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Abstract: Electricity plays a crucial role in the well-being of humans and is a determining factor of
the economic development of a country. Electricity issues have encouraged researchers to focus on
improving power availability and quality along with reliability. This pursuit has increasingly raised
the intention to integrate renewable energy (RE) into power systems to curb the problem of energy
deficiency. However, intermittency in the sources of RE supply coupled with fluctuating changes
in demand with respect to time has induced high risk in maintaining system reliability in terms
of providing adequate supply to consumers. Whilst an energy storage system (ESS) is not another
source of electricity, it is proven to be effective and viable in solving the aforementioned issues.
Thus, this paper comprehensively reviews the development of ESS technologies and discusses the
benefits and real-life applications of these technologies. The concept of reliability in power systems is
also explored to provide an improved understanding of this study. Lastly, notable studies that have
addressed the reliability impact of ESSs on power systems are discussed. This review paper therefore
is expected to provide a critical analysis of ESS developments, as well as recognize their research
gaps in terms of reliability studies in modern RE-integrated power networks.
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1. Introduction

Sustainable development is currently a crucial issue globally. The most common and simplest
definition of sustainable development is “development that meets the needs of the present without
compromising the ability of future generations to meet their own needs” [1]. There are many factors
that can contribute to achieving sustainable development. One of them is to be able to supply energy
sources that are fully sustainable [2]. A secure supply is a necessity; however, it also must comply with
other considerations to achieve sustainable development. Energy is expected to be readily available all
the time, at reasonable costs, and without causing negative societal impacts [3].

Conventional energy sources based on oil, coal, and natural gas have contributed the most
towards the development we have achieved today. However, excessive use of these sources is
causing depletion of these reserves, as well as damaging the environment and humans’ health [4].
These so-called “dirty sources” are facing increasing pressure from environmental advocates, becoming
targets of Kyoto Protocol greenhouse gas reduction. The challenges in meeting energy demand whilst
limiting greenhouse gases have prompted the idea of integrating renewable energy (RE) sources into
power systems. RE has been recognised in tackling issues such as energy access and energy security.
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Many initiatives have been undertaken especially in developing counties to improve accessibility,
with the help of stand-alone RE generation to meet the demand of rural communities in a cheaper
and cleaner way [5]. Energy security, on the other hand, refers to secured supply of energy without
compromising any disruptions. Since the majority of power generation comes from fossil fuel, energy
security is harmed by price volatility [6]. Local RE options can mitigate this problem by diversifying
supply options and reducing dependency on imported energy supply [5].

Whilst RE sources are offering such great benefits, these inexhaustible sources are also
characterised by fluctuating generated power output. Therefore, high penetration of RE sources into
power grids may risk power system stability due to their intermittency in nature. Power oscillations
due to intermittency may also cause rapid voltage fluctuations, which can damage the equipment [7].
Energy storage systems (ESSs) can contribute to improving system reliability whilst optimally
maintaining sensible operational costs in the aforementioned case. ESSs can mitigate power variations
and functions as storage for flexible dispatch of RE.

Following the definition obtained from [8,9], ESSs enable the method of converting electrical
energy from power grids into a form that can be stored for utilising the energy when needed.
Therefore, the ESS will dispatch its stored energy during low energy production of RE, and will help
store excess energy when power production is high. Apart from supporting this type of generation,
ESSs can also mitigate some issues in the conventional generation sector, such as peak shaving and
energy arbitrage [10,11]. In other words, an ESS is a flexible power electronic device that supports the
grid in providing a constant supply whilst satisfying power quality and reliability [12,13].

In the electric utility industry, power outage is the main concern because consumers are expecting
a continuous ready supply throughout the year. This ready supply is termed as “reliability”, which
is further defined as the reliability of a power system to provide adequate output to consumers,
as discussed in [14]. Approaches to evaluating the reliability of a power system are available at
different levels, namely, generation, composite generation, and distribution. Reliability evaluation
provides utility in decision-making and future planning for the best optimisation solution.

The rest of the paper is structured as follows. Section 2 describes the services offered by ESSs and
their real-life applications. Section 3 presents the concept of power system reliability and discusses
a number of research publications related to ESS contributions to power system reliability. Section 4
provides a discussion on overall findings that can be summarised from the review. Lastly, Section 5
elaborates the conclusions and potential future works.

2. Energy Storage Systems

2.1. Applications and Benefits of ESSs

The adoption of ESSs in utility grids is a smart move in mitigating power system issues
from large-scale application of generation and transmission networks to small-scale application of
distribution networks and microgrids. Services offered by ESSs are numerous and expected to advance
in the future. Reference [15] classified the usage and benefits of the system into five categories: bulk
energy, ancillary, transmission infrastructure, distribution structure, and energy management services.
Figure 1 summarises the five subdivisions of power grid solutions that can be offered by an ESS.
These applications will be further discussed in accordance with Figure 1.
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2.1.1. Bulk Energy Services

As shown in Figure 1, three benefits can be generally obtained from an ESS under a bulk energy
service. The first one is energy arbitrage. An ESS enables flexibility by storing bulk energy in certain
periods for use during peak demand to arbitrage the production price of the two periods for providing
a uniform load factor [10]. Generation systems are installed in accordance with the anticipated peak
demand. Hence, they can be over-priced due to over-estimation. The installation cost of a generator is
based on its rated capacity and often influenced by peak demand. Therefore, wastage occurs because
peak demand does not happen all the time. Therefore, an ESS can potentially curb this problem
by providing additional supply capacity during peak demand and reduce the need for installing
high-capacity generation systems [9]. Lastly, the development of RE to curb environmental issues and
provide an inexhaustible supply has induced considerable interest amongst power system engineers
to integrate an ESS into the system to relieve the fluctuation in the output power generated by these
sources [16].

2.1.2. Transmission Services

The world population is increasing annually, and the rapidly advancing economic development
always results in high electricity demand. The International Energy Agency (IEA) reported in 2014 that
approximately 13,371 Mtoe of energy was supplied cumulatively in 2012, showing a 10% increase
in load demand over only a period of 3 years [17,18]. This ever-increasing demand growth leads to
more complex and less secure transmission network operations than before. Transmission expansion
to relieve congestion can be costly in terms of installation and environmental costs. ESS installation
can provide a viable solution that enables discharging of devices during peak hours to cater for line
stability [19], thereby deferring transmission upgrades.

2.1.3. Distribution Services

The current increasing pace of RE is predominantly operating either under grid-connected or
islanded operation modes in local distribution networks. RE power systems are usually installed in
remote areas due to inefficient grid connectivity. Fluctuating output power from these sources can
cause voltage instability and can damage system equipment. Moreover, low-voltage ride through
is a problem caused by voltage collapse at the point of common coupling between the generator
and grids, thereby causing highly limited dc power transfer. Trapped power in particular can cause
severe overvoltage and can harm bus capacitors [20]. Therefore, voltage control by utilising system
components to maintain voltages on lines within the required limit is necessary [21]. An ESS can
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participate in voltage regulation by compensating reactive power to stabilise the system [22]. An ESS
also can provide additional support for heavily loaded local feeders.

2.1.4. Energy Management Services

Power quality distortion refers to the existence of harmonics in bus voltages and load current that
can affect the sensitivity of some equipment [23]. Consequently, great power losses occur, and system
efficiency decreases. An ESS can be integrated into Flexible Alternating Current Transmission System
(FACTS) devices to compensate reactive power to reduce these harmonic signals [24]. The use of
ESSs can also mitigate problems generated by the dynamic behavior of RE generation whereby it can
serve as a compensator unit [25]. Delivery of high-quality power therefore can improve power system
reliability as a whole by providing a secure and sufficient supply.

2.1.5. Ancillary Services

Frequency regulation is a method that helps maintain a certain frequency level to achieve a balance
between generation and load. ESSs can compensate for rapid output fluctuations by RE-integrated
power systems. During transients, an ESS can dynamically adjust the grid frequency by stabilising
the angular frequency [26]. High-energy ESSs are suitable for providing a spinning reserve service
because they have a rapid time response to regulate the frequency to a desired level [20].

2.2. Development of ESS Technologies and Their Real-Life Applications

Research developments on ESSs were initiated back in the late 1990s. The IEA was firstly
established to coordinate oil price amongst its participants. Later, they initiated an electric storage
programme, namely, Annex IX. The pioneering countries during the early foundation were mainly
in Europe and Americas [9]. At present, many strong economic playmakers are investing in ESS
installations for their power grids, indicating that ESS has created a large market as a highly viable
electronic power system. Reference [27] elaborates the development of ESSs in both the currently
largest economy playmakers, which are the USA and China. In 2015, the USA annual energy storage
market grew by 243% with more than 21 GW of ESSs installed. Compared to the USA, China invested
a cumulative capacity of 22.85 GW in ESS in 2015 [27]. However, most of China’s ESS projects are still
in the demonstration phase, while the USA has operated most of their installed ESSs. According to [28],
Germany is the leading country for RE installation with a target of above 60% of total energy production
by 2030. Since ESS technologies are currently developed to solve renewable output power fluctuation
issues, ESSs are therefore expected to grow alongside this large development. From these examples,
we can conclude that the ESS market is growing globally and is expected to expand in the future.
We will discuss the development of ESS technologies and their applications in participating countries
in the following sections.

Currently, many types of ESS technologies coexist and are usually further classified on the basis of
their functions, response time, and storage media. A widely used classification is based on the form of
stored energy [29,30]. Mechanical ESSs can be subdivided into pumped hydro energy storage (PHES),
compressed air energy storage (CAES), and flywheels. These mechanical ESS are readily available and
operating for grid applications. Electrochemical ESSs refer to conventional, rechargeable, and flow
batteries. Most batteries are also available for commercial use. Another ESS that undergoes a chemical
process is the hydrogen fuel cell. Hydrogen fuel cells are different from batteries because they undergo
reverse electrolysis and thus produce clean by-products. All the above-mentioned devices require
conversion techniques to absorb or release energy from the grids. Contrary to these technologies,
electrical devices, such as supercapacitors and superconducting magnetic energy storage (SMES),
do not require any conversion. Supercapacitors are currently in the development phase, whilst SMES
is readily available. The most widely utilised technology is PHES, followed by battery energy storage.
PHES is the least costly option since it sustains a low-cost storage medium (water). However, due to
its limited location availability, batteries are the current preferred choice [31].
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2.2.1. Pumped Hydro Energy Storage

PHES is a mechanical device. Amongst other ESS technologies, PHES is the most mature and
the largest commercially available. The general configuration of PHES consists of two water storage
units with different elevations. Water is pumped to the top reservoir for storing purposes and is
released to the lower reservoir during discharging [32]. Figure 2 obtained from [33] illustrates the
general configuration of PHES, and Table 1 tabulates some of the operating PHES facilities across the
globe [7,10,34].

Table 1. Implementation of pumped hydro energy storage (PHES) in power networks.

Plant Name Country Capacity

Rocky River USA 32 MW
Bath Country USA 3003 MW

Okinawa Yanbaru Japan ~30 MW
Ikaria Island Greece 2.655 MW
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2.2.2. Flywheel Energy Storage

Flywheel systems have gained considerable attention since decades ago with numerous experiments
dating from the 1950s [35]. The flywheel is a mechanical ESS that stores energy from the grid and converts it
to a spinning disc. This device accelerates the rotation to store energy and discharges by slowing down [20].
Flywheels can be applied to microgrids or can be hybridised with other ESS technologies, such as batteries,
to improve efficiency [31]. Figure 3 obtained from [7] illustrates the components of a flywheel system,
and Table 2 tabulates some of the operating applications of flywheels [36–39].Energies 2018, 11, x FOR PEER REVIEW  6 of 21 
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Table 2. Manufacturers of flywheels and their application areas.

Company/Institute Application Area

Active Power Company Back-up supply, uninterruptible power supply (UPS)
Beacon Power Company Frequency regulation
Boeing Phantom Works Peak shaving and power quality

Pillar Power System Ltd. Voltage ride through and back-up supply

2.2.3. Compressed Air Energy Storage

CAES is also a mature ESS technology under the mechanical category. The concept of CAES
is to compress air by using low-cost energy for storing and releasing the compressed air during
discharge [16]. CAES has the lowest capital cost [16] and can store a large amount of energy with
high efficiency. However, similar to those of PHES, their installations are limited due to geographical
constraints. Currently, only two operating CAES plants are available. The first installed plant is
located in Germany with a rated capacity of 290 MW. The second commercialised plant, located in
the USA, has improved its cycling efficiency from 42% to 54% despite having a low-rated capacity of
110 MW [23]. Figure 4 obtained from [16] illustrates the schematic of a CAES facility.
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2.2.4. Battery Energy Storage System

Battery ESSs (BESSs) are categorised as electrochemical devices that deliver electric energy by
conversion of chemical reactions [32]. Power converters of BESSs are similar to those of wind turbines
and photovoltaic (PV) systems; thus, they have an advantage in terms of flexibility [40]. BESSs can be
classified as primary and secondary batteries. Primary batteries refer to non-rechargeable batteries,
whereas secondary batteries refer to rechargeable batteries [23]. However, only rechargeable batteries
are utilised for power grid applications. Batteries were rarely used in early years due to their low
energy density and short lifetime [41]. However, current advancements in batteries have attracted
investors to install BESSs due to the high energy density and simple means of installations.

Secondary batteries can be further classified into conventional and flow batteries.
Conventional batteries are referred to as BESSs, whereas flow batteries are referred to separately.
BESSs, which are commonly used for current utility grid applications, are lead acid and lithium-based
batteries [40]. During discharging, electricity is generated through electrochemical processes. By contrast,
electricity is converted into a chemical form by a reverse electrochemical process during charging [23].
Figure 5 obtained from [30] illustrates basic components of BESSs. BESSs consist of batteries, control, and a
power conditioning system (C-PCS), whilst the remaining part comprises protection devices. BESSs have
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a wide range of applications due to the ease of installation and cost effectiveness. Table 3 tabulates the
applications of BESSs in certain locations [10,30,42,43]. Advancements in research have made it possible
to develop and deploy electric vehicles (EVs) for energy storage applications. Vehicle-to-grid (V2G)
capability in EVs has shifted to a new paradigm in smart home and smart grid solutions. Generally, EV
users can charge their vehicles at homes or public parking lots. When EVs are parked, a remarkable
amount of power can be injected from the batteries of EVs into the grid during emergency conditions [44].
Currently, sodium nickel chloride batteries are developed for EVs [10].
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Table 3. Distribution of battery energy storage systems (BESSs) and their applications.

Locations Rated Capacity Applications

Berlin 8.5 MWh Frequency control
California 40 MWh Load levelling

Puerto Rico 1.4 MWh Spinning reserve
Hawaii 3.75 MWh Power management

Flow batteries are newly invented power electronic devices that are different from conventional
batteries due to their configuration characteristics. Unlike conventional batteries, flow batteries have
separate tanks containing electrolytes [23]. The electrolytes are active reactants with a reversible
capability to generate electricity [19]. Figure 6 obtained from [45] illustrates the operation of a flow
battery. Vanadium redox batteries (VRBs) are the most preferred choice of flow battery technology due
to their flexibility in offering numerous applications [10]. Table 4 tabulates some of the services offered
by VRBs installed in certain countries [42,46–48].

Table 4. Distribution of vanadium redox batteries (VRBs) and their applications.

Country Rated Capacity Applications

Australia 800 kWh Mitigation of wind power fluctuations
Ireland 12 MWh Grid integration
Japan 3 MWh Power quality tool

US 2 MWh Load shifting
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2.2.5. Fuel Cells

Fuel cells are also under the same category as batteries. The features of a fuel cell are similar to
those of a battery; however, they differ in their mode of operation, in the sense that a fuel cell consumes
fuel to generate electricity. Specifically, it predominantly consumes hydrogen and other hydrocarbons
to generate electricity [7,19]. This device is gaining considerable interest amongst researchers due
to its cleanliness, cost effectiveness, and high efficiency [49]. A fuel cell can be integrated with an
electrolyser unit to form a regenerative fuel cell and can thus convert electricity into hydrogen to store
the energy for future use. Figure 7 obtained from [50] illustrates the operation of a regenerative fuel
cell. Currently, hydrogen fuel cells are in the evaluation and demonstration stage. The first utility-scale
test of hydrogen cells took place in Norway to test their reliability with an RE-integrated stand-alone
power system [51].
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2.2.6. Supercapacitors

Most supercapacitors are known as direct storage because they store electric energy by means
of liquid electrolyte solution between two conductors instead of common dielectric surfaces [10].
However, there also exist supercapacitors which fall under the electrochemical category, such as
batteries. Figure 8 obtained from [30] illustrates a schematic of a supercapacitor. The advantage of
this device is its capability to store a twofold-larger amount of energy capacity than a conventional
capacitor [52]. Hence, this technology has been rapidly advanced in recent years. Table 5 tabulates
some of the countries that manufacture this technology [42,53].
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Table 5. Distribution of supercapacitors and their applications.

Country Applications

USA Uninterruptible power supply
Japan Power quality tool

Germany Metro distribution
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2.2.7. Superconducting Magnetic Energy Storage

SMES was firstly introduced in the 1970s [54]. An SMES device is an electrical device that can
store energy in the form of a magnetic field induced by dc current flowing through the magnetic coils.
Given that energy is stored in the form of current, energy can be drawn nearly instantaneously to give an
extra advantage for SMES in terms of rapid time response [55]. Figure 9 obtained from [16] illustrates a
schematic of SMES. SMES has wide applications and is predicted to become a viable choice in the future.
However, the costly installation of SMES limits its significant contributions to improving the power quality
of a system. Table 6 provides the distribution of SMES applications in certain locations [42,56,57].

Table 6. Distribution of superconducting magnetic energy storage (SMES) and their applications.

Countries Rated Capacity Applications

Japan 10 MW System stability improvement
USA 3 MW Reactive power compensator

S. Korea 750 KVa Power quality tool
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3. Reliability Impacts of ESSs on Power System Reliability

3.1. Concept of Power System Reliability

The development of power systems has expanded over the decades. The main concern of electric
power utility companies is to provide uninterruptible power supply to end loads all the time, but this



Energies 2018, 11, 2278 10 of 19

implementation is still not practiced in real situations. Hence, utilities strive for ways that consider
costs and reliability in an effective manner [58]. Reliability evaluation involves consideration of
system states and determines whether they are adequate or secure [59]. Adequacy is defined as
sufficient energy supplied within the system to be supplied to consumers, whereas security involves
consideration of disturbance within the system [58]. Unlike security division, adequacy responds to
static conditions and thus neglects the impacts of system disturbances.

Electric power systems are extremely complex and large. Thus, even current high-tech computers
cannot analyse a power system as a single entity in a completely realistic manner. Therefore, the system
is divided into three distinguished subsystems that can be analysed separately. The concept of
hierarchical levels (HLs) has been developed to obtain a consistent means of identifying these
subsystems. HL1 refers to generation facilities and their ability to supply energy adequately to
end loads. HL2 refers to the composite generation and transmission and its ability to feed energy to
the bulk supply points. Lastly, HL3 refers to a complete system, including distribution, and its ability
to supply the demand of individual consumers [60]. Figure 10 illustrates the HL as a relevant referring
point of reliability studies to date.
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3.2. Utilisation of ESSs in Improving Power System Reliability

In this section, a number of research articles related to contributions of ESSs to improving power
system reliability are highlighted. We select 54 related articles, which we further classify in accordance
with the type of energy source integrated with ESSs. Depending on the functionality of the ESS, energy
storage can serve as either a conventional or RE source.

3.2.1. Conventional Energy

Conventional energy is non-renewable and is mainly extracted from fossil fuels. According to [5],
fossil fuels contribute approximately 85% of global energy demand. However, excessive fossil fuel
consumption leads to the decrease in fossil fuel reserves, highly fluctuating oil price, and global climate
change [61]. Therefore, researchers are seeking for alternatives to mitigate these problems. One of
the solutions is the utilisation of ESSs. ESSs have a wide range of applications that can help mitigate
the aforementioned concerns from overconsumption of conventional energy, such as peak shaving
and demand-side management. Table 7 highlights several studies related to the benefits of ESSs for
fossil-fuel-dependent power systems.
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Table 7. Notable works of ESS utilization in conventional power systems.

Source HL Contribution Limitation(s)

[62] HL3 Proposes an integration of real-time thermal rating
(RTTR) with ESS to further improve system reliability.

May extend research by proposing methods
to optimize nodal siting of RTTR.

[63] HL3
Proposes a technique to improve economic operation
based on the hourly variable electricity price on
substation nodes.

Does not specify consideration for forced
outage rate of system components.

[64] HL3
Proposes an optimization technique of ESS sizing and
siting for reliability improvement in
distribution networks.

May extend research by proposing a
method to optimize nodal siting of ESS.

[65] HL2 Proposes a multistage generation expansion planning
and ESS scheduling to minimize net costs.

Does not specify consideration for forced
outage rate of system components.

[66] HL3 Proposes an implementation of vehicle-to-grid under
battery exchange (BE) mode.

May extend research by optimally sizing BE
station capacity to improve reliability
between consumers and utility companies.

3.2.2. Renewable Energy

The utilization of renewable sources for electric power supply has received increasing
attention due to global environmental concerns associated with conventional energy generation [67].
In conventional generation systems, the generated energy must be consumed instantaneously;
otherwise, it will be wasted. Intermittency of RE sources also causes high fluctuations in the power
generated by these types. Therefore, ESSs are introduced to mitigate these problems by storing energy
during low demand and supplying energy during peak demand.

From the selected articles, we obtain 49 articles related to the utilization of ESSs for RE-integrated
power systems. Related RE sources are wind and solar along with hybrid RE resources. Hybrid RE
resources refer to multiple renewable resources integrated into the power system.

Amongst all papers reviewed, most papers focus on the utilization of ESSs in wind-integrated
power systems. According to [68], wind energy ranks second after hydroelectric energy in terms
of installed capacity and is experiencing rapid growth. For a transmission network, wind energy
contribution is restricted to a certain percentage of system load to maintain system stability from
sudden change in output power of wind generation. For reliability studies, wind energy is
usually modelled by considering its intermittency, and wind speed is assumed to change hourly.
Various techniques have been proposed to model wind energy, which is usually modelled using
the auto-regressive moving average (ARMA) model or the Weibull function. The ARMA model
generates random wind speed as an ARMA model [69]. By contrast, the Weibull distribution considers
wind speed, shape factor, and scale factor [70]. Other models are also applied, such as the Rayleigh
probability distribution function (PDF) [71] and available capacity probability tables [72]. Table 8
shows articles related to the contribution of ESS to wind-integrated power systems.
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Table 8. Notable works of ESS utilization in wind-integrated power systems.

Source HL Contribution Limitation(s)

[73] HL3 Proposes an integration of tactical and operational management
for energy arbitrage and reliability improvement.

Does not specify consideration for forced outage rate of
system components.

[74] HL3 Presents an optimization of storage reserve sizing that considers
minimization of system costs.

Does not specify consideration for forced outage rate of
system components.

[75] HL1 Proposes a reliability assessment of ESS in a wind-integrated
power system for the case of Jeju Island.

May extend research by proposing a method to optimize
ESS sizing.

[76] HL3 Proposes the reliability evaluations of mobile BESSs on
distribution networks. May extend research by including sensitivity studies.

[71] HL3 Proposes an optimization technique of ESS sizing and nodal siting
whilst minimizing system total costs.

May extend research by considering fluctuating costs of diesel
consumption.

[77] HL3 Presents an optimal sizing solution for ESS on a stand-alone
wind-integrated power system.

Does not specify consideration for forced outage rate of
system components.

[78] HL2 Proposes a stochastic method to consider the fluctuation in RE
output power.

Does not specify consideration for forced outage rate of
system components.

[72] HL3 Proposes an analytical model for reliability evaluation of ESS
whilst optimally minimizing system net costs. May consider fluctuating costs of diesel in future research.

[79] HL3 Proposes a technique of integrating ESS with dynamic
network reconfiguration.

Does not specify consideration for forced outage rate of
system components.

[80] HL3 Presents an innovative operating strategy for a distribution
network utilizing model predictive control.

May extend research by sizing the capacity of wind and
ESS optimally.

[81] HL2 Proposes a reliability assessment to determine the adequate size
of ESS whilst considering the need for transmission upgrade.

Does not specify consideration for forced outage rate of
system components.

[82] HL1 Conducts a range of studies to evaluate reliability impacts of
wind and hydro coordination.

May extend research to determine reservoir
capacities optimally.

[83] HL3 Proposes a method to determine the economic point of wind
energy capacity whilst improving reliability.

Does not specify consideration for ESS constraints, such as the
maximum rate of charging and discharging.

[84] HL2 Proposes an evaluation of reliability impacts of ESS with an
intelligent operating strategy.

May extend research by including cost–benefit whilst
considering customer interruption costs.

[85] HL3 Presents a stochastic capacity expansion planning of a microgrid. May extend research by including associated cost, such as
equipment transportation each time the system is upgraded.

[86] HL2 Evaluates the impacts of PHES on effective deferring of
transmission line expansions.

The proposed planning method is intended for future
expansion of 10 years to come. Thus, future study may include
consideration of component price change within the period.

[87] HL3 Evaluates a reliability constraint of optimal ESS capacity sizing. May extend research by including optimal nodal siting of ESS.

[88] HL3 Proposes an integration of demand response program with ESS to
reduce total costs and improve reliability.

Does not specify consideration for ESS constraints, such as the
maximum charging and discharging rates of the battery.

[89] HL3 Proposes a dispatch strategy to determine optimal ESS capacity. May extend research by adding unit operational constraints.

[90] HL3 Includes the cost of energy not supplied whilst optimizing the
total cost of the system.

Does not specify consideration for forced outage rate of
system components.

[91] HL1 Investigates the amount of RE capacity to replace conventional
generation with the aid of PHES. May extend research by optimizing ESS sizing.

[92] HL2 Presents a probabilistic optimal power flow for optimal sizing of
the capacity of ESS and for nodal siting of ESS.

May extend research by considering fluctuating costs of
conventional generation.

[93] HL1 Proposes a method to determine the unit commitment of a power
system with PHES.

Does not consider uncertainty caused by fluctuating wind
output power.

[94] HL3 Proposes a method to determine the size of batteries based on loss
of load probability (LOLP).

Applies a nonsequential Monte Carlo simulation that does not
recognize fluctuations of wind output power.

[95] HL1 Proposes an analytical method to assess the reliability of a
wind-integrated power system.

May extend research by proposing optimization methods on
ESS sizing and siting.

[96] HL3 Proposes a cost/worth evaluation of ESS on a wind-integrated
power system. May extend research by considering fluctuating costs of diesel.

Solar energy is also gaining considerable interest because the source is abundant and inexhaustible.
Solar energy is usually extracted using PV technology, which directly converts solar energy into
electrical energy. A familiar solar generation technique is the Hybrid Optimization of Multiple Electric
Renewables (HOMER) simulation program, developed by the National Renewable Energy Laboratory
to generate hourly solar radiation at specific locations [97]. The reliability configuration of PV cells can
also be modelled on the basis of other techniques, such as total cross-tied configuration [98], statistical
modelling of beta, and Weibull and log normal functions [99]. Table 9 highlights studies related to ESS
contributions to solar-integrated power systems.
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Table 9. Notable works of ESS utilization in solar-integrated power systems.

Source HL Contribution(s) Limitation(s)

[100] HL1 Proposes a reliability evaluation of ESS on a stand-alone
solar power system.

Does not specify consideration for forced outage rate
of system components.

[101] HL3 Presents a cost–benefit analysis in a microgrid integrated
with ESS and solar energy. Does not specify modelling techniques of solar power.

[98] HL3 Presents a probabilistic approach to determine adequacy
in a stand-alone solar power system.

May extend research by sizing the capacity of
ESS optimally.

[99] HL3 Presents an optimization technique to size a stand-alone
solar power system integrated with batteries.

Does not specify consideration for forced outage rate
of system components.

[102] HL3 Presents a multi-objective optimization technique to
minimize operational costs whilst improving reliability.

Does not specify consideration for forced outage rate
of system components.

[103] HL3 Performs a reliability analysis of the contribution of ESS to
solar power system reliability.

Applies a nonsequential Monte Carlo simulation that
does not recognize fluctuations in solar output power.

[104] HL3 Proposes a technique to calculate the size of batteries
based on LOLP.

Applies a nonsequential Monte Carlo simulation that
does not recognize fluctuations in solar output power.

Hybrid RE-integrated power systems are initiated to compensate for the shortcomings of other
resources. They are usually adopted to supply energy for remote places and are isolated from utility
grids, thereby forming their own microgrids. The most common hybrid unit is a solar–wind system
due to the simple installation and mature technology advancement. Therefore, hybridization of solar
and wind energy is a potential breakthrough for large-scale power systems, such as transmission and
distribution networks [105]. Table 10 presents the selected articles on ESS contributions to hybrid
solar–wind-integrated power systems.

Table 10. Notable works of ESS utilization in hybrid solar–wind-integrated power systems.

Source HL Contribution(s) Limitation(s)

[44] HL3 Proposes a reliability evaluation of an RE-integrated
power system with electric vehicle operating strategy.

Applies a nonsequential Monte Carlo simulation that
ignores the fluctuations of solar and wind output power.

[106] HL3 Proposes a novel Cuckoo search method to size system
components optimally whilst minimizing costs.

May extend research by including optimization of
nodal sizing.

[107] HL3 Presents particle swarm optimization (PSO) method to
size system components optimally.

May extend research by including the effect of ESS
nodal siting.

[108] HL3 Presents a stochastic approximation method to
optimize system components.

May extend research by including the effect of ESS
nodal siting.

[109] HL3 Proposes different operating strategies of diesel
integrated into a hybrid RE system.

Does not specify battery constraints, such as
charging/discharging constraints and
maximum/minimum capacity.

[110] HL3 Uses loss of power supply probability to determine the
reliability of a stand-alone power system.

Does not specify consideration for forced outage rate
of system components.

[111] HL2 Proposes an ESS optimal scheduling by considering
system reliability.

May extend further research to size ESS
capacity optimally.

[112] HL3 Presents energy dispatch solutions by incorporating
power loss and reliability statistics.

Does not specify consideration for forced outage rate
of system components.

[113] HL3 Presents a multi-objective PSO method to minimize
costs and improve reliability.

Does not consider the uncertainty within wind speed,
solar radiation, and load demand.

[114] HL3 Presents an optimal expansion planning that aims to
maximize reliability and minimize costs.

Implementation of interval linear programming can
overly estimate true solution bounds.

[67] HL3 Presents a reliability analysis of ESS on a power system
utilizing wind and/or solar energy.

Does not specify the consideration for ESS constraints,
such as the maximum charging and discharging rates
of the battery.

[115] HL3 Presents a simulation method that extends well-being
analysis to RE.

Does not specify the consideration for ESS constraints,
such as the maximum charging and discharging rates
of the battery.

[116] HL3 Presents a reliability evaluation of a microgrid
consisting of RE generation and ESS.

Applies a nonsequential Monte Carlo simulation that
does not recognize fluctuations in RE output power.
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The articles reviewed show that other renewable resources which can be hybridised are tidal,
hydro, and biomass energy. However, these units are not commonly applied because their technology
developments are still at the infancy stage. Therefore, they are not economic. In [117], ESS is integrated
into a hybrid solar–wind–biomass-integrated power system. Operating strategies for supply-adequate
microgrids considering real and reactive power are also proposed. Meanwhile, reference [118] assessed
the reliability contribution of ESS to hybrid tidal–wind power systems. Reference [119] presented
energy dispatch solutions by using ESS in a hybrid solar–wind–hydro-integrated power system.
A hydro-plant model can be obtained from a Box–Muller distribution [120], and tidal energy can be
modelled using the Wakeby distribution [118].

4. Discussion

This paper presents a comprehensive review on the development of ESS technologies and their
applications. Different technologies are classified and analysed in accordance with their respective
storage media. Their real-life applications are also presented. From the synthesised information,
we conclude that ESSs are accepted by many countries as viable solutions for power system applications.
However, their installations are mainly focused in Europe and North America, which are pioneers of
the IEA Annex IX storage programme. Therefore, they have advanced research and development on
storage systems. The Eastern Asia countries of China and Japan are also advancing, whereas other
parts of the Asian continent remain unfamiliar with ESSs.

From the extracted papers, we observe that the application of energy storage in distribution
networks is more prevalent than that in transmission networks. Microgrids are distribution networks
that are mostly dedicated to serving isolated areas. However, advanced research on power systems in
recent years has enabled interconnection of microgrids to distribution networks to form smart grids
consisting of RE sources and ESSs. At present, other smart solutions, such as real-time thermal rating
(RTTR) and demand-side management (DSM) integrated with ESS, have been developed to form
highly reliable networks.

We also observe an increasing trend of utilising various techniques to optimise ESS, especially
in terms of capacity sizing and nodal siting. Apart from these optimisation techniques, methods
considering economic constraints are also introduced, such as model predictive control and stochastic
dynamic programming. The trend is expected to continue to increase for maximising reliability
optimally whilst minimising net costs.

5. Conclusions and Potential Future Works

Viewing the previous works on ESSs and power system reliability, we find shortcomings in the
literature that future research can address. For instance, future research should more explore other
renewable energy sources besides wind and solar energy. To the authors’ best knowledge, modelling
on other energy sources is limited. Therefore, future works can focus on developing accurate and
efficient models of these sources to advance reliability studies.

Other than that, future research may consider reliability impacts of hybrid energy storage
in modern power networks. Currently, hybrid energy storage is developing rapidly in terms of
technological development. However, it is still not convincing enough to be implemented in real
applications. For future works, researchers may study its impact on power system reliability to assist
utility operators in decision-making.
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