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Abstract: The electro-hydrostatic actuator (EHA) with variable pump displacement is considered to be
a promising alternative to the currently popular EHA with fixed pump displacement in terms of heat
reduction. This paper presents a load-sensing pump for the EHA which requires no additional power
source and can adjust its volumetric displacement automatically with load pressure. A load-sensing
pump prototype was developed and experiments were carried out on a test rig for it under different
operating conditions. In addition, an experimental campaign was performed on an EHA test bench
with a load-sensing pump and a fixed displacement pump. The results show that the load-sensing
pump can decrease its volumetric displacement automatically at high pressure and thus reduce the
heat generation of EHA system effectively.
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1. Introduction

Electro-hydrostatic actuators (EHA) have become popular in more electric aircrafts (MEA) with the
development of power-by-wire (PBW) technology [1,2]. The self-contained EHA system has partially
replaced the conventional centralized hydraulic system in MEA and provides localized hydraulic
power for flight control. This replacement offers substantial advantages for the aircraft, including
weight saving, safety and reliability improvement, easier maintenance, and higher efficiency [3–7].
A typical EHA system consists of a bidirectional electric motor, bidirectional hydraulic pump,
symmetrical hydraulic actuator, accumulator, and bypass valve [8,9]. The hydraulic pump used
is often called an EHA pump [10], which is driven by the electric motor and provides pressurized
fluid for the hydraulic actuator to power the flight control surface. The velocity and direction of the
hydraulic actuator are controlled by the delivery flow rate of the EHA pump and by the motor rotation
direction, respectively.

There are three different concepts for adjusting the flow rate of an EHA pump [11]. The first
approach is to change the pump speed, where the flow rate is controlled by the pump speed but the
volumetric displacement remains constant. The second method is the variable-displacement pump
with a fixed-speed drive, where the flow rate depends only on the volumetric displacement of the
pump. The third possibility for controlling the flow rate is a combination of variable speed and variable
displacement. In this case, the supplied flow to the hydraulic actuator can be regulated by controlling
the pump speed and volumetric displacement simultaneously. Among the above three strategies of
flow rate regulation, the third strategy has advantages of better dynamic performance and higher
efficiency over the other ones [12–15].
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According to the different combinations of pump and motor in the EHA system, the EHA
can be divided into three categories [4]: EHA with fixed pump displacement and variable motor
speed (EHA-FPVM), EHA with variable pump displacement and fixed motor speed (EHA-VPFM),
and EHA with variable pump displacement and variable motor speed (EHA-VPVM). In these
three EHA configurations, the EHA-FPVM is most popular in aerospace applications, because the
choice of fixed-displacement pump has great potential for pump size reduction and thus weight
saving [4–9,16]. However, a major problem with the EHA-FPVM is the large amount of heat generated
by the motor [17,18]. It is well known that the armature current is proportional to the motor torque,
which depends on the pump displacement and load pressure [19]. When the EHA works at high
pressure and low speed, the motor torque will increase significantly, resulting in large armature current
and thus great copper and iron losses within the motor. Instead of being carried away by hydraulic
fluid, the generated heat can only be cooled in the form of conduction due to the elimination of
conventional centralized hydraulic system. As a result, the heat problem limits the application of
EHA-FPVM, although it has a higher efficiency than the EHA-VPFM [20,21].

In recent years, the EHA-VPVM is identified as a promising EHA configuration since it combines
advantages of both variable displacement and variable speed. Specifically, it offers two control
variables, and thus provides a degree of freedom for process control. The delivery flow supplied for
the hydraulic actuator can be realized by different combinations of pump displacement and motor
speed. It is common to vary the pump displacement by adjusting the swash plate angle using a
hydraulic actuator controlled by a servo valve [22]. This method has a fast response, but the additional
hydraulic servo system makes the EHA system costly and complex. Alternatively, the swash plate angle
of the EHA pump is adjusted by an electrically driven variable displacement mechanism [19,23,24].
For example, the swash plate is directly driven by a DC servo motor instead of a hydraulic actuator,
which makes the EHA-VPVM more simplified and reliable, to some extent. However, the added
DC servo motor and high-precision gear reduce the economic efficiency and power density of the
EHA system.

In this paper, a load-sensing mechanism for the EHA-VPVM pump is presented based on the
principle of direct load-sensing control [25]. This mechanism is structurally simple and requires
no additional power source. The volumetric displacement of the EHA pump can be decreased
automatically as the load pressure increases, which effectively reduces the peak torque and heat
generation of the electric motor. In addition, an EHA pump prototype was developed, and tests were
carried out to verify the proposed load-sensing design.

2. Mathematical Analysis

Figure 1 illustrates the schematic diagram of an EHA system with a load-sensing pump. The valve
spool and linear spring work together to change the volumetric displacement of the EHA pump.
To avoid needing an additional power source, the self-supplied volume flow is taken from the output
flow of the pump itself and then acts on the valve spool to drive the swash plate. As a result,
the volumetric displacement of the pump can be decreased automatically with the increasing load
pressure, thus limiting the peak torque and heat generation of the electric motor.

The bias spring acts as a regulator for the volumetric displacement variation. It works together
with the valve spool to implement the required load pressure-volumetric displacement curve,
as shown in Figure 2, which is generally derived from the typical force-speed curve of the hydraulic
actuator [21,26]. It can be seen from Figure 2 that a full volumetric displacement is maintained at low
load pressure (less than pH1), and then the volumetric displacement starts to decrease linearly with
load pressure from pH1 to pH2.
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For a certain load pressure pH, the volumetric displacement V can be expressed as

V =

{
V1 for 0 < pH ≤ pH1

V1 − V1−V2
pH2−pH1

(pH − pH1) for pH1 < pH ≤ pH2
(1)

where V1 and V2 are the maximum and minimum volumetric displacement, respectively, and pH1 and
pH2 are their corresponding load pressures.

As previously stated, the motor torque depends on the volumetric displacement and load pressure
of the EHA pump. Considering the intake pressure is negligibly small compared with the load pressure,
the motor torque can be approximately expressed as

T =
VpH
2πηt

+ TC (2)

where ηt is the torque coefficient due to the friction loss of the lubricating interfaces, and TC is the
torque loss due to the churning loss of the rotating group within the pump.

The torque coefficient is a function of the operating conditions of the pump, which can be given
by [27]

ηt = 1− λ1 exp
(
−λ2

µω

pH β

)
− λ3

√
µω

pH β
− λ4

1
pH β

(3)

where λi (i = 1, 2, 3, 4) are coefficients, the typical values of which were presented in [27]; µ is the fluid
dynamic viscosity; ω is the rotational speed of the pump; and β is the swash plate angle.
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The churning loss of the rotating group can be expressed as [28]

TC =
2πµωlcR3

c
t

+
1
2

Cdπdρω2r3
9

∑
i=1
{l0 − r tan β[1− cos(i− 1)α]} (4)

where lc and Rc are the length and outer radius of the cylinder block, respectively, t is the gap height
between the cylinder block and pump casing, Cd is the drag coefficient, d is the piston diameter, ρ is
the fluid density, r is the piston pitch radius, l0 is the piston length out of the cylinder bore at bottom
dead center, and α is the angular interval of cylinder bores.

Substituting Equation (1) into Equation (2), the motor torque can be further expressed as

T =


V1 pH
2πηt

+ TC for 0 ≤ pH ≤ pH1
pH

2πηt

[
V1 − V1−V2

pH2−pH1
(pH − pH1)

]
+ TC for pH1 < pH ≤ pH2

(5)

The motor torque reaches its maximum value at a certain operating point (pHm, Vm) as the load
pressure varies, as shown in Figure 2. Solving the equation ∂T/∂pH = 0 yields the load pressure pHm
for the maximum motor torque, and then, substituting pHm into Equation (5) produces the maximum
motor torque.

Figure 3 shows the schematic of the load-sensing EHA pump, which is a swash plate type axial
piston pump. There are three types of forces acting on the swash plate, which together determine the
rotation of the swash plate about its pivot axis. The bias spring and valve spool are used to control
the swash plate angle. Specifically, the bias spring tends to push the swash plate to the location of
the maximum inclined angle, while the valve spool attempts to drive the swash plate into a de-stroke
position. In addition, the reaction force between the swash plate and slippers also contributes to the
swash plate balance.

Energies 2018, 11, x 4 of 13 

( ){ }
=

 = + − − − 
3 9

2 3
0

1

2π 1 π tan 1 cos 1
2

c c
C d

i

μωl R
T C dρω r l r β i α

t
 (4)

where lc and Rc are the length and outer radius of the cylinder block, respectively, t is the gap height 
between the cylinder block and pump casing, Cd is the drag coefficient, d is the piston diameter, ρ is 
the fluid density, r is the piston pitch radius, l0 is the piston length out of the cylinder bore at 
bottom dead center, and α is the angular interval of cylinder bores. 

Substituting Equation (1) into Equation (2), the motor torque can be further expressed as  

( )


+ ≤ ≤

=   − − − + < ≤  − 

1
1

1 2
1 1 1 2

2 1

for  0
2π

   for  
2π

H
C H H

t

H
H H C H H H

t H H

V p
T p p

η
T

p V V
V p p T p p p

η p p

 (5)

The motor torque reaches its maximum value at a certain operating point (pHm, Vm) as the load 
pressure varies, as shown in Figure 2. Solving the equation ∂T/∂pH = 0 yields the load pressure pHm 
for the maximum motor torque, and then, substituting pHm into Equation (5) produces the maximum 
motor torque. 

Figure 3 shows the schematic of the load-sensing EHA pump, which is a swash plate type axial 
piston pump. There are three types of forces acting on the swash plate, which together determine 
the rotation of the swash plate about its pivot axis. The bias spring and valve spool are used to 
control the swash plate angle. Specifically, the bias spring tends to push the swash plate to the 
location of the maximum inclined angle, while the valve spool attempts to drive the swash plate 
into a de-stroke position. In addition, the reaction force between the swash plate and slippers also 
contributes to the swash plate balance. 

 
Figure 3. Schematic of the EHA pump with a load-sensing mechanism. 

Neglecting the inertia of the swash plate [29,30] and statically summing the moments acting on 
the swash plate by the above three forces yield the governing equation for the rotation of swash 
plate about its pivot axis. 

− + + =1 2 0SP V SF L F L T  (6)

where FSP is the bias spring force, FV is the valve spool force, L1 is the moment arm of FSP, L2 is the 
moment arm of FV, and TS is the swivel torque due to the reaction force FS between the swash plate 
and slippers. In this case, L1 = L2 = L.  

The bias spring force is given by 

Figure 3. Schematic of the EHA pump with a load-sensing mechanism.

Neglecting the inertia of the swash plate [29,30] and statically summing the moments acting on
the swash plate by the above three forces yield the governing equation for the rotation of swash plate
about its pivot axis.
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− FSPL1 + FV L2 + TS = 0 (6)

where FSP is the bias spring force, FV is the valve spool force, L1 is the moment arm of FSP, L2 is the
moment arm of FV, and TS is the swivel torque due to the reaction force FS between the swash plate
and slippers. In this case, L1 = L2 = L.

The bias spring force is given by

FSP = kx0 + kL(βmax − β) (7)

where k is the spring stiffness, x0 is the initial compressed length of the spring, and βmax is the
maximum swash plate angle.

The valve spool force is given by

FV = pL A1 + pH(A2 − A1) (8)

where pL is the intake pressure, A1 and A2 are the cross areas of the valve spool. Considering the
bidirectional EHA pump, A1 and A2 should satisfy the relationship A2 = 2A1.

The swivel torque acting on the swash plate consists of two components; one results from the
displacement chamber pressure and the other one the inertia of piston-slipper assemblies. Therefore,
it can be expressed as [31–33]

TS = −N
2

MPSω2r2β +
N
2

A(pH − pL)r
γ

π
(9)

where N is the number of pistons, MPS is the total mass of a single piston-slipper assembly, A is the
pressurized area of the piston, and γ is the pressure carry-over angle on the valve plate. Please note
that Equation (9) has been linearized for small values of β and γ.

Once again, neglecting the intake pressure and substituting Equations (7) to (9) into Equation (6)
yields the following equation:

kx0L + kL2(βmax − β) = pH A1L− N
2

MPSω2r2β +
N
2

ApHr
γ

π
(10)

The spring stiffness and initial compressed length are two important parameters for this
load-sensing mechanism. Eliminating x0 by combining two special operating points presented in
Figure 2, i.e., (pH1, V1) and (pH2, V2), the bias spring stiffness can be given by

k =
(pH2 − pH1)A1G

L(V1 −V2)
+

N
2

A(pH2 − pH1)rγG
L2(V1 −V2)π

+
N
2

MPSω2(r/L)2 (11)

where G is the volumetric displacement gain of the pump, which is defined as G = V/β.
Letting β = βmax and pH = pH1 in Equation (10), the initial compressed length of the bias spring

can be expressed as

x0 =
pH1 A1

k
+

N
2

ApH1rγ

kLπ
− N

2
MPSω2r2βmax

kL
(12)

The first term in Equation (11) or Equation (12) represents a major pressure effect due to the load
pressure. The second term represents a minor pressure effect as a result of the pressure transition
between two ports on the valve plate. In addition, the third term stands for an inertial effect of the
piston-slipper assemblies which is highly dependent on the rotational speed of pump.

Equations (11) and (12) can be further simplified if the second term is neglected [34].

k =
(pH2 − pH1)A1G

L(V1 −V2)
+

N
2

MPSω2(r/L)2 (13)
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x0 =
pH1 A1

k
− N

2
MPSω2r2βmax

kL
(14)

It must be pointed out that the inertial terms in Equations (13) and (14) cause a varying k and x0

for different rotational speeds. Therefore, in practice one may design the bias spring for the most used
rotational speed of the EHA pump.

3. Results and Discussion

To verify the proposed load-sensing mechanism, an EHA pump prototype (see Figure 4) was
developed in the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University.
In addition, a test rig was built for this pump prototype to carry out experiments under different
operating conditions, as shown in Figure 5. Transducers were installed in the pump prototype to
monitor its performance. The torque/speed transducer was used to measure the torque and speed of
the electric motor. Three temperature transducers were responsible for temperature measurements
of the intake port, outlet port, and drain port. The pressures of the above three pump ports were
measured by three pressure transducers. The discharge and drain flows were obtained by two flow
meters. A detailed description of the test rig has been presented in the literature [35].
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Figure 6a shows the experimental results of p-V curves for different rotational speeds. At first,
the investigated EHA pump works at full volumetric displacement when the load pressure is relatively
low. Then the volumetric displacement starts to drop with the increasing load pressure with the
help of the load-sensing mechanism. Compared with the theoretical curve, the similarity of the
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tendencies of both experimental curve indicates that the proposed load-sensing mechanism enables
the EHA pump prototype to adjust its volumetric displacement automatically with load pressure
as expected. However, the actual p-V curves differ slightly from each other in the turning point for
different rotational speeds. This can be explained by the following expression, which is derived from
Equation (14).

pH1 =
kx0

A1
+

NMPSω2r2βmax

2A1L
(15)

It is clear from Equation (15) that the critical pressure at the turning point is affected not only
by the spring stiffness and initial compressed length, but also by the rotational speed. The critical
pressure increases with the increasing spring stiffness and initial compressed length. For a given
pump geometry, the critical pressure will increase with the rotational speed, as shown in Figure 6b.
This means that when the investigated EHA pump operates at a higher rotational speed, its volumetric
displacement has to start decreasing at a greater load pressure, i.e., p H1(1) < p H1(2) < p H1(3).
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In Figure 6a the slope of the actual p-V curve becomes greater for higher rotational speeds,
which indicates that the volumetric displacement of the pump drops faster with the increasing load
pressure as the rotational speed rises. This can be partially explained by the following expression,
which is derived from Equation (13).

tan θ =
V1 −V2

pH2 − pH1
=

2A1G

2kL− NLMPSω2(r/L)2 (16)

It can be seen from Equation (16) that both the spring stiffness and rotational speed influence
the decreasing slope of the p-V curve. The volumetric displacement of the pump drops more
slowly with the increasing spring stiffness, while it drops faster with increasing rotational speed.
In addition, the partial filling of cylinders due to the gaseous cavitation [36,37] is another contributor
to the faster drop in volumetric displacement for higher rotational speeds. As a result, for a given
pump geometry, the volumetric displacement of the pump drops faster as the rotational speed rises,
i.e., tanθ1 < tanθ2 < tanθ3.

As shown in Figure 7, the actual p-T curves have a similar tendency to those theoretical curves.
The experimental motor torque is greater than the calculated one for each rotational speed. This is
because the theoretical calculation does not include the torque loss in the shaft bearings and seals
or the torque loss associated with drag due to fluid flow from inlet to outlet, since they are difficult
to mathematically model [38]. Another possible cause is the discrepancy between the empirical and
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actual values of the coefficient λi in Equation (3), because the actual coefficient λi generally varies from
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It is observed that the motor torque increases with the increasing rotational speed, which is
considered to be caused by the churning loss of the EHA pump [28]. In addition, the torque peak is
found to occur at lower critical pressures for higher rotational speeds, i.e., pHm(1) > pHm(2) > pHm(3).
This is because as the rotational speed rises, the critical pressure pH1 increases, as shown in Figure 6a,
and the increased critical pressure leads to a decreased pressure for the torque peak.

A test bench [39] (see Figure 8) was built to compare the motor heat between the EHA prototypes
with fixed-displacement and load-sensing pumps. These two investigated EHA pumps had almost
the same design except the pump displacement. The load-sensing pump was a variable displacement
pump, while the other one was a fixed-displacement pump that was modified from the load-sensing
pump. The piston rod of the hydraulic actuator was connected to a spring load with a stiffness of
1744 N/mm.
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Figure 8. Test bench for the EHA prototype.

After receiving the command signal from the control module, the piston rod was extended out of
the cylinder and then maintained at a certain position, as shown in Figure 9a. Then the compressed
spring applied a load on the hydraulic actuator. The armature current of the electric motor was
recorded to calculate the copper loss of the electric motor.
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displacement; (b) Comparison of the copper loss.

In practice, the power loss of the electric motor consists of three parts: the copper loss due to
the resistance of stator windings, the iron loss due to the eddy current and hysteresis of the stator
core, and the mechanical loss of the armature core. The copper and iron losses are dissipated and
converted to heat, and the motor heat mainly comes from the copper loss [25,40]. Therefore, in this
work, the motor heat is approximately represented by the copper loss W, which is given by [40]

W = I2R (17)

where I is the armature current of electric motor, R is the resistance of stator windings.
Figure 9b shows the comparison of motor heat for two types of EHA pumps. It is clear that the

load-sensing design of the EHA pump can effectively reduce the motor heat.
On the other hand, the armature current is also an indicator of the motor torque which is the

proportional to the armature current [19,40].

T = KI (18)

where K is the torque coefficient.
It can be seen from Equations (17) and (18) that decreasing the motor torque can limit the copper

loss and thus reduce the motor heat. Furthermore, the motor torque is proportional to the pump
displacement and load pressure. The load-sensing design allows the pump displacement to be reduced
under high load conditions. This explains why the proposed load-sensing pump can lower the copper
loss and heat dissipation of the electric motor in the EHA system compared with the traditional
fixed-displacement pump.

4. Conclusions

In this paper, a load-sensing design with no additional power source has been proposed for
the EHA pump to reduce the heat generation of the EHA system. The present research includes the
theoretical modeling and experimental validation for the load-sensing pump.

The load-sensing design enables the EHA pump to decrease its volumetric displacement
automatically with the load pressure, and thus reduces the motor toque and heat generation
significantly. The bias spring stiffness and initial compressed length are two critical parameters
for the load-sensing design because they determine the turning point and decreasing slope of the p-V
curve. The experimental results show that the rotational speed affects the actual p-V and p-T curves of
the load-sensing pump. Specifically, for higher rotational speeds the turning point of the p-V curve
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occurs at a higher critical pressure, and then the pump displacement drops faster with the increasing
load pressure; while as the rotational speed rises, the motor torque increases and the peak torque
occurs at a lower load pressure.

Future work includes attempting another similar load-sensing design in which the bias spring
and valve spool are located on the same side. This alternative configuration would allow the EHA
pump to be more compact, thus decreasing the package size of EHA systems.
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Nomenclature

A pressurized area of a single piston, m2

A1 cross area of valve spool, m2

A2 another cross area of valve spool, m2

Cd drag coefficient
d piston diameter, m
FS reaction force between swash plate and slippers, N
FSP bias spring force, N
FV valve spool force, N
G volumetric displacement gain, m3/rad2

I armature current of electric motor, A
K torque coefficient, Nm/A
k bias spring stiffness, N/m
L moment arm of FSP and FV, m
l0 piston length out of the cylinder bore at bottom dead center, m
lc length and the cylinder block, m
MPS total mass of a single piston-slipper assembly, kg
N number of pistons
pH load pressure, Pa
pL intake pressure, Pa
pH1 load pressure for maximum volumetric displacement, Pa
pH2 load pressure for minimum displacement, Pa
pHm load pressure for maximum torque, Pa
R resistance of stator windings, Ω
Rc outer radius of the cylinder block, m
r piston pitch radius, m
T motor torque, Nm
t gap height between the cylinder block and pump casing, m
TC torque loss due to the churning loss of rotating group, Nm
TS swivel torque produced by FS, Nm
Tmax maximum motor torque, Nm
V volumetric displacement, m3/rad
V1 maximum volumetric displacement, m3/rad
V2 minimum volumetric displacement, m3/rad
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Vm volumetric displacement for maximum torque, m3/rad
W copper loss, J
x0 initial compressed length of the bias spring, m
α angular interval of cylinder bores
β swash plate angle, rad
βmax maximum swash plate angle, rad
γ pressure carry-over angle on valve plate, rad
ηt torque coefficient
λi coefficient of ηt

µ fluid dynamic viscosity, Pa·s
ρ fluid density, kg/m3

ω rotational speed of pump, rad/s

Abbreviations

EHA electro-hydrostatic actuator
EHA-FPVM EHA with fixed pump displacement and variable motor speed
EHA-VPFM EHA with variable pump displacement and fixed motor speed
EHA-VPVM EHA with variable pump displacement and variable motor speed
MEA more electric aircraft
PBW power-by-wire
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