and 4~5.75 m/s wind speed. The rule states that such a combination will quickly lead to a 12.41 Hz
frequency component, and the probability of occurrence is over 40%. The confidence level of the rule
“cluster 8→45.37 Hz” also reaches over 40%. According to the clustering results, the “cluster 8” has
the characteristics of 1~1.8 m/s voltage fluctuation and the 2.5~3.5m/s wind speed. The rule states
that such a combination will quickly cause the 45.37 Hz frequency component, and the probability of
occurrence is up to 40%. Meanwhile, the rules with anterior “cluster 4” with the characteristics of the
wind speed less than 2.5 m/s, voltage fluctuation among 1~1.6 m/s never show up in the result.

4.3. Prediction of Oscillation Mode Based on the Apriori Algorithm

To predict the oscillation mode, input becomes the combination of the clustering tag data in the
previous data segment corresponding to the oscillation frequency tag segment in the next. 1500 data
segments are taken for analysis. According to the above analysis in 4.1.2, k is given the value of 8,
and the clustering result is shown in Figure 10.
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Figure 10. Clustering result with 1500 data segments (k = 8).

The clustering result is consistent with 807 points. Among all the clusters, cluster 2 is the
largest and cluster 4 is the smallest, which is different from the result in part A above because
different cluster centers are selected. When cluster centers are chosen like Figure 10, the elements of
cluster 4 can be considered as outliers and will be ignored by the minimum support condition in the
correlation analysis.

The cluster center parameters of these 8 clusters are shown in Table 11. In this part, the cluster
center will affect the result of the cluster which means it also affects the final mode judgment. Therefore,
when the association rules are applied to oscillation mode prediction, initial values of the cluster center
must be consistent with the training condition to achieve the same clustering effect.
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Table 11. Cluster center (k = 8).

Cluster Wind Speed V-A V-B V-C Voltage Fluctuation

cluster 1 2.42045 2.28851 2.30949 2.33949 6.04808
cluster 2 1.25799 1.23799 1.23884 1.24494 4.14762
cluster 3 2.24225 2.14732 2.20835 2.19931 5.17199
cluster 4 0.26148 0.2329 0.27851 0.25763 5.67557
cluster 5 2.68967 2.48604 2.52175 2.56582 4.97684
cluster 6 1.38416 1.33245 1.36456 1.36039 2.92717
cluster 7 2.00854 1.87115 1.91066 1.93011 4.14033
cluster 8 0.46793 0.41485 0.44918 0.44399 3.90241
cluster 9 2.42045 2.28851 2.30949 2.33949 6.04808

The clustering result is tag-converted to obtain the final associated input data. After correlation
analysis, the association rules are shown in Table 12.

Table 12. Association rules of 1500 data segments (the adjacent data segments correspondence).

No. Preceding Item Subsequent Item Support (%) Confidence (%)

1 45.37 Hz cluster 8 15.9398 41.5094
2 23 Hz cluster 5 24.1353 37.3832
3 45.37 Hz cluster 5 24.1353 34.2679
4 45.37 Hz cluster 6 8.6466 33.9130
5 23 Hz cluster 6 8.6466 33.9130
6 23 Hz cluster 7 15.7895 33.8095
7 12.41 Hz cluster 1 13.7594 32.7869
8 23 Hz cluster 1 13.7594 30.6011
9 12.41 Hz cluster 7 15.7895 30.4762
10 23 Hz cluster 3 6.6917 30.3371
11 45.37 Hz cluster 7 15.7895 29.5238

From the results in Table 12, the wind speed and voltage fluctuation of the previous data
segment mainly affect partial oscillation modes of the next data segment, including 45.37 Hz, 23 Hz,
and 12.41 Hz. As the same with the result in the same data segment analysis, the wind speed and
voltage fluctuation of the previous data segment are irrespective with mode 1.92 Hz, 79 Hz, and 4.37 Hz
of the next data segment. Different from the same data segment analysis result, the association between
the wind speed and voltage of the previous data segment and the low-frequency oscillation mode
of the next data segment is weakened, indicating that the two factors have less influence on the
low-frequency oscillation mode of the next data segment.

The support degree is related to the number of clusters, so we use it only as a threshold for
rule screening. The analysis of rules mainly depends on the confidence level. Among all the rules,
rule “cluster 8→45.37 Hz” has the highest confidence level of 41.5%.

As can be seen from Figure 10, the wind speed of the cluster 8 is between 3.2 m/s and 4.5 m/s,
and the voltage fluctuation is low. Meanwhile, the mode 45.37 Hz is a SSCI mode, which means
the controller acts to stable the output power but at the same time interacts with the fixed series
compensation, resulting in the SSCI mode in the next data segment.

Then, 200 data segments are selected to predict the three modes of 45.37 Hz, 23 Hz, and 12.41 Hz.
These 200 points are clustered in the same cluster center of Table 10. Most of these points belong
to clusters 2, 3, 6, and 7. Rules 4, 5, 6 and 9, 10, 11 can be extracted from Table 11 as the oscillation
mode prediction result, namely “cluster 6→45.37 Hz”, “cluster 6→23 Hz”, “clustering” 7→23Hz”,
“cluster 7→12.41Hz”, “cluster 3→23Hz”, “cluster 7→45.37 Hz”. The confidence levels of these six
rules are taken as the predicted value, which means that when the previous item occurs, the occurrence
probability of the latter item is the corresponding confidence value. Prony analysis is performed on the
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actual power curve of the 200 data segments to obtain the actual oscillation modes. The actual value is
the segment number percentage. Statistical prediction errors are obtained in Table 13.

Table 13. Confidence level analysis of prediction and reality.

No. Preceding Item Subsequent Item Predict Confidence (%) Actual Confidence (%) Error

1 23 Hz cluster 6 33.91 38.98 5.07
2 45.37 Hz cluster 7 29.52 36.97 7.45
3 23 Hz cluster 3 30.34 33.33 2.99
4 45.37 Hz cluster 6 33.91 32.20 −1.71
5 23 Hz cluster 7 33.81 28.57 −5.24
6 12.41 Hz cluster 7 30.48 26.89 −3.59

Figure 11 is a line graph comparing the confidence level of predicted results and practical results.
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From the prediction results, the maximum confidence level error between the predicted value
and the actual value does not exceed 8%, and the association rules related to the clustering results of
200 predicted data segments are all confirmed, indicating that prediction rules obtained by training
1500 data segments are already highly credible. Among them, the rule “cluster 6→45.37 Hz” has the
smallest error, which means the probability that the wind speed/voltage combination of cluster 6
induces the 45.37 Hz mode is very close to 0.3391; the rule “cluster 7→45.37 Hz” has the largest error,
indicating that the probability that the wind speed/voltage combination of the cluster 7 induces the
45.37 Hz mode is around 0.2952. The prediction and actual confidence percentage here are statistical
values. As the sample size increases, the statistical value will be close to the probability value, and the
prediction result will have higher credibility.

5. Conclusions

In this paper, association analyzing model of correlation between wind speed/voltage fluctuation
clusters and oscillation modes is established. The traditional power signal processing method is
combined with a data mining algorithm to mine association rules between the oscillation modes and
main influencing factors, using metered data of wind generating sets. The conclusions are as follows.

• The association rules between clusters and oscillation modes can be obtained by analyzing the
metered data via improved Apriori algorithm. The rules are denoted by “Wind speed/voltage
fluctuation clustering→oscillation mode”. The higher the confidence level of an association rule
is, the greater the probability of corresponding oscillation modes occurrence is.

• In association rule analysis, support level does not need to be set too high. Low support and
high confidence can reflect the strong correlation between a cluster and the corresponding mode.
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Even when the cluster contains few elements, it is also easy to cause the corresponding oscillation
mode in the power.

• Wind speed/voltage fluctuation cluster number has a great influence on association rules. Optimal
cluster number corresponds to highest support and confidence level. The results of correlation
analysis show that different clusters can lead to different oscillation components, and large voltage
fluctuation may quickly induce SSCI component in power.

• The association rule of adjacent data segments can be used to predict the oscillating mode of the
wind generating sets. The error between the prediction result and the actual situation is small,
indicating that the confidence level is very close to the probability value. As the sample capacity
increases, the statistical value will be close to the probability value, and the prediction result will
be more credible.

Based on the result, it is possible to directly judge whether there is an oscillation mode under
the corresponding conditions directly from the clustering category of voltage fluctuation and wind
speed, which provides convenience for the monitor of the wind farm. Besides, the proposed correlation
analysis model is also universal and can also be used to analyze oscillation problems of other
systems, or harmonic problems, which means the model has a certain reference value for the scientific
community too.
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Nomenclature

DFIG Doubly-fed Induction Generator
SSR Sub-Synchronous Resonance
SSO Sub-Synchronous Oscillation
SSTI Sub-Synchronous Torque Interaction
SSCI Sub-Synchronous Control Interaction
DC Direct Current
SVPWM Space Vector Pulse Width Modulation
Subscript s The mark of stator side parameter
Subscript r The mark of rotor side parameter
Subscript g The mark of grid side parameter
Subscript d The mark of d axis parameter
Subscript q The mark of q axis parameter
Confidence The confidence level in the Apriori algorithm
Support The support level in the Apriori algorithm
Cluster i i = 1, 2, 3, . . . The ith cluster in the k-means result
minsup The minimum support in the Apriori algorithm
minconf The minimum confidence in the Apriori algorithm
Ai w The amplitude
αi dimensionless The attenuation factor
fi Hz The frequency
ϕi rad The initial phase angle of the ith fitting component
p 1 The component number of fitting functions
N 1 The number of fitting points
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pj The jth frequent preceding item-set
pji The ith subset of the jth frequent preceding item-set
qj The jth subsequent item-set corresponding to Pj
∆VA V The voltage fluctuation of phase A
VArmsmax V The minimum rms voltage of phase A
VArmsmin V The minimum rms voltage of phase A
∆V V The total voltage fluctuation
k (in Section 4) The cluster number
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