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Abstract: Dissolved gas analysis (DGA) of the oil allows transformer fault diagnosis and status
monitoring. Fuzzy c-means (FCM) clustering is an effective pattern recognition method, but exhibits
poor clustering accuracy for dissolved gas data and usually fails to subsequently correctly classify
transformer faults. The existing feasible approach involves combination of the FCM clustering
algorithm with other intelligent algorithms, such as neural networks and support vector machines.
This method enables good classification; however, the algorithm complexity is greatly increased.
In this paper, the FCM clustering algorithm itself is improved and clustering analysis of DGA data
is realized. First, the non-monotonicity of the traditional clustering membership function with
respect to the sample distance and its several local extrema are discussed, which mainly explain the
poor classification accuracy of DGA data clustering. Then, an exponential form of the membership
function is proposed to obtain monotony with respect to distance, thereby improving the dissolved
gas data clustering. Likewise, a similarity function to determine the degree of membership is derived.
Test results for large datasets show that the improved clustering algorithm can be successfully applied
for DGA-data-based transformer fault detection.

Keywords: fuzzy c-means clustering; dissolved gas analysis; membership function; degree of
membership; similarity measurement; transformer fault

1. Introduction

In power systems, gas chromatography is widely used to detect mineral-oil-immersed transformer
insulation defects, allowing timely discovery of different latent faults in preventive tests of electric
equipment [1–6]. Specifically, dissolved gas analysis (DGA) is the most common method of transformer
fault diagnosis. Since the role of dissolved gases in determining the behavior of mineral insulating oils
was first discussed in 1933 [1], various methods of dissolved gas interpretation have been proposed,
including the Doernenburg ratio method, the International Electrotechnical Commission (IEC) ratio
method, the key gas method, Duval triangles, Duval pentagons, and the Mansour pentagon [2,3].
These conventional methods have gained worldwide acceptance among electrical utility companies
as the main fault diagnosis methods for transformers. However, because of the objective uncertainty
regarding the cause-and-effect relationship of transformer faults themselves, as well as the uncertainty
of the subjective judgment boundary of the test data, it is difficult for the above conventional methods
to meet the requirements for engineering applications [4,5].

With technological development, considerable progress has been made with regard to intelligent
approaches towards dissolved gas data interpretation, with application of theories such as expert
systems [6–8], artificial neural networks [9–11], fuzzy theory [12–15], rough set theory [16], grey system
theory [17,18], and support vector machines [19,20]. Other intelligent diagnosis tools [21] such as
swarm intelligence algorithms, wavelet analysis, Bayesian networks, and the evidential reasoning
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approach have also been introduced to DGA interpretation research. These intelligent methods
partially compensate for the deficiencies of the conventional methods and provide new techniques
for transformer fault diagnosis. In particular, fuzzy clustering algorithms are integral components of
artificial intelligence, being unsupervised classification algorithms with a wide range of applications
in areas such as data mining and pattern recognition [22]. The primitive principle behind these
algorithms is that “birds of a feather flock together.” That is, similarities exist between the same
fault datasets inside the transformer, and DGA data processing with unsupervised fuzzy clustering
algorithms is promising. However, these algorithms have relatively low fault diagnosis accuracy when
processing DGA data, and the outcomes are sensitive to the initial values. Hence, different initial
values often yield different results and unsatisfactory evaluations. Since the development of the fuzzy
c-means (FCM) algorithm in 1973 [23,24], numerous FCM variants have been proposed, including
the possibilistic c-means algorithm [25], the possibilistic FCM clustering algorithm [26,27], the kernel
clustering algorithm [28], and the generalized entropy-based clustering algorithm [29]. All these
FCM-based algorithms use the norm d to describe the distance between the sample and cluster
center, and the reciprocal distance to characterize sample membership of a class. However, different
clustering results are obtained for different iteration starting points on the same dataset. Further, test
sample datasets for different faults are always divided into the same subclass. These defects limit the
application of fuzzy clustering algorithms.

Based on the transformer fault characteristics of dissolved gases, this article proposes an improved
FCM clustering algorithm to analyze and investigate transformer fault diagnosis using dissolved
gas data. The improved algorithm has reduced sensitivity to initial values, allowing application
of this algorithm for successful DGA data processing. Further, the proposed formulation can be
straightforwardly applied in the context of the other FCM-based clustering techniques mentioned
above. The remainder of this paper is organized as follows: the DGA data clustering process
is discussed in Section 2. Section 3 describes the non-monotonicity of the traditional clustering
membership function. In addition, an exponential form of the membership function is proposed.
Then, Section 4 reports a detailed verification of the effectiveness of the proposed algorithm.

2. FCM Clustering of DGA Data

The internal structure of an oil-filled power transformer is highly complex, and has temporally
and spatially varying electrical and thermal field distributions. Under normal operation, the insulating
oil and solid insulating materials deteriorate at different rates with increased operation time under
catalysis of copper, iron, and other materials, as well as the actions of the electric field, thermal field,
moisture, and oxygen. Besides some non-gaseous deteriorating products, small amounts of hydrogen
(H2), low-molecular-weight hydrocarbons, and carbon oxides are produced over time. Then, inceptive
faults in oil-filled equipment produce increasing amounts of gases, the accumulation of which gradually
becomes apparent. In fact, the gases accumulate in the oil and are continuously dissolved by convection
and diffusion until they saturate and form bubbles. The processes of gas production and dissolution
in insulating oil are also complex. Nevertheless, some gases allow determination of internal faults in
oil-filled equipment, including H2, methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2),
carbon monoxide (CO), and carbon dioxide (CO2). The concentrations of these gases are closely related
to the type and severity of the fault. Hence, DGA data can be processed using the unsupervised FCM
clustering algorithm, which classifies DGA data samples by distance and aims to discriminate different
types of faults by increasing their separability.

Fuzzy clustering algorithms treat clustering as a constrained optimization problem and determine
the fuzzy partition of the dataset as the solution. Fuzzy clustering optimally classifies DGA data
samples through an iterative objective function that can be the square sum of the weighted error within
the class, i.e.,:

J(U, V) =
n

∑
i=1

c

∑
j=1

(µij)
m(dij)

2, m ∈ [1, ∞)
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where U = [µij]c×n ∈ M f c is the fuzzy partition matrix; V = {v1, v2, · · · , vc} represents the c fault
cluster center vectors, vj = (vj1, vj2, · · · , vjm) ∈ Rm; dij = ‖xi − vj‖ is the Euclidean distance between
DGA data sample xi and cluster center vj; and m is a weight index. The clustering criterion is the

minimum value of J(U,V), and the constraint of this extreme value is
c
∑

j=1
µij = 1.

The abovementioned optimization problem can be solved using the method of Lagrange
multipliers, and the iterative formula of the FCM clustering algorithm is obtained as

µij =
1

c
∑

k=1
(

dij
dik
)

2
m−1

, 1 ≤ j ≤ c, 1 ≤ i ≤ n, (1)

vj =

n
∑

i=1
(µij)

mxi

n
∑

i=1
(µij)

m
, 1 ≤ j ≤ c. (2)

The FCM clustering algorithm can process DGA data, where the components of sample xk are
the concentrations of various dissolved gases (such as those mentioned above) in the oil. The basic
algorithm consists of the following steps:

(1) Normalize and preprocess the DGA data.
(2) Select the initial cluster center, V(0).
(3) Calculate the initial membership matrix, U(0).
(4) Calculate the cluster centers Vj(L + 1), where L represents the iteration number:

Vj(L + 1) =

N
∑

i=1
[µij(L)]mXi

N
∑

i=1
[µij(L)]m

, j = 1, 2, . . . , K.

(5) Calculate the membership matrix, U(L + 1), with elements given by

µij(L + 1) =
1

c
∑

k=1
(

dij(L+1)
dik(L+1) )

2/(m−1)
,

where i = 1, 2, . . . , N, j = 1, 2, . . . , c, m ≥ 2, and dij is the distance from the ith sample to the jth
cluster center.

(6) Repeat steps (4) and (5) until the convergence criterion is met. The convergence criterion is
max

i,j
{
∣∣µij(L + 1)− µij(L)

∣∣} ≤ ε, where ε is a predefined threshold.

3. Improved FCM Clustering Algorithm

3.1. Local Extremum Problem of (Conventional) Membership Function

The following equations hold:

pij = (1/dij)
2

m−1 , (3)

uij =
pij

c
∑

k=1
pik

=
(1/dij)

2
m−1

c
∑

k=1
(1/dik)

2
m−1

, (4)



Energies 2018, 11, 2344 4 of 17

where pij is the similarity between sample xi and cluster center vj, and uij represents the degree of
membership of the sample to the cluster. Use of Equation (3) to describe the similarity between the
sample and cluster center yields extremely high values as the sample approaches the cluster center,
i.e., as dij approaches zero. Likewise, pij decreases rapidly as the samples separate from the cluster
center, as shown in Figure 1a. Moreover, the membership function uij in Equation (4) has many local
extrema, as shown in Figure 1b. In Figure 1, X = {x1, x2, · · · , xi, · · · }, xi ∈ [0, 1.5], and m = 2.
Overall, the membership function of the original FCM clustering algorithm has several local extrema
and the cluster space is irregular.
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Figure 1. Fuzzy c-means (FCM) clustering algorithm for one-dimensional data: (a) similarity and
(b) membership functions.

Consider the red line in Figure 1b, which represents the membership function for the cluster center
at 0.6. The function does not monotonically decrease as the data samples become more distant from
the center. In fact, two minima appear at 0.3 and 0.9, affecting the function monotonicity. The same
behavior can be seen for the blue and green lines in Figure 1b (for cluster centers at 0.3 and 0.9,
respectively). Hence, for some data samples xm and xn, as well as cluster center vp, the situation
that dmp > dnp with ump > unp can arise. Furthermore, as the FCM clustering optimization essentially
corresponds to the hill-climbing technique for local searching, the existence of local extrema can yield
different clusters depending on the initial values of the search process.

In the abovementioned problem, the one-dimensional case of FCM clustering is analyzed.
Therefore, it is reasonable to believe that the non-monotonicity of the membership function is more
severe for high-dimensional data. Likewise, as transformer oil chromatography usually considers
five-dimensional datasets containing H2, CH4, C2H6, C2H4, and C2H2 content measurements, the local
extrema and non-monotonicity of the membership function can cause low accuracy for transformer
fault diagnosis when FCM clustering is used for DGA data processing.

3.2. Exponential Membership Function

Based on the local extremum problem, novel similarity and membership functions are proposed
in this paper, with the former being expressed as:

pij = e−γd2
ij = e−γ(xi−vj)

2
(5)

and the latter as:

uij =
pij

c
∑

k=1
pik

=
e−γ(xi−vj)

2

c
∑

k=1
e−γ(xi−vk)

2
. (6)
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Here, pij represents the similarity between sample xi and cluster center vj, uij represents the degree
of membership of the sample to the cluster, and γ is a factor that adjusts the sensitivity of the similarity
function. The proposed similarity and membership functions are illustrated in Figure 2a,b, respectively.
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Figure 2. Proposed FCM clustering algorithm for one-dimensional data: (a) similarity and
(b) membership functions.

Comparing Figure 2 to Figure 1, it is apparent that the improved similarity function
(Figure 2a) is smooth, unlike the traditional function (Figure 1a) which exhibits asymptotic points.
Likewise, the improved membership function (Figure 2b) does not exhibit local minima, and the
degree of membership monotonously decreases with distance between the samples and any cluster
center. In fact, the improved membership function smoothly divides the cluster space into three classes,
as shown in Figure 2b.

Figures 3 and 4 show the two-dimensional data membership obtained with the transitional and
improved FCM, respectively. Similar to Figures 1 and 2, the membership function shown in Figure 3b
has many local minima, and the spatial structure of the division is complex. The newly proposed
membership function in Figure 4b has no local extremum, which clearly reflects the membership of
the three classes on the two-dimensional plane. The improved membership function has superior
mathematical properties, which is beneficial to the clustering algorithm classification.
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Figure 3. Two-dimensional dataset with three centers (traditional FCM): (a) similarity function;
(b) membership function.
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Figure 4. Two-dimensional dataset with three centers (improved FCM): (a) similarity function;
(b) membership function.

3.3. Sub-Similarity Function

In FCM clustering, the distance between data samples and cluster centers is measured by the
vector norm ‖xi − vj‖2. Hence, information on dimensions with small values can be uncovered
using that for dimensions showing relatively high values. In addition, DGA usually considers the
Euclidean distance:

dij =
√

∆2(H2) + ∆2(CH4) + ∆2(C2H6) + ∆2(C2H4) + ∆2(C2H2), (7)

where ∆(ψ) represents the gas numerical difference xi(ψ)− xj(ψ) between the DGA data samples xi
and xj. Given the large differences in the H2, CH4, C2H6, C2H4, and C2H2 contents, the contribution of
the gases with small concentrations to the distance calculation is negligible, resulting in loss of DGA
information. For instance, the H2 content is considerably larger than that of the other gases; thus,
the sample membership of each class is mainly determined by the H2 content, with the concentrations
of gases such as C2H6 and C2H4 being disregarded.

Furthermore, different gases generally exhibit different features in DGA. For instance, simulations
and several field tests [4] have shown that C2H2, H2, and C2H4 allow characterizing discharge,
partial discharge, and overheating failures, respectively. However, the contribution of the
low-concentration gases is disregarded in Equation (7); thus, proper fault characterization is hindered.
Therefore, the following method to calculate the degree of membership is proposed in this paper.
First, for DGA data sample xi and cluster center vj, the sub-similarity pijk is calculated for each kth
gas, where:

pijk = e−γd2
ijk = e−γ(xik−vjk)

2
. (8)

Then, the similarity:

pij =
q

∏
k=1

pijk (9)

is calculated. Finally, the degree of membership of sample xi to the cluster with center vj is calculated from:

uij =
pij

c
∑

k=1
pik

. (10)

By introducing the sub-similarity function, pijk, the contribution of each gas can be suitably
represented for different faults, and addition and subtraction of different gas concentrations can be
avoided. Therefore, the membership function reflects the physical characteristics of the different gases
more clearly.
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3.4. Flow of Improved FCM Clustering Algorithm

The improved FCM clustering algorithm is expressed as follows:

(1) Initialize dataset X.
(2) Select initial cluster center U.
(3) Calculate cluster center V(L + 1) and membership matrix U(L + 1) iteratively using Equations (2)

and (10), respectively.
(4) When the iteration accuracy is within the predefined threshold, stop the iterative process and

retrieve the clustering results.

4. Application Example

4.1. Clustering of University of California, Irvine (UCI) Iris Dataset

The UCI Iris Dataset is a widely used database in the pattern recognition literature [30–34], and is
used to validate the improved clustering algorithm in this paper. The dataset contains three classes of
50 instances each, where each class refers to a type of iris plant; namely, setosa, versicolor, and virginica.
Each iris plant has four attributes: its sepal length, sepal width, petal length, and petal width in centimeters.
The dataset is collected in the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) [35].
The conventional and improved FCM algorithms were tested 100 times with clustering of 100 sets of
initial point pairs randomly selected from the 150 iris data elements. The convergence criterion was
max(∆U, ∆V) < 10−3 and the fuzzy exponent m = 2. The clustering results are listed in Table 1.

Table 1. Iris cluster results obtained with conventional and improved FCM.

Accuracy Rate Number of Misclassifications Partition Coefficient Separation Entropy Iterations *

Conventional FCM 89.33% 16 0.783 0.40 7/16.5/47
Improved FCM 94.67% 8 0.954 0.074 6/16.6/28

* The values indicate the minimum/average/maximum number of iterations required to determine the clusters.

The improved FCM algorithm successfully divided the iris plant data into three classes with a
high accuracy rate. The conventional FCM misclassified 16 data elements, numbered 51, 53, 78, 102, 107,
114, 120, 122, 124, 127, 128, 134, 139, 143, 147, and 150. After improvement, eight of these data elements
(51, 53, 102, 114, 134, 143, 147, and 150) were correctly clustered, and the accuracy rate increased
to 94.67%. The improved clustering algorithm achieved superior performance, a larger partition
coefficient, and smaller separation entropy, as apparent from Table 1. This application shows that the
improved clustering algorithm successfully achieves classification and exhibits superior performance
to the traditional technique.

4.2. Verification Process for DGA Data

Based on data available from different sources [2–4], a large amount of transformer DGA data was
compiled to validate the method proposed in this article. Note that the faults in large-scale oil-filled
power transformers are diverse and involve different levels of complexity. Therefore, the IEC has
divided these faults into six categories: low-, middle-, and high-temperature failures, and partial,
spark, and arc discharges. These six faults were contained in the considered DGA data, and each data
element xi had five attributes; namely, the H2, CH4, C2H6, C2H4, and C2H2 content (unit: µL/L).

Ten data for each of the six faults were selected from the collected DGA data and the dataset
X = {x1, · · · , x60} was obtained. Further, six samples were randomly selected from the dataset
as initial clustering values. A total of 10,000 sets of initial data points for clustering were selected.
In addition, the clustering convergence was set to 10−3, where the convergence of each cluster was
defined by the difference in the center of each cluster for two consecutive iterations.

http://archive.ics.uci.edu/ml
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In this study, the performance of the FCM clustering algorithm was verified before and after
the proposed improvement for DGA data processing. The verification process for both algorithms is
summarized as follows:

(1) Initialize DGA dataset X by calculating the proportion of gases related to the various faults. The H2

content in the DGA is usually large. During the initialization process, the percentage of H2 to H2 and
hydrocarbons, and the percentage of each hydrocarbon to the total hydrocarbons, are calculated.

(2) Select six DGA data samples to be classified as the starting points for cluster analysis.
(3) Use the (original or improved) FCM clustering algorithm to classify the DGA data, and divide

the dataset into six classes.
(4) Determine the fault type that each class represents using statistics, as follows. Determine the

number of samples belonging to each fault type in classified subset X. The fault type associated
with the largest number of samples defines the subset class. For instance, subset X represents arc
discharge if the subset contains more samples classified as this fault type.

(5) Validate the classification with the condition that no subset should be assigned to two fault types,
and no fault type should be represented by two different subsets; i.e., the subsets and fault types
must form a bijective mapping for the classification process to be considered valid.

(6) Statistically analyze the algorithm accuracy.

4.3. Verification Results

Overall, the verification test showed that the traditional FCM clustering algorithm did not
achieve suitable clustering. Specifically, the clustering process either yielded overlapping clusters or
assigned two fault types to the same subset. Despite invalid clustering of some initial values, however,
the proposed FCM clustering algorithm could effectively classify the DGA data for most initial values
and discriminate between the six types of transformer fault. In the following, the detailed quantitative
results for each algorithm are presented.

4.3.1. Improved FCM Clustering Algorithm

Six patterns (labeled A–F) were obtained from the 10,000 sets of initial data points for clustering
using the improved FCM clustering algorithm. One of the six patterns (pattern A) returned a valid
result according to the verification process described in Section 4.2. The cluster centers of the gases
according to the six fault types for the six patterns are listed in Table 2. Note that the H2 value is
expressed as the percentage of H2 relative to the total gas concentration, whereas the other gas values
are expressed as the percentage of their concentrations relative to the total hydrocarbon concentration.

Table 2. Cluster centers obtained from dissolved gas analysis (DGA) data using proposed FCM
clustering algorithm.

Pattern A (Valid)

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3244 0.5087 0.1779 0.3129 0.0005
Mid-temperature overheating 0.0946 0.3636 0.2065 0.4275 0.0024
High-temperature overheating 0.1504 0.2764 0.1241 0.5943 0.0052

Partial discharge 0.9079 0.5055 0.2884 0.1915 0.0147
Spark discharge 0.4344 0.2520 0.0565 0.1483 0.5433
Arc discharge 0.4704 0.2540 0.0451 0.3202 0.3807
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Table 2. Cont.

Pattern B

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3253 0.5080 0.1770 0.3133 0.0017
Mid-temperature overheating 0.0946 0.3636 0.2065 0.4275 0.0024
High-temperature overheating 0.1504 0.2764 0.1241 0.5943 0.0052

Partial discharge 0.8918 0.5549 0.3469 0.0967 0.0015
Invalid classification 0.4548 0.2449 0.0518 0.2314 0.4669

Partial discharge 0.9412 0.4078 0.1728 0.3783 0.0411

Pattern C

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3258 0.5081 0.1770 0.3133 0.0017
Mid-temperature overheating 0.0934 0.3744 0.2067 0.4171 0.0019
High-temperature overheating 0.1477 0.3061 0.1045 0.5848 0.0046

Partial discharge 0.9079 0.5055 0.2884 0.1915 0.0147
Invalid classification 0.4548 0.2499 0.0518 0.2313 0.4670
Invalid classification 0.1488 0.2391 0.1658 0.5892 0.0059

Pattern D

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3210 0.5072 0.1781 0.3143 0.0005
Spark discharge 0.3311 0.2578 0.0510 0.1462 0.5450

High-temperature overheating 0.1249 0.3112 0.1613 0.5234 0.0041
Partial discharge 0.9079 0.5055 0.2884 0.1915 0.0147
Spark discharge 0.5193 0.2589 0.0592 0.1591 0.5228
Arc discharge 0.4645 0.2566 0.0444 0.3277 0.3713

Pattern E

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3210 0.5072 0.1781 0.3143 0.0005
Partial discharge 0.8918 0.5549 0.3469 0.0967 0.0015

High-temperature overheating 0.1249 0.3112 0.1613 0.5234 0.0041
Partial discharge 0.9412 0.4078 0.1728 0.3783 0.0411
Spark discharge 0.4344 0.2520 0.0565 0.1483 0.5433
Arc discharge 0.4645 0.2566 0.0444 0.3277 0.3713

Pattern F

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3253 0.5080 0.1770 0.3133 0.0017
Mid-temperature overheating 0.0946 0.3636 0.2065 0.4275 0.0024
High-temperature overheating 0.1504 0.2764 0.1241 0.5943 0.0052

Partial discharge 0.9079 0.5055 0.2884 0.1915 0.0147
Partial discharge 0.9079 0.5055 0.2884 0.1915 0.0147

Invalid classification 0.4548 0.2499 0.0518 0.2313 0.4669

Of the six obtained patterns, only pattern A provided suitable DGA data classification into six
classes corresponding to the fault types. In contrast, patterns B to F yielded classification of different
subsets to repeated classes, or allocation of different classes to the same subset (denoted “invalid
classification” according to the rule in Section 4.2).

The abovementioned classification patterns were obtained from the randomly selected 10,000 sets
of initial data points for clustering. From Table 3, 8359 of the sets returned the valid classification
pattern A, whereas the remaining 1641 sets returned the other patterns (B to F). The classification
accuracy of pattern A reached 93.3%.

Fuzzy clustering algorithms treat clustering as a constrained optimization problem and determine
the fuzzy partition of the dataset as the solution. Although the improved algorithm proposed in this
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paper eliminates the local extrema of the membership function, local extrema may still exist in the
objective function, J(U,V). The iterative solution method in the fuzzy clustering algorithm is essentially
a hill-climbing method, and the iterative process may terminate at local extrema. Therefore, from the
mathematical perspective, the invalid patterns are the results of local extrema for J(U,V).

Table 3. Performance of proposed FCM clustering algorithm.

Separation Coefficient Fuzzy Entropy Objective Function Iterations * Frequency

Pattern A 0.8658 0.2402 0.9437 6/9/38 8359
Pattern B 0.9111 0.1613 0.9498 5/7.3/20 812
Pattern C 0.8342 0.2889 1.1786 12/22.8/71 16
Pattern D 0.8758 0.2184 1.0556 9/15.6/69 644
Pattern E 0.9232 0.1379 0.878 8/12.1/15 73
Pattern F 0.8381 0.2604 1.0032 5/7.5/16 96

General scores Classification rate: 83.59%; average separation coefficient: 0.87;
average fuzzy entropy: 0.23; average number of iterations: 9.33

* The values indicate the minimum/average/maximum number of iterations required to determine the clusters.

In addition, Table 3 indicates that the patterns obtained from the proposed FCM clustering
algorithm have fast convergence (the average number of iterations is 9.33) and suitable clustering
performance. In fact, the separation coefficients are all above 0.8, and the fuzzy entropies remain
below 0.3. The FCM clustering algorithm aims to retrieve the minimum value of the objective function
through the iterative process. However, Table 3 reveals that the objective function value of the valid
pattern A does not correspond to the minimum value among the patterns. In fact, the parameters of
patterns B and E are superior to those of pattern A; i.e., they have higher separation coefficients and
smaller fuzzy entropy values, and pattern E has a smaller objective function value. Hence, pattern A
reflects the local extrema of the objective function rather than the global optimal solution.

4.3.2. Traditional FCM Clustering Algorithm

From the 60 DGA datasets, 10,000 sets of initial data points were also randomly selected for
clustering using the traditional algorithm. Six clustering patterns were also obtained with this
algorithm, all of which presented overlapping, thus failing to identify the transformer fault types.
In fact, the clustering repeatedly returned overlapping centers or mapped two fault types to the same
dataset. The patterns with their classes and cluster centers are listed in Table 4. For brevity, only the
two patterns with the highest occurrence frequency are presented (see Table 5).

Table 4. Cluster centers obtained from DGA data using traditional FCM clustering algorithm *.

Pattern 1

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3372 0.4218 0.1659 0.3507 0.0617
Invalid classification 0.3373 0.4216 0.1658 0.3507 0.0619

High-temperature overheating 0.1783 0.3329 0.1682 0.4752 0.0291
Partial discharge 0.7620 0.4629 0.2525 0.2197 0.0649
Spark discharge 0.4637 0.2848 0.0829 0.2583 0.3740
Arc discharge 0.4634 0.2852 0.0831 0.2589 0.3728

Pattern 2

H2 CH4 C2H6 C2H4 C2H2

Low-temperature overheating 0.3660 0.4250 0.1694 0.3414 0.0642
Invalid classification 0.4853 0.3831 0.1622 0.2929 0.1618

High-temperature overheating 0.2011 0.3428 0.1654 0.4562 0.0355
Partial discharge 0.4872 0.3825 0.1619 0.2920 0.1635
Spark discharge 0.4751 0.2850 0.0852 0.2579 0.3719
Arc discharge 0.4872 0.3825 0.1619 0.2920 0.1636

* The highlighted classes sharing the same gray tone exhibit overlapping.
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Table 5. Performance of traditional FCM clustering algorithm.

Separation Coefficient Fuzzy Entropy Objective Function Iterations * Frequency

Pattern 1 0.3867 1.2389 1.0367 27/53/121 8500
Pattern 2 0.3426 1.4034 1.3387 25/58/153 1488
Pattern 3 0.3398 1.3878 1.3099 17/35.8/48 6
Pattern 4 0.3715 1.2568 1.0375 29/43/49 4
Pattern 5 0.3186 1.4501 1.3628 54 1
Pattern 6 0.3669 1.3383 1.2571 48 1

General scores Classification rate: 0%; average separation coefficient: 0.38;
average fuzzy entropy: 1.26; average number of iterations: 53.8

* The values indicate the minimum/average/maximum number of iterations required to determine the clusters.

From Table 4, the traditional FCM clustering algorithm always returned overlapping classes; hence,
there was no valid pattern. Specifically, the cluster centers of the spark discharge and arc discharge
faults were almost identical for pattern 1, as well as those for low-temperature overheating and “invalid
classification.” Likewise, the cluster centers for partial discharge, arc discharge, and “invalid classification”
were almost identical for pattern 2. The patterns not listed in Table 4 also yielded overlapping; thus,
the traditional FCM clustering algorithm cannot correctly identify transformer fault types from DGA data.

Table 5 lists the clustering performance results for the traditional FCM clustering algorithm.
The classification rate is 0%. Further, compared with the proposed algorithm, the separation coefficient
is small for all patterns, whereas the average fuzzy entropy is high. Moreover, the convergence rate is
slow, taking an average of 53.8 iterations.

4.4. Fault Diagnosis

The fault diagnosis steps for DGA dataset x with FCM are as follows:

(1) Normalize x by calculating the gas proportion. Calculate the percentage of H2 to H2 and
hydrocarbons, and the percentage of each hydrocarbon to the total hydrocarbons.

(2) Using Equations (8)–(10), calculate the degree of membership between x and cluster centers vj,
presented as Pattern A in Table 2.

(3) The degree of membership is the extent to which the dataset belongs to each fault, and the fault
type with the highest membership is the diagnosed fault.

For the 60 DGA datasets used in this paper, the improved FCM correctly identified 55 faults,
with an accuracy rate of 91.7%. When those data were analyzed with the widely used IEC ratio
method, the accuracy rate was 78.3%. As the traditional FCM failed to obtain valid cluster centers,
the fault diagnosis accuracy rate was as low as 45%. In general, the overall accuracy of the improved
FCM method is as effective as that of IEC ratio method. Moreover, the improved method retains all
fault information and is free of the shortcomings of the IEC ratio method with respect to the coding
boundary error and code absence.

To further verify the applicability of the improved FCM, a total of 28 field DGA datasets with
actual fault details were adopted, as detailed in Table 6. These data were from the book—Typical
Cases: Application of Grid Equipment Status Detection Technology (2011–2013) [36], published by the
Operation and Maintenance Department of the Chinese State Grid Corporation, which details actual
faults found after transformer disassembly.
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Table 6. Field DGA data with actual faults.

Num H2 CH4 C2H6 C2H4 C2H2 Code ++ Actual Fault **

1 54.54 71.93 9.72 97.37 6.58 022 High heat
2 116.17 180.83 52.48 278.18 5.36 022 High heat
3 5760 540 40.5 1000 2760 112 Arc discharge
4 50.18 171.12 74.7 148.69 0 021 Mid heat
5 20 80.2 24.6 68.6 0 021 Mid heat

6 # 28.97 10.94 1.64 6.96 4.36 102 High heat
7 15.9 55.98 22.33 137.25 0.21 022 High heat

8 # 47.6 19.1 4.21 27 0.72 002 Low heat
9 # 40 102.6 32.3 183.3 0.2 022 Arc discharge
10 50.35 65.58 21.05 99.13 0.96 022 High heat
11 2.369 119.69 21.891 20.15 0 020 Low heat
12 120.45 210.91 35.7 285.39 15.86 022 High heat

13 # 87.17 17.26 3.94 12.87 32.81 102 Spark discharge
14 5.48 48.82 96.81 489.57 0.3 022 High heat

15 # 605 1586 655 1901 2.3 021 High heat
16 # 1.96 2.1 0.5 0.67 1.59 121 Spark discharge
17 # 462 212.4 31.6 0 0 000 Partial discharge
18 # 25.4 54.97 8.72 77.84 10.47 122 High heat
19 131.7 116.55 19.4 183.97 0.32 002 High heat
20 7911.85 947.43 96.93 907.19 4844.48 202 Spark discharge
21 21 2.01 0.46 1.48 5.61 212 Spark discharge
22 676.74 969.55 570.57 2483.26 17.48 022 High heat
23 7238.97 695.16 231.6 2394.3 2308.92 112 Arc discharge
24 101.5 24.45 8.97 128.37 0 002 High heat
25 73.8 148 38.9 181 1.76 022 High heat

26 # 34.76 5.52 2.09 4.97 10.36 101 Spark discharge
27 18.19 21.99 6.58 46.92 3.97 022 High heat

28 # 1.6 1 0.1 0.9 1.6 102 Spark discharge
++ IEC ratio method code; # The DGA data were misdiagnosed by the IEC ratio method. ** Low-, mid-,
high-temperature overheating are abbreviated to low-, mid-, and high heat, respectively.

The degrees of membership of the 28 DGA datasets to each cluster center vj of Pattern A in Table 2
are listed in Table 7.

Table 7. Degree to which 28 DGA datasets are associated with each fault.

Num Low Heat Mid Heat High Heat Partial Discharge Spark Discharge Arc Discharge Diagnosis Result

1 0.2281 0.3140 0.4022 0.0009 0.0055 0.0494 High heat
2 0.1759 0.3506 0.4404 0.0004 0.0030 0.0297 High heat
3 0.0018 0.0005 0.0006 0.0008 0.6078 0.3884 Spark discharge
4 0.2795 0.4668 0.2310 0.0005 0.0035 0.0186 Mid heat
5 0.2787 0.4553 0.2446 0.0004 0.0031 0.0178 Mid heat
6 0.3422 0.0517 0.0369 0.0975 0.1168 0.3549 Arc discharge
7 0.0606 0.3298 0.5978 0.0000 0.0008 0.0110 High heat
8 0.3823 0.1645 0.2761 0.0278 0.0118 0.1375 Low heat
9 0.1112 0.3650 0.5056 0.0001 0.0015 0.0166 High heat
10 0.1990 0.3411 0.4222 0.0007 0.0034 0.0337 High heat
11 0.5685 0.3759 0.0443 0.0006 0.0036 0.0071 Low heat
12 0.2006 0.3483 0.4108 0.0005 0.0041 0.0357 High heat
13 0.0142 0.0027 0.0021 0.0067 0.5265 0.4477 Spark discharge
14 0.0135 0.2212 0.7604 0.0000 0.0002 0.0046 High heat
15 0.2080 0.4343 0.3341 0.0004 0.0028 0.0204 Mid heat
16 0.2046 0.0857 0.0271 0.0049 0.3504 0.3274 Spark discharge
17 0.3046 0.0050 0.0006 0.6729 0.0058 0.0110 Partial discharge
18 0.1677 0.3624 0.4220 0.0003 0.0057 0.0421 High heat
19 0.2242 0.2697 0.4516 0.0016 0.0039 0.0490 High heat
20 0.0008 0.0002 0.0002 0.0003 0.7415 0.2570 Spark discharge
21 0.0031 0.0004 0.0003 0.0066 0.6176 0.3720 Spark discharge
22 0.0824 0.3229 0.5744 0.0001 0.0014 0.0188 High heat
23 0.0192 0.0088 0.0198 0.0046 0.2656 0.6819 Arc discharge
24 0.0601 0.1300 0.7574 0.0007 0.0016 0.0501 High heat
25 0.2245 0.3828 0.3624 0.0005 0.0032 0.0266 Mid heat
26 0.0191 0.0035 0.0030 0.0138 0.4644 0.4962 Arc discharge
27 0.1142 0.3027 0.5392 0.0002 0.0037 0.0400 High heat
28 0.0416 0.0292 0.0210 0.0008 0.4495 0.4579 Arc discharge
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Twenty-one of the twenty-eight DGA datasets had diagnostic results that matched the actual
faults in Table 6. Among the other seven datasets, the DGA datasets numbered 6 and 9 were
falsely diagnosed as arc discharge, when their actual faults were high-temperature overheating.
However, the diagnosis results for the remaining five DGA datasets were close to the true states of
the transformers. Although the thermal faults were divided into low-, mid-, and high-temperature
overheating with divisions of 300 ◦C and 700 ◦C, the differences between them are not physically clear,
and neither is the difference between spark and arc discharge (also known as low- and high-energy
discharge, respectively). Therefore, fuzzy clustering can be applied to interpret DGA data, rather than
simply being employed for a single fault. The fault of the DGA dataset numbered 28 was 44.95%
spark discharge and 45.79% arc discharge. In view of the relevance of the spark and arc discharge,
the diagnosis result for dataset 28 is valid. This conclusion also holds for datasets 26, 25, 15, and 3
(highlighted in Table 7), with their diagnosis results also being valid. Therefore, the diagnosis results
are highly consistent with the actual faults.

The IEC ratio method codes for these DGA datasets are also listed in Table 7. According to the
diagnostic rules, 10 datasets (numbered 6, 8, 9, 13, 15–18, 26, and 28) were misdiagnosed. The accuracy
rate was relatively low and the fault severity could not be obtained.

4.5. Discussion

4.5.1. Dissolved Gas Analysis

Detection of certain gases generated in an oil-filled transformer in service is frequently the first
available indication of a malfunction that may eventually lead to failure if not corrected. Arcing, partial
discharge, low-energy sparking, severe overloading, pump motor failure, and overheating of the insulation
are some possible mechanisms. Occurrence of these conditions singly, or as several simultaneous events,
can result in decomposition of the insulating materials and formation of some gases. Many techniques for
detection and measurement of these gases have been established. However, analysis of these gases and
interpretation of their significance is a complex subject involving many factors, such as the transformer
type, fault location, oil circulation type and rate, and variables associated with the sampling and measuring
procedures. Therefore, the following principal points require special attention:

(1) Gas sources

The gases dissolved in the oil can originate from different sources, and in some cases the gases
are not generated by transformer faults. When a transformer is overhauled, the oil exposed to the air
can absorb CO2 with content as high as 300 µL/L [2]. If the insulating oil has not been completely
degassed after the fault is repaired, the residual gases may remain in the oil. In fact, these gases do not
generally affect normal transformer operation. Therefore, these cases should be considered when DGA
is used to determine transformer faults.

(2) Gas measurement

Accurate measurement of the dissolved gas content in the oil is a very important DGA analysis
step, and itself involves many steps, such as oil sampling from the transformer, degassing from the
oil samples, and gas content measurement. The errors of each step must be reduced. Oil sampling
from a transformer should be performed in a fully sealed state and the sample should be analyzed
as soon as possible. To prevent gas escape, the sample must be sealed and shielded from light.
Severe vibration should also be avoided during transportation. Degassing is the main contributor
to gas content error; therefore, the degassing result repeatability must be ensured. According to the
provisions of IEC 60599-1999 [2], the gas content results for all measurements of the same gas sample
should be within ±1.5% of the average value. When the composition and content are measured with
a gas chromatograph, the column resolution must meet the quantitative analysis requirements; i.e.,
the instrument must have stability at baseline and sufficient sensitivity. According to IEC 60599-1999,



Energies 2018, 11, 2344 14 of 17

the minimum detectable gas component concentrations are as follows: C2H2 ≤ 0.1 µL/L, H2 ≤ 5 µL/L,
CO ≤ 25 µL/L, and CO2 ≤ 25 µL/L.

(3) Warning values

In normal operation, the insulating oil and organic insulating materials inside the oil-filled
transformers generate gases under the actions of heat and electricity. Therefore, warning values are set
in practice [3], including gas content and gas growth-rate warning values, which are 150 µL/L and
6 mL/d, respectively, for the total hydrocarbon; 1 µL/L and 0.1 mL/d, respectively, for C2H2; and 150
µL/L and 5 mL/d, respectively, for H2. Fault diagnostics with improved FCM clustering are enabled
only when the gas properties exceed the warning values and the gas content continues to increase,
indicating that the transformer has a fault.

(4) Comprehensive diagnosis

As the transformer structure is complex, DGA should be combined with other tests to obtain a
comprehensive diagnosis of whether the transformer is faulty according to the DGA result. These tests
usually include measurement of the winding DC resistance, no-load testing, insulation testing, partial
discharge testing, and trace moisture measurement [4]. The structure, operation, maintenance, etc.,
of the equipment are also factors to be considered. Different measures are implemented depending
on the comprehensive fault diagnosis, such as test period shortening, monitoring strengthening, load
limiting, scheduling of an internal inspection in the near future, or immediate operation termination.

4.5.2. Improved FCM Performance

In this study, an exponential form of the membership function was proposed that exhibits
monotony with respect to distance and, thus, improves the FCM clustering of DGA data. The improved
FCM exhibits highly superior performance compared to the traditional technique:

(1) The improved FCM reduces the algorithm sensitivity. In the experiment performed in this
study, the traditional FCM algorithm was not suitable for valid transformer fault classification
using DGA data, as it could not return a valid pattern containing the six fault types.
Different clustering results were obtained for different iteration starting points of the same
dataset. In contrast, the improved algorithm could effectively identify the fault types, and a
valid pattern for classification appeared for 83.59% of the sets of initial data points for clustering.
Thus, the improved algorithm dramatically outperforms the traditional algorithm.

(2) The improved FCM yielded six types of DGA fault. As expected, data samples corresponding
to the same fault data were categorized into the same subclass, and different fault data samples
were classified into different subclasses.

(3) A total of 28 field DGA datasets with actual fault details were considered to verify the applicability
of the improved FCM. The diagnosis results of the improved FCM were highly consistent with
the actual faults. The fault diagnosis accuracy rate was considerably higher than that of the IEC
ratio method.

(4) The proposed algorithm corresponds to hill-climbing iterative optimization, and convergence to
local minima was found; this is an inherent defect of the iterative optimization algorithm.

(5) Disregarding the pattern validity, when converging with the same accuracy (i.e., 10−3),
the proposed algorithm required only 9.33 iterations on average compared to the 53.8 required by
the traditional algorithm; the separation coefficients of the proposed and traditional algorithms
were 0.87 and 0.38, respectively; and the average fuzzy entropies of the proposed and traditional
algorithms were 0.23 and 1.26, respectively. Consequently, the proposed algorithm considerably
improves the convergence speed of FCM clustering and outperforms the traditional algorithm.
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5. Conclusions

FCM clustering is an effective pattern recognition method, but the traditional algorithm is
not suitable for transformer fault detection using DGA data. The traditional FCM is prone to
misclassification, and the clustering analysis effect may not meet the desired requirements. The iterative
solution of the optimization problem essentially corresponds to the “mountain climbing” method
of local searching. In that approach, however, the solution can easily fall into the local extrema
owing to the initial value sensitivity. In addition, different clustering results are obtained for
different iteration starting points of the same dataset, which seriously affects the clustering effect.
This article explored the characterization of similarity between samples performed by traditional FCM
clustering algorithm using the inverse Euclidean distance, the membership function of which has
several extrema. In addition, the degree of membership is not monotonic with respect to distance;
therefore, the traditional algorithm does not provide suitable classification of transformer fault types.
To overcome this problem, a novel exponential similarity function and membership function were
proposed for FCM clustering. Tests on a large DGA dataset showed that the proposed algorithm
can effectively identify transformer faults and classify DGA data. Moreover, the proposed algorithm
has excellent convergence and clustering performance, which are essential factors for its practical
application. In addition, it is worth noting that the objective function of the fuzzy clustering function
is nonlinear, and although the proposed technique eliminates the local extremum of the membership
function, local extrema may still exist in the objective function. Therefore, the iterative process may
terminate at the local extrema, as observed for the invalid patterns discussed in this article. If severely
isolated classes exist in the dataset, this defect can be very serious. Therefore, good knowledge of the
dataset is necessary before clustering.
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Nomenclature

J(U,V) Square sum of weighted error within class
U = [µij]c×n ∈ M f c Fuzzy partition matrix
V = {v1, v2, · · · , vc} Fault cluster left vectors
X = {x1, x1, . . . , xN} DGA dataset
dij = ‖xi − vj‖ Euclidean distance between sample xi and cluster left vj
m Weight index
pij Similarity between
uij Degree of membership of xi to vj
γ Factor adjusting similarity function sensitivity

References

1. Clark, F.M. The role of dissolved gases in determining the behavior of mineral insulation oils. J. Franklin Inst.
1933, 215, 39–67. [CrossRef]

2. British Standards Institute Staff. Mineral Oil-Impregnated Electrical Equipment in Service—Guide to the
Interpretation of Dissolved and Free Gases Analysis; IEC: Geneva, Switzerland, 2006.

3. IEEE. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE Standard C57.104;
IEEE: New York, NY, USA, 2009.

4. Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation
techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [CrossRef]

5. Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional
methods a review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [CrossRef]

http://dx.doi.org/10.1016/S0016-0032(33)90139-8
http://dx.doi.org/10.1109/MEI.2014.6804740
http://dx.doi.org/10.1109/TDEI.2017.005959


Energies 2018, 11, 2344 16 of 17

6. Mani, G.; Jerome, J. Intuitionistic fuzzy expert system based fault diagnosis using dissolved gas analysis for
power transformer. J. Electr. Eng. Technol. 2014, 9, 2058–2064. [CrossRef]

7. Lin, C.E.; Ling, J.M.; Huang, C.L. An expert system for transformer fault diagnosis using dissolved gas
analysis. IEEE Trans. Power Deliv. 1993, 8, 231–238. [CrossRef]

8. Boczar, T.; Cichon, A.; Borucki, S. Diagnostic expert system of transformer insulation systems using the
acoustic emission method. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 854–865. [CrossRef]

9. Lin, J.; Sheng, G.; Yan, Y.; Dai, J.; Jiang, X. Prediction of dissolved gas concentrations in transformer oil based
on the KPCA-FFOA-GRNN Model. Energies 2018, 11, 225. [CrossRef]

10. Yi, J.H.; Wang, J.; Wang, G.G. Improved probabilistic neural networks with self-adaptive strategies for
transformer fault diagnosis problem. Adv. Mech. Eng. 2016, 8, 1–13. [CrossRef]

11. Zhang, Y.; Ding, X.; Liu, Y.; Griffin, P.J. An artificial neural network approach to transformer fault diagnosis.
IEEE Trans. Power Deliv. 1996, 11, 1836–1841. [CrossRef]

12. Huang, Y.C.; Yang, H.T.; Huang, C.L. Developing a new transformer fault diagnosis system through
evolutionary fuzzy logic. IEEE Trans. Power Deliv. 1997, 12, 761–767. [CrossRef]

13. Huang, Y.C.; Sun, H.C. Dissolved gas analysis of mineral oil for power transformer fault diagnosis using
fuzzy logic. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 974–981. [CrossRef]

14. Abu-Siada, A.; Hmood, S. A new fuzzy logic approach to identify power transformer criticality using
dissolved gas-in-oil analysis. Int. J. Electr. Power Energy Syst. 2015, 67, 401–408. [CrossRef]

15. Noori, M.; Effatnejad, R.; Hajihosseini, P. Using dissolved gas analysis results to detect and isolate the
internal faults of power transformers by applying a fuzzy logic method. IET Gener. Transm. Distrib. 2017, 11,
2721–2729. [CrossRef]

16. Cai, J.D.; Wang, S.F. Application of decision rules for IEC-60599 three-ratio fault diagnosis based on rough
set theory. Proc. CSEE 2015, 25, 134–139.

17. Cheng, L.; Yu, T.; Wang, G.; Yang, B.; Zhou, L. Hot spot temperature and grey target theory-based dynamic
modelling for reliability assessment of transformer oil-paper insulation systems: A practical case study.
Energies 2018, 11, 249. [CrossRef]

18. Zeng, F.; Cheng, X.; Guo, J.C.; Tao, L.; Chen, Z.X. Hybridising human judgment, AHP, grey theory, and fuzzy
expert systems for candidate well selection in fractured reservoirs. Energies 2017, 10, 447. [CrossRef]

19. Li, Y.; Shu, N. Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector
machine. Trans. China Electrotech. Soc. 2016, 31, 64–70.

20. Bigdeli, M.; Vakilian, M.; Rahimpour, E. Transformer winding faults classification based on transfer function
analysis by support vector machine. IET Electr. Power Appl. 2012, 6, 268–276. [CrossRef]

21. Cheng, L.; Yu, T. Dissolved gas analysis principle-based intelligent approaches to fault diagnosis and decision
making for large oil-immersed power transformers: A survey. Energies 2018, 11, 913. [CrossRef]

22. Jain, A.K.; Duin, R.P.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell.
2000, 22, 4–37. [CrossRef]

23. Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.
J. Cybern. 1973, 3, 32–57. [CrossRef]

24. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: New York, NY, USA, 1981.
25. Krishnapuram, R.; Keller, J.M. A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1993, 2, 98–110.

[CrossRef]
26. Pal, N.R.; Pal, K.; Keller, J.M.; Bezdek, J.C. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans.

Fuzzy Syst. 2005, 13, 517–530. [CrossRef]
27. Qu, F.; Ma, S.; Hu, Y. Generalized possibilistic c-means clustering based on differential evolution algorithm.

In Proceedings of the International Workshop on Intelligent Systems and Applications, Wuhan, China,
23–24 May 2009.

28. Filippone, M.; Camastra, F.; Masulli, F.; Rovetta, S. A survey of kernel and spectral methods for clustering.
Pattern Recognit. 2008, 41, 176–190. [CrossRef]

29. Askari, S.; Montazerin, N.; Zarandi, M.F.; Hakimi, E. Generalized entropy based possibilistic fuzzy c-means
for clustering noisy data and its convergence proof. Neurocomputing 2017, 219, 186–202. [CrossRef]

30. Yuab, Z.; Wong, H.S.; Han, G. From cluster ensemble to structure ensemble. Inf. Sci. 2012, 198, 81–99.
31. Carvalho, F.; Lechevallier, Y. Partitioning hard clustering algorithms based on multiple dissimilarity matrices.

Pattern Recognit. 2012, 45, 447–464. [CrossRef]

http://dx.doi.org/10.5370/JEET.2014.9.6.2058
http://dx.doi.org/10.1109/61.180341
http://dx.doi.org/10.1109/TDEI.2013.004126
http://dx.doi.org/10.3390/en11010225
http://dx.doi.org/10.1177/1687814015624832
http://dx.doi.org/10.1109/61.544265
http://dx.doi.org/10.1109/61.584363
http://dx.doi.org/10.1109/TDEI.2013.6518967
http://dx.doi.org/10.1016/j.ijepes.2014.12.017
http://dx.doi.org/10.1049/iet-gtd.2017.0028
http://dx.doi.org/10.3390/en11010249
http://dx.doi.org/10.3390/en10040447
http://dx.doi.org/10.1049/iet-epa.2011.0232
http://dx.doi.org/10.3390/en11040913
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1109/91.227387
http://dx.doi.org/10.1109/TFUZZ.2004.840099
http://dx.doi.org/10.1016/j.patcog.2007.05.018
http://dx.doi.org/10.1016/j.neucom.2016.09.025
http://dx.doi.org/10.1016/j.patcog.2011.05.016


Energies 2018, 11, 2344 17 of 17

32. Ma, L.; Destercke, S.; Wang, Y. Online active learning of decision trees with evidential data. Pattern Recognit.
2016, 52, 33–45. [CrossRef]

33. Lu, N.; Lu, J.; Zhang, G. A concept drift-tolerant case-base editing technique. Artif. Intell. 2016, 230, 108–133.
[CrossRef]

34. Vega, C.; Escalante, H.J. An online and incremental GRLVQ algorithm for prototype generation based on
granular computing. Soft Comput. 2016, 21, 3931–3944. [CrossRef]

35. Lichman, M. UCI Machine Learning Repository; University of California, School of Information and Computer
Science: Irvine, CA, USA, 2013; Available online: http://archive.ics.uci.edu/ml (accessed on 1 June 2018).

36. State Grid Corporation Operation and Maintenance Department. Typical Cases: Application of Grid Equipment
Status Detection Technology; China Electric Power Press: Beijing, China, 2014; pp. 76–191.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2015.10.014
http://dx.doi.org/10.1016/j.artint.2015.09.009
http://dx.doi.org/10.1007/s00500-016-2042-0
http://archive.ics.uci.edu/ml
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	FCM Clustering of DGA Data 
	Improved FCM Clustering Algorithm 
	Local Extremum Problem of (Conventional) Membership Function 
	Exponential Membership Function 
	Sub-Similarity Function 
	Flow of Improved FCM Clustering Algorithm 

	Application Example 
	Clustering of University of California, Irvine (UCI) Iris Dataset 
	Verification Process for DGA Data 
	Verification Results 
	Improved FCM Clustering Algorithm 
	Traditional FCM Clustering Algorithm 

	Fault Diagnosis 
	Discussion 
	Dissolved Gas Analysis 
	Improved FCM Performance 


	Conclusions 
	References

