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Abstract: We present a novel architecture of parallel contingency analysis that accelerates massive
power flow computation using cloud computing. It leverages cloud computing to investigate huge
power systems of various and potential contingencies. Contingency analysis is undertaken to assess
the impact of failure of power system components; thus, extensive contingency analysis is required to
ensure that power systems operate safely and reliably. Since many calculations are required to analyze
possible contingencies under various conditions, the computation time of contingency analysis
increases tremendously if either the power system is large or cascading outage analysis is needed.
We also introduce a task management optimization to minimize load imbalances between computing
resources while reducing communication and synchronization overheads. Our experiment shows that
the proposed architecture exhibits a performance improvement of up to 35.32× on 256 cores in the
contingency analysis of a real power system, i.e., KEPCO2015 (the Korean power system), by using a
cloud computing system. According to our analysis of the task execution behaviors, we confirmed
that the performance can be enhanced further by employing additional computing resources.

Keywords: contingency analysis; power flow computation; coarse-grained parallelism; cloud computing;
task management optimization

1. Introduction

As the complexity of power systems increases with the demand for electric power, the use of
advanced power system equipment is becoming more widespread. Furthermore, power systems have
become significantly more complicated following the integration of renewable energy resources, such as
solar and wind [1]; the employment of high-speed operating devices, such as flexible AC transmission
systems (FACTS) and high voltage direct current (HVDC) [2]; and the increasing prevalence of
electric vehicles. In addition, although end users have only acted as electricity consumers in previous
decades, smart grid environments enable them to take advantage of information technology (IT) and
advanced power system facilities to become independent electric power suppliers [3]. In particular,
the adoption of an energy storage system (ESS) provides opportunities for installing a variety of
distributed power sources in the grid [4]. Hence, it is plausible that the complexity of power systems
will increase continuously.

Contingency analysis, which is used to assess the effects of power system component failures
in advance, is conducted to enable better power system management. Unfortunately, the number
of computations required to calculate the power flow increases with the complexity of the power
system [5]. There have been many studies on methods and applications of power flow computations,
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and the Newton–Raphson (N-R) [6] and Gauss–Seidel (G-S) [7] methods have been adopted widely for
this purpose. These computations take a long time even though the performance of computing devices
is improving continuously. This is because one of the key steps of power flow computation is to solve
nonlinear equations.

The computation time increases with the scale and complexity of a power system. In large power
systems, many contingencies must be analyzed because the operation of the system is predicted for each
possible contingency. Thus, the analysis is extremely time-consuming. Although n− 1 contingencies
are assumed for power system analysis in general, analyses of n− k contingencies (several devices
failing at the same time) and n − 1− 1 contingencies (a sequence of accidents) are also necessary
for real power system operation [8]. In the case of n− k contingency analysis, we can assume that k
components fail at the same time. In this case, the large number of possible combinations of faults
means that many calculations are required. In the case of n− 1− 1 contingencies, two devices fail
sequentially. Therefore, the number of possible n− 1− 1 contingencies is equal to n multiplied by n− 1.

Many calculations, requiring high performance computing, are necessary for power system
analysis [9]. We can improve the speed of these calculations by applying parallel processing. Various
methods for applying parallel processing for power flow computation have been studied previously.
The basic concepts of using parallel processing for power flow computations are presented in [10,
11]. Following the publication of those papers, there have been some studies on parallel power
flow computations in high speed computing environments [12–15]. In recent years, several studies
have analyzed power systems by constructing an environment that physically uses a large number
of cores [16,17].

The parallelism method of calculation, as an alternative to employing a number of cores, has also
been studied extensively. Analysis of a power system requires many calculations related to the matrix
and a number of studies have focused on parallel processing of matrix calculations [18,19]. In addition,
graphics processing units (GPUs) have been used for fast power flow calculations, as an alternative to
other machine cores for parallel processing [20–23]. Detailed explanations of the parallel processing
issues affecting early research are provided in Section 3.

Previous studies have already established that it is better to use parallel processing for analysis of
power systems with high computational complexity. For efficient parallel processing, it is necessary
to secure resources for calculation; however, physical expansion is limited by cost, and, even if a
dedicated system is provided, there is the further disadvantage that the machine is idle when the
analysis is not in progress. To overcome these drawbacks, we propose a parallel processing scheme
for power system analysis using cloud computing, in which the necessary computing resources can
be acquired at the required time. In recent years, technology has advanced to the stage where it is
relatively easy to create an environment that enables researchers to take advantage of cloud computing.

Parallel processing can be divided into fine-grained parallelism for allocating parts of the operation
and coarse-grained parallelism for parallel processing of the entire operation. Most previous studies
on matrix handling have investigated fine-grained parallelism. In this study, we propose a cloud
computing-based contingency analysis method that exploits coarse-grained parallelism so that the
entire computation is parallel. We obtained a significant performance improvement in the contingency
analysis of KEPCO2015 by using a Hadoop-based Amazon EC2 cloud computing system with
1 NameNode and 16 DataNodes.

The experimental results show that our proposed contingency analysis achieved speedups of
8.00×, 17.98×, 27.28×, and 35.32× on 32, 64, 128, and 256 cores, respectively, when adopting task
management optimization. We also confirmed that the addition of computing resources can lead to
further performance enhancement, even for more contingencies, because the total execution time
decreases in proportion to the number of cores used.

In summary, the main contributions of this paper are:

• We propose a massive parallel contingency analysis using a cloud computing platform.
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• We propose a task management optimization to improve performance and scalability of the
parallel contingency analysis on a Hadoop-based cloud computing system.

• We obtained a 37-fold or greater performance improvement on the Amazon Web
Service (AWS) environment.

The rest of the paper is organized as follows: In Section 2, we describe the background of our study
and briefly explain cloud computing, parallelism granularity, and power flow computation. We present
related works in Section 3. In Section 4, we introduce the overall architecture of our contingency
analysis method, the N-R method, and the motivation for this study. In Section 5, we provide a
detailed description of a massive cloud computing-based power flow computation. We evaluate the
performance of our method in terms of speedup and present task execution behavior in Section 6.
Finally, conclusions are provided in Section 7.

2. Background

2.1. Cloud Computing

Cloud computing is an Internet-based computing technology that facilitates ubiquitous access to
a shared and distributed pool of configurable computing resources such as storage, networks, servers,
applications, services, and so on [24–27]. Cloud computing allows users to process and store data in a
privately owned cloud or third-party server located within a data center. It improves the performance
of applications through enhanced manageability and the requirement for less maintenance; thus, it also
contributes to meeting additional user requirements.

Figure 1 presents a brief conceptual diagram of cloud computing. The cloud computing
environment primarily consists of infrastructure, platform, and software; on-demand computing
resources are delivered to clients in the form of these services such as Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [28,29].

• SaaS: Cloud-based applications that are run on remote computers in the cloud and are maintained
by a third party. In general, users access these applications via their web browsers.

• PaaS: All of the resources are provided to deliver web-based cloud applications without the cost
and complexity associated with establishing and maintaining the underlying hardware, software,
provisioning, and hosting.

• IaaS: Computing resources of infrastructure, including storage, network, and servers, are provided
to clients on a pay-per-use basis.
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Figure 1. Conceptual diagram of cloud computing.
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2.2. Parallelism Granularity

In parallel computing, parallelism granularity indicates a qualitative measure of the ratio of
computation to communication [30]. Synchronization events usually separate periods of computation
from periods of communication. The granularity of parallelism is mainly classified into two
categories based on the amount of work that is performed by a parallel task: fine-grained and
coarse-grained [31,32].

2.2.1. Fine-Grained Parallelism

Figure 2 presents an example of obtaining fine-and coarse-grained parallelism from a single
sequential program. As shown in Figure 2c, in fine-grained parallelism, a subprogram is divided into a
large number of small tasks that are individually assigned to, and then executed by, multiple processors.
As each of the tasks is small, and the tasks are distributed evenly across the processors, fine-grained
parallelism significantly improves load balancing, but it also has the disadvantage of increasing
communication and synchronization overheads. Hence, fine-grained parallelism is suitable for use
with shared memory architectures, e.g., GPUs, that provide fast communication between multiple
processors [33,34]. Programmers rarely make explicit use of this parallelism, so in general the
parallelism is controlled by compiler technology [35].
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Figure 2. Example of fine- and coarse-grained parallelism. Arrows indicate task execution.
In a sequential program, the tasks are executed from top to bottom in order over time.

2.2.2. Coarse-Grained Parallelism

Figure 2b illustrates that coarse-grained parallelism divides one program into large tasks.
Since subprograms with a large number of tasks are assigned to different processors, the parallelism
confers the benefits of low communication and synchronization overheads, but incurs load imbalance
problems. Message-passing architecture is definitely suitable for coarse-grained parallelism, since
it requires a long time to transfer data between multiple processes [36]. We need to separate and
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parallelize a program ourselves based on a full understanding of its code; thus, it is somewhat
challenging to exploit this parallelism [37].

3. Related Works

Typically, power system analysis is based on contingency analysis, which is in turn based on the
results of power flow computations. As mentioned earlier, the time required to compute power flows
increases with the size and complexity of the power system. In addition, the number of contingencies
requiring analysis also tends to increase for stable power system operation.

As the performance of computers continues to improve, parallel processing is not necessary when
conducting power flow computations for a small number of contingencies. However, when analyzing
a large number of contingencies, it is advantageous to adopt parallel processing and thus reduce the
computation time. For instance, it would be useful to perform N − k contingency analysis in parallel.
The computational complexity of this analysis is very large, so it is appropriate to process the power
flow computations in parallel.

The basic concepts related to the application of parallel processing to power flow computation
are explained in [10,11]. Parallel contingency analysis in high performance computing environments
is studied in [12], where an effective method for conducting contingency analysis using parallel
processing is presented. In [13], a dynamic computational load balancing method is proposed using
high performance computing machines for a large number of computations.

There have been attempts to improve the performance of parallel computing using multiple
machines. Recently, several large-scale projects using parallel computing have been performed for
power system analysis. In [16], contingency analysis is performed using a commercial program in a
massively parallel environment. A total of 4127 contingencies were scaled to 4127 cores and the solution
time is reduced significantly. In [17], a computational platform for dynamic security assessment of
a large power system with a commercial analysis tool is presented as a part of the iTesla project;
10,000 cores are used in the case study in this project.

The need for high computing power to analyze a power system and its effects is demonstrated
by the results of previous studies. However, there is a physical constraint whereby many large-scale
connected computing machines are needed. In this paper, we propose a power system analysis platform
using cloud computing as a solution to this limit, without the need for a commercial analysis tool, and
we obtain reasonable results without physical constraints by using the cloud computing environment.

There have also been a number of previous studies on how to distribute calculations for parallel
processing, and most previous research has focused on applying matrix calculation to parallel
computing [10,18,19]. These studies are based on fine-grained parallelism that assigns some of
the calculations. Another method for exploiting fine-grained parallelism is to perform power flow
computations using GPUs. The GPU-based technique is an example of a parallel processing method
that increases the speed of power flow computations. In [20], the basics of parallel computing using
GPUs are established, and a method for utilizing GPUs is presented in [21]. A detailed implementation
of power flow computation parallel processing done using GPUs is provided in [22,23], with reasonable
results. Using GPUs is an effective method for reducing the time taken for power flow computations,
but does not exploit the coarse-grained method of assigning all calculations. In addition, there is a
limit to the increase in the speed because the overall effect of the parallel processing depends on the
performance of the hardware. To overcome these weaknesses, we herein propose a method to perform
power flow computations in a cloud computing environment without specific hardware configurations
and exploit coarse-grained parallelism to perform entire computations in parallel.
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4. Challenges in Contingency Analysis of Real Power Systems

4.1. Overall Architecture of Contingency Analysis

Algorithm 1 describes the structure of a conventional contingency analysis that performs the
power flow computation of a power system for N different contingencies. The inputs of the algorithm
are Ctg and Din, which denote a list of contingency data and cluster data of the power system,
respectively. The output is Dout, which is a list of convergence results of the power system for all
contingencies. Dtmp indicates the result of applying one contingency to the cluster data and Dout

i is the
result of the i-th power flow computation.

This analysis algorithm mainly consists of the following two procedures. First, it updates the
cluster data of a power system using the i-th contingency data, i.e., Ctgi, at Line 5. Second, it obtains
a convergence result of the updated cluster data by performing a power flow computation at Line 7.
Since the algorithm repeats the previous two procedures for all contingency data, its execution time
linearly increases in proportion to the number of contingencies, i.e., N.

Algorithm 1 Contingency analysis.

INPUT Ctg: list of contingency data, Din: cluster data.
OUTPUT Dout: list of convergence results.

1: procedure CONTINGENCYANALYSIS(Ctg, Din)
2: i = 0;
3: while i < N do
4: // Updates cluster data with i-th contingency
5: Dtmp = UpdateClusterData(Din, Ctgi);
6: // Performs i-th power flow computation
7: Dout

i = PowerFlowComputation(Dtmp);
8: end while
9: end procedure

4.2. Newton–Raphson Based Power Flow Computation

The N-R method can be used to determine the magnitude and angle of the voltage at each bus in
the power system. A brief description of the N-R method and its application is as follows.

The general form of the nodal equation for a power system network is:

I = YbusV (1)

where Ybus is the admittance matrix of the network, I is a current vector, and V is a voltage vector.
The ith equation, describing the flow at bus i, is:

Ii =
n

∑
k=1

YikVk (2)

A complex power equation can be expressed as follows:

Si = Vi(
n

∑
k=1

YikVk)∗ = Vi

n

∑
k=1

Y∗ikVk∗ = Pi + jQi (3)

It is necessary to derive power balance equations before we can solve the power flow problem.
The method for deriving power balance equations is discussed in detail in [38], so we only provide the
derived equations. At bus i, the power balance equations are
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Pi =
n

∑
k=1
|Vi||Vk|(Gikcosθik + Biksinθik) (4)

Qi =
n

∑
k=1
|Vi||Vk|(Giksinθik − Bikcosθik) (5)

The N-R method is an iterative technique for solving a set of nonlinear equations. We can use
Equations (4) and (5), which are nonlinear power balance equations, to calculate the power flow
solutions. The N-R method is described in detail in [38]. The matrix form of the resulting linear set of
equations is:

∆ f = J∆x (6)

where J is the Jacobian. We can obtain the complete formulation of the power mismatch using the
power balance equations in Equations (4) and (5) and the N-R method from Equation (6), as follows:[

∆P
∆Q

]
=

[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

]
︸ ︷︷ ︸

Jacobian

[
∆θ

∆V

]
(7)

The N-R method converges to the solution after fewer iterations than the G-S method, and is more
accurate. In addition, it exhibits better convergence during the computation, and is more efficient in
large-scale systems. However, it usually requires more computation per iteration than other power
flow computation methods, so the computation time per iteration is slightly longer. To improve the
performance and feasible size of the computations by implementing parallel processing, we selected
the N-R method for the power flow computations in this study.

4.3. Motivation

Figure 3 shows the execution time of contingency analysis for a variety of power systems,
including a real power system, i.e., KEPCO2015. For each power system, we performed the contingency
analysis by applying the contingencies from each branch in turn. In other words, we computed the
power flow of a power system with N − 1 branches, where N is the total number of branches of the
system. Hence, we employed 17, 32, 64, 170, 306, and 2589 contingencies to evaluate the execution
time of contingency analysis for power systems, IEEE14, IEEE24, IEEE57, IEEE118, IEEE300, and
KEPCO2015, respectively. The specifications of the power systems are briefly outlined in Table 1,
which describes how many buses, generators, and branches are involved in each system.

These results show that the contingency analysis takes less than 1 s in most of the IEEE systems,
except for IEEE300, which requires up to 10.914 s. However, we obtained a completely different result
for KEPCO2015, which represents the state of a real power system located in South Korea in 2015.
Due to its large-scale cluster data including buses, branches, generators, and so on, the contingency
analysis requires a considerably long execution time, i.e., 1636.589 s. Further, if we assume that
contingencies from more than two different branches can take place at the same time, the execution
time increases significantly because the number of contingencies to be analyzed grows exponentially.
The contingency analysis in most real power systems consumes a significantly large amount of
execution time, and acceleration of this analysis should be studied.

In this paper, we propose a parallelized contingency analysis using cloud computing by exploiting
the coarse-grained parallelism of independent contingencies from each other.
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Table 1. Brief Specification of Power Systems.

Power System Buses Generators Branches

IEEE14 14 5 17
IEEE24 24 11 32
IEEE57 57 7 64
IEEE118 118 54 170
IEEE300 300 69 306

KEPCO2015 1946 390 2589

0.011

0.02

0.175

0.755

10.914

1636.589

x150

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

0.01

0.1

1

10

100

1000

Power Systems

IEEE14 IEEE24 IEEE57 IEEE118 IEEE300 KEPCO2015

Figure 3. Execution time of conventional power system contingency analysis. For each power system,
we obtained the results by evaluating the effects of the contingencies from each branch in turn.

5. Massive Power Flow Computation Using Cloud Computing

In this section, we describe how to perform massive power flow computations using cloud
computing. We explain how to obtain coarse-grained parallelism of the power flow computation with
the MapReduce framework. In addition, we present a case study that performs parallel contingency
analysis on a Hadoop platform [39].

5.1. Exploiting Coarse-Grained Parallelism with MapReduce

Some previous works on power flow analysis parallelization have obtained fine-grained
parallelism by parallelizing a conjugate gradient algorithm for solving a linear system, i.e., a system
of the form Ax = b, which is the most time-consuming part of the power flow analysis. However,
performance improvements derived from the fine-grained parallelism are restricted by computing
resource limitations if a large power flow analysis, e.g., contingency analysis, is performed. In addition,
some other studies have presented to exploit coarse-grained parallelism by independently performing
multiple contingency analysis on multi-processors in parallel. Although they employ well-known
parallel programming models such as OpenMP (Open Multi-Processing), MPI (Message Passing
Interface), and so on, it is still very challenging for users to obtain significant coarse-grained parallelism
due to inevitable load imbalance and communication overhead.

We propose to resolve this problem by exploiting coarse-grained parallelism within a MapReduce
framework on cloud computing. We can significantly improve the performance of a massive power
flow analysis by simultaneously executing multiple independent tasks via the enormous computing
capability of cloud computing. In particular, since most of the recent MapReduce-based cloud
computing environments also provide GPU-based computing capabilities that make it easy to
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implement fine-grained parallelism [40], we were able to maximize the performance of our method
by applying it orthogonally to the existing fine-grained parallelism. MapReduce is one of the most
prominent programming models used to produce and manipulate large datasets by executing parallel
and distributed algorithms on computing clusters. In general, a MapReduce system is designed
to be maintained on many distributed servers, to perform multiple tasks in parallel, to manage
communication between the different components of the system, and to support redundancy and
fault tolerance.

Figure 4 presents a brief overview of a MapReduce program. A MapReduce program principally
consists of a map function that filters and sorts the input data, and a reduce function that integrates
the intermediate data from the map function into the output data. Each split input item is assigned
to a mapper by a task scheduler, and the mapping results are output to intermediate files. The files
are shuffled, partitioned, and then input to the reducers, which assemble the output data. To obtain
significant coarse-grained parallelism, we need to divide the input data to minimize communication
and synchronization overheads so that each of the mappers performs a large number of tasks
independent from each other.

Input

Data Files Mapper 1

Mapper 2

Mapper 3

Split 1

Split 2

Split 3

Split M

Mapping
Intermediate

Files

Reducer 1

Reducer 2

Reducing

Reducer N

Output

Data

…

Mapper M

Figure 4. Overall architecture of a MapReduce program.

5.2. Case Study: Hadoop-Based Parallel Contingency Analysis

Our parallel contingency analysis program, which uses Hadoop infrastructure to perform massive
power flow computations, is outlined schematically in Figure 5. The input data is stored in a Hadoop
distributed file system (HDFS) comprised of the following two types of data: a set of contingency data
and a set of cluster data. Each contingency is assigned to a different mapper, but the cluster data are
shared by all of the mappers.

First, each mapper updates the cluster data with the given contingency data, and then performs
power flow analysis to estimate the convergence of the power system specified by the cluster data.
The mapper returns a key and value pair, i.e., a contingency ID (CID) and the maximum mismatch,
for each iteration of the N-R algorithm. In our implementation, the N-R algorithm is implemented
in C/C++ and is accessed using a Java native interface (JNI) in the mapper, i.e.,the map method.
Second, the intermediate results from the mappers are delivered to reducers after being shuffled and
partitioned. Then, each reducer takes a pair of key and list values, i.e., a CID and a list of mismatch
values, and estimates whether the cluster converges at the contingency that is indicated by the CID.
The reducer also returns a key and value pair, i.e., a CID and the result of the convergence analysis
result. Finally, the results of the convergence analysis for all contingencies are merged together and
written to an output file.
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Figure 5. Hadoop-based parallel contingency analysis. Ctg denotes a contingency scenario and an NRR
is a result derived from an iteration of the Newton–Raphson (N-R) algorithm.

6. Performance Evaluation

In this section, we describe the experimental environment in detail and evaluate the performance
of our Hadoop-based parallel contingency analysis.

6.1. Experimental Environment

In Table 2, we describe the organization of the Hadoop-based cloud computing system that we
employed to assess the performance of our proposed parallel contingency analysis. We assembled
the Hadoop system using remote computing resources from Amazon Elastic Compute Cloud (EC2),
which are provided by AWS. We used Cloudera’s open-source Apache Hadoop distribution, i.e., CDH,
which provides an Apache Hadoop framework such as Hadoop YARN, HDFS, and so on.

In detail, the Hadoop system occupies a single NameNode and 16 DataNodes. A NameNode
is designed to provide a unified namespace that the HDFS uses to manage access to the data files in
the distributed file system. It also supports file system operations, such as open, close, and rename,
and maps split data files, i.e., data blocks, to DataNodes. The DataNodes redundantly store the data
blocks in their storage, execute read and write operations on the blocks, and implement the map and
reduce procedures.

For the evaluation, we designed each of the DataNodes to utilize 2, 4, 8, and 16 cores of an Intel
Xeon E5-2686 v4. Hence, we performed the experiments with a large number of cores, i.e., 32, 64,
128, and 256, by using 16 DataNodes together. Further, since we adopted M4 instances of AWS EC2,
we expected to use different network bandwidths of 450, 750, 1000, and 2000 Mbps when using 32, 64,
128, and 256 cores, respectively. We performed 16 reduce tasks, which we started after more than 90%
of all map tasks were complete.
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Table 2. Organization of our Hadoop-based cloud computing system.

Feature Description

Cloud computing platform Amazon EC2
Hadoop platform Cloudera Manager, CDH 5.2

Hadoop framework Hadoop YARN MR2, HDFS
Hadoop NameNode 1 NameNode with 4 cores
Hadoop DataNode 16 DataNodes with 2, 4, 8, 16 cores each

Network bandwidth 450, 750, 1000, 2000 Mbps

6.2. Task Management Optimization

As mentioned in Section 2.2, to maximize the performance improvement from coarse-grained
parallelism in parallel contingency analysis, we are required to minimize load imbalance among
computing resources while diminishing the overheads of communication and synchronization [41].
We propose a task management optimization that splits all contingencies into as many chunks
as there are available cores in advance, and then assigns each of the chunks to a map task to be
executed on a single core. By adopting optimization instead of employing a single map task for each
contingency, we can improve the performance degradation caused by task management overhead on a
Hadoop platform.

6.3. Experimental Results

Figure 6 shows the performance improvement of our parallel contingency analysis of KEPCO2015
on 32, 64, 128, and 256 cores with respect to conventional contingency analysis. The gray bar represents
the speedup when adopting task management optimization and the white bar shows the results with
no optimization. Without the optimization, we obtained speedups of 1.78×, 3.26×, 6.62×, and 12.85×
on 32, 64, 128, and 256 cores, respectively. The speedup improved by slightly more than a factor of two
because the network bandwidth increased from 750 to 1000 Mbps when the number of cores increased
from 64 to 128. 1.78 3.26 6.62 12.858.00 17.98 27.28 35.32w/o opt. w/ opt.
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Figure 6. Performance improvement of Hadoop-based contingency analysis for KEPCO2015 while
increasing the number of cores from 32 to 256. The gray and white bars indicate, respectively,
the speedup obtained with and without application of the task management optimization described
in Section 6.2.

Furthermore, the task management optimization strategy significantly enhanced the performance
of the parallel contingency analysis. We improved the performance by up to 35.32× on 256 cores and
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achieved the speedup of 8.00×, 17.98×, and 27.28× on 32, 64, and 128 cores, respectively. These results
confirm that our proposed architecture yields significant performance improvements by exploiting
the coarse-grained parallelism of contingency analysis using cloud computing. In particular, as the
speedup increases proportionally to the number of cores used, we expect that additional computing
resources will lead to further performance enhancements.

Figure 7 shows the task execution behavior of our parallel contingency analysis of KEPCO2015,
both with and without applying the task management optimization. Each line indicates the total
completed tasks over time for the different numbers of cores, i.e., 32, 64, 128, and 256 cores.
The completed tasks involve both map and reduce tasks. As shown in Figure 7a, when the optimization
was not adopted, the number of completed tasks became identical to the number of contingencies in
KEPCO2015, i.e., 2589, and the total execution time decreased in proportion to the number of employed
cores, which increased from 32 to 256. 256 cores 128 cores64 cores32 cores Th
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Figure 7. The accumulated number of tasks completed over time during the parallel contingency
analysis of KEPCO2015: (a) without; and (b) with task management optimization.

Figure 7b shows that the number of completed tasks becomes equal to the number of occupied
cores through task management optimization. This is because we created and executed as many map
tasks as the number of cores, as mentioned in Section 6.2. We can also confirm that the optimization
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reduced the overall execution time for completing all tasks significantly. When using 256 cores,
the number of completed tasks increased relatively sharply in the first round, i.e., between 19 s and 29 s,
and then rose gradually over the next few seconds of the second round. In detail, after 90% of all the
map tasks were completed in the first round, 16 reduce tasks were created and executed in the second
round. Finally, from 33 s onwards, the number of completed tasks started to rise quickly again as the
reduce tasks began to finish. Although different numbers of cores were used, similar behaviors are
shown in each graph.

7. Conclusions

In this paper, we propose a novel parallel architecture for accelerating contingency analysis in
real power systems. To the best of our knowledge, our study is the first to suggest a cloud computing
platform for massive power flow computations by exploiting coarse-grained parallelism. We also
propose a task management optimization that divides all contingencies into as many chunks as there
are available cores in advance, and then assigns each of the chunks to a different core. This optimization
allows minimizing load imbalances between computing resources while diminishing the overheads
imposed by communication and synchronization.

As a result, we obtained a significant performance improvement in the contingency analysis
of a real power system, i.e., KEPCO2015, by using a Hadoop-based cloud computing system with
1 NameNode and 16 DataNodes on Amazon EC2. The experimental results show that our proposed
contingency analysis achieved speedups of 8.00×, 17.98×, 27.28×, and 35.32× on 32, 64, 128,
and 256 cores, respectively, when adopting task management optimization. Furthermore, from task
execution behaviors, we can expect to enhance the performance further by employing additional
computing resources, since the total execution time of tasks is decreased in proportion to the number
of cores used.

Different from the conventional fine- and coarse-grained parallelization technologies with
ultimately limited hardware resources such as GPU, local servers, and so on, our proposed architecture
can tremendously accelerate the analysis of large power systems that require massive power flow
computations by using unlimited cloud computing.
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