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Abstract: For an AC-stacked photovoltaic (PV) inverter system with N cascaded inverters,
existing control methods require at least N communication links to acquire the grid synchronization
signal. In this paper, a novel decentralized control is proposed. For N inverters, only one inverter
nearest the point of common coupling (PCC) needs a communication link to acquire the grid
voltage phase and all other N − 1 inverters use only local measured information to achieved fully
decentralized local control. Specifically, one inverter with a communication link utilizes the grid
voltage phase and adopts current control mode to achieve a required power factor (PF). All other
inverters need only local information without communication links and adopt voltage control mode
to achieve maximum power point tracking (MPPT) and self-synchronization with grid voltage.
Compared with existing methods, the communication link and complexity is greatly reduced,
thus improved reliability and reduced communication costs are achieved. The effectiveness of
the proposed control is verified by simulation tests.
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1. Introduction

Renewable energy generation is drawing more and more attention in the past decades [1–5].
AC-stacked photovoltaic (PV) inverter architecture is now considered a promising PV generation
configuration [6–12]. It facilitates the integration of low voltage (LV) PV generators into medium/high
voltage (MV/HV) grid due to its AC-stacked characteristic. LV PV generation units can be connected
to the MV/HV grid directly by the AC-stacked PV inverters with no need for a step-up transformer,
which leads to improved energy conversion efficiency. Compared with the traditional multilevel
cascaded H-bridge topology, each AC-stacked PV inverter has an independent output LC filter,
which makes it much easier for coordinating all PV inverter units [6,7]. In this way, distributed control
methods or even fully decentralized control methods are much easier to implement, which means
the communication complexity is much lower and the system’s reliability is higher. In this way,
the AC-stacked PV inverter system has great potential for large-scale MV/HV grid-connected
distributed PV generation. So, to explore new decentralized control methods with min-communication
requirement for AC-stacked inverters makes a lot of sense. And the motivation of this paper is to
propose a min-communication decentralized control for AC-stacked PV inverters.

Recently, some low-bandwidth communication-based controls for AC-stacked PV inverters
have been investigated [8–12]. In Reference [8], a distributed autonomous control is first proposed
without a central controller. Grid voltage phase from a phase locked loop (PLL) is transmitted to
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all inverters to realize synchronization and maximum power point tracking (MPPT) operation by
low-bandwidth communications. However, reactive power and power factor (PF) control are not
discussed. To realize flexible power control and satisfactory PF, distributed active power and reactive
power control methods are improved in Reference [9], where all AC-stacked inverters are controlled in
voltage mode. Furthermore, references [10,11] propose a hybrid current-voltage control scheme with
low-bandwidth communication. In References [5,6], one inverter in the AC-stacked PV inverter string
is controlled as a current source to serve as a reactive power compensation unit and other inverters
are controlled as voltage sources. A controllable PF is achieved by this hybrid control framework.
Different from References [8–11], each AC-stacked inverter string has a central controller to coordinate
all local controllers of inverters in Reference [12]. The voltage phase reference of each inverter is
generated by combining the common current phase and the transmitted power factor from central
controller. As the transmitted information is a slow DC component, a low-bandwidth communication
link is required for each inverter.

Although existing control methods achieve MPPT and PF regulation, they all require at least N
communication links for N inverters to acquire the synchronization signal from grid references [8–12].
As a result, system reliability is limited by high communication complexity. On the other hand,
increased communication cost is unavoidable. Similar to the need to explore distributed/decentralized
control approaches to solving the optimal power flow problem in power system references [13,14],
how to design a decentralized control algorithm for AC-stacked PV inverters is necessary.

In view of the overview above, this paper proposes a min-communication decentralized control
method to greatly improve system reliability and lower the communication cost. The contributions of
the proposed control method are listed as follows:

(1) It reduces the communication links to a great extent compared with existing control methods.
Only one communication link is needed. Thus, system reliability is greatly improved and
communication cost is reduced;

(2) It achieves voltage self-synchronization with grid voltage with no need for PLL;
(3) It can achieve a desirable unity PF or a required non-unity PF;
(4) It achieves MPPT of all cascaded inverters under symmetrical conditions and partial shading;
(5) It is available under grid voltage sag and grid frequency fluctuation.

The rest of this paper is organized as follows: In Section 2, the system configuration is described
and the mathematical model of the AC-stacked PV inverter system is derived. In Section 3, the proposed
control method is presented and analyzed in detail. In Section 4, simulation results under different
conditions are provided to verify the effectiveness of the proposed control. Conclusions are finally
drawn in Section 5. To make this paper clearer, variables and parameters used in this paper are listed
in the nomenclature below.

2. System Modeling

The configuration of the AC-stacked PV inverter system studied in this paper is shown in
Figure 1. The whole system consists of n series-connected PV inverter units, where each inverter has an
independent output LC filter. These AC-stacked inverters are then connected to the utility grid directly
without a step-up transformer. In each PV inverter unit, local PV panels are directly tied to the input
port of an inverter. This type of system architecture aims to integrate LV distributed PV generators
into the power grid directly with high energy conversion efficiency. Moreover, this topology makes it
possible for distributed or decentralized control to be realized since output of each inverter is at AC
line frequency.
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Figure 1. Configuration of AC-stacked photovoltaic (PV) inverter system. 
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Figure 1. Configuration of AC-stacked photovoltaic (PV) inverter system.

In Figure 1, V1~Vn and δ1~δn are amplitudes and phase angles of the inverters’ output voltages.
Vg and δg represent amplitude and phase angle of the grid voltage, respectively. Vp and δp are voltage
amplitude and phase at the PCC. Lline is the line inductance, its amplitude and angle are denoted as
|Lline| and θline. iPV1~iPVn and udc1~udcn represent the PV output currents and PV output voltages.
L1~Ln and C1~Cn are the parameters of output LC filters. From Figure 1, the output active power and
reactive power of i-th (i = 1, 2, . . . , n) inverter, which are denoted as Pi and Qi, can be calculated as
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There is a factor 1/2 in Equations (1) and (2) because Vi, Vp and Vg are all amplitude values,
instead of RMS (Root Mean Square) values. For this AC-stacked PV inverter architecture, the voltage
at the PCC is the sum of u1~un:
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3. Proposed Decentralized Control

3.1. Schematic Overview of the Proposed Decentralized Control

The overall schematic overview of the proposed decentralized control is presented in Figure 2.
It is noted that only one communication link is needed to transmit the grid voltage phase to
inverter#1. Inverter#1 is controlled as a current source to carry out PF regulation and track its
maximum power point (MPP). Inverter#1 can achieve a desired PF according to practical requirements.
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All other inverters are controlled as voltage sources locally and independently to achieve MPPT and
self-synchronization. They need only local information and they need no grid synchronization signal.
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Figure 2. Overall control framework of the proposed method.

3.2. Proposed Decentralized Control

The control diagram of inverter#1 is shown in Figure 3. Inverter#1 is controlled as a current
source to serve as a current regulation unit for the AC-stacked PV inverter string while tracking its
MPP. The front-end DC-link voltage reference ure f

dc1 is provided by the MPPT controller. In order to
realize the desired PF, the line current phase reference is determined by the grid voltage phase θg

from a PLL. Then the output current reference i∗g is synthesized by I∗g , θ∗ and θg. θ∗ is the system PF
angle, which is set according to the practical PF requirement. Thus, the proposed method can achieve
different PFs by setting different values of θ∗. Finally, the line current is regulated to its reference value
by a proportional (PR) controller.
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Figure 3. Control diagram of inverter#1.

For inverter#i (i = 2, 3, . . . , n), the detailed control diagram is presented in Figure 4. Inverter#i is
responsible for building up the voltage at the PCC while outputting its maximum power available.
The proposed control for inverter#i aims to achieve self-synchronization and MPPT without
communication links. As shown in Figure 4, the core of proposed control is designed as Vi =

Vg
n +

(
KPi +

KIi
s

)(
udci − ure f

dci

)
ωi = ω∗ +

(
kPi +

kIi
s

)
(sin θ∗ − sin θi)

(i = 2, 3, . . . , n) (6)

where Vi and ωi represent the output voltage amplitude reference and angular frequency reference
of inverter#i respectively. Vg and ω* are the rated grid voltage amplitude and rated grid angular

frequency. udci is the front-end DC-link voltage of inverter#i and ure f
dci is the DC-link voltage reference

provided by MPPT controller. KPi and KIi are the proportional and integral (PI) coefficients of the
DC-link voltage controller. θi and θ* are real-time PF angle of inverter#i and its reference. θ* can be
flexibly set according to the system PF requirement. KPi and KIi are the proportional and integral
coefficients of the frequency controller. The designed frequency controller can realize frequency
self-synchronization with the grid frequency.
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As the DC-link voltage controller is a PI regulator, Vi can be regulated autonomously to form the
voltage at the PCC and match the grid voltage. In this way, the proposed method is adaptable even
when grid voltage sag happens. Additionally, Equation (7) must hold in steady state:

udci = ure f
dci (7)

Equation (7) reveals that MPPT operation is ensured in steady state. On the other hand,
Equation (8) must hold in steady-state:

ωi = ω∗ (8)

In other words, Equation (9) must hold to reach a steady state:(
kPi +

kIi
s

)
(sin θ∗ − sin θi) = 0 (9)

Since frequency controller is a PI controller, Equation (10) must hold in steady state.

sin θ∗ = sin θi (10)

This indicates that the frequency of each inverter will be synchronous with grid frequency in a
steady state and the output voltage of each inverter will be in phase with grid voltage in a steady
state. Moreover, From Equations (6)–(10) and Figure 4, MPPT of inverter#i is achieved by regulating
its output voltage amplitude and self-synchronization with grid voltage is achieved by adjusting the
output angular frequency according to its own PF angle. No communication links are involved and
PLL is not needed.

3.3. Steady-State Analysis and Self-Synchronization Mechanism

According to the description in Section 3.2, the proposed method is adaptable under grid voltage
sag and grid frequency fluctuation. On the other hand, it can also meet different PF requirements.
In practical PV grid-connected applications, unity PF is often required. So, we take the unity PF
condition as an example to analyze the control mechanism. Similar analysis can also be adapted in
other non-unity PF conditions.

With the proposed control for PV inverter#1, the line current is regulated and becomes in phase
with the grid voltage in steady state to satisfy the unity PF requirement. As the line current is a
common signal for all the AC-stacked PV inverters, inverter#i (i = 2, 3, ..., n) can thus self-synchronize
its output voltage with the grid voltage indirectly by synchronizing its output voltage with the line
current locally. So, we set sinθ* = 0 in Equation (6) for inverter#i to synchronize with grid voltage
under unity PF operation requirement.

The detailed self-synchronization mechanism in Equation (6) can be illustrated by Figure 5.

• Initially, the system is operating in steady-state. The steady-state phasor diagram is shown in
Figure 5a. Output voltages of inverter#2~inverter#n, line current and the grid voltage are all
in phase in a steady state. Small amount of reactive power consumed by the line impedance is
compensated by inverter#1 and unity PF of this grid-connected system is ensured;

• When disturbances occur, power angle of inverter#i will change. For example, θi > 0 as shown in
Figure 5b. According to Equation (6), the angular frequency reference ωi = (ω∗ − ki sin θi) < ω∗.
And thus the relative angular frequency between ui and ug is: ∆ωi = (ωi −ω∗) = −ki sin θi < 0;

• As a result, θi will decrease until θi = 0 and self-synchronization of inverter#i is achieved;
• Similar analysis can be applied to the condition where θi < 0 occurs as shown in Figure 5c.

From the analysis above, self-synchronization of ui with the grid voltage ug is achieved with the
proposed control.
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4. Simulation Results

To verify the correctness and effectiveness of the proposed control method, four simulation tests
in different operation conditions are conducted. The simulation model consists of three AC-stacked
PV inverters. Simulation parameters are listed in Table 1.

Table 1. Simulation Parameters.

Symbol Value Symbol Value

Vg 311 V KP2 = KP3 1.8
ω* 2π × 50 rad/s KI2 = KI3 6

sinθ* 0 & 0.392 kP2 = kP3 7
Lline 300 µH kI2 = kI3 0.2

CDC1 = CDC2 = CDC3 4000 µF - -

4.1. Symmetrical Condition and Partial Shading

To evaluate the steady-state and dynamic performances of the proposed control, both symmetrical
condition and partial shading condition are simulated. Before t = 2s, the symmetrical operation
condition is simulated. At t = 2s, different partial shadings are imposed on PV inverter#2 and PV
inverter#3 simultaneously. Simulation results are shown in Figure 6.

Before t = 2s, the output active power of the inverters P1, P2 and P3 are equal in Figure 6a,
since the system operates under symmetrical conditions. In Figure 6c, steady-state DC-link voltages
of all the inverters are the same, which indicates all PV inverter units operates at MPP. In Figure 6b,
output voltages of inverter#2 and inverter#3 are identical, while output voltage of inverter#1 is a little
different to compensate the line reactive power. After t = 2s, P2 drops from 1500 W to 1400 W and
P3 drops to 1200 W while P1 stays unchanged in Figure 6a, because different shadings are imposed
on inverter#2 and inverter#3 simultaneously. The DC-link voltages udc2 and udc3 drop to different
steady-state values accordingly, shown in Figure 6c, still operating at the MPP. In Figure 6b, u2 and
u3 are still in phase while their amplitudes are different, owing to their different maximum power
outputs. In addition, amplitude of u1 is the highest, because it generates the highest active power and
compensates the line reactive power to regulate system PF. Figure 6d shows that the line current and
grid voltage are always in phase in different steady states. So, unity PF of the system is achieved in
both symmetrical and partial shading conditions. Moreover, the steady-state line current amplitude
after t = 2s is smaller than the current amplitude before t = 2s, since total active power injected to
the grid is smaller when partial shading happens. Output voltages in transient states are shown in
Figure 6e, the output voltages of the inverters response immediately according to the control algorithm
in Equation (6). Grid voltage and line current in transient states are presented in Figure 6f. It is clear
that the amplitude of the transient line current transient is not too high and the phase angle of line
current is also in phase with the grid voltage. So, required unity PF is ensured in the transient state.
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Figure 6. Simulation results under symmetrical condition and partial shading condition. (a) Active
power; (b) Steady-state output voltages; (c) DC-link voltages; (d) Grid voltage and line current in
steady state; (e) Output voltages in transient state; (f) Grid voltage and line current in transient state.
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Figure 7. Simulation results under 10% grid voltage sag condition. (a) Active power; (b) Steady-state
output voltages; (c) DC-link voltages; (d) Grid voltage and line current in steady state.

From Figure 7a,c P1~P3 are identical and DC-link voltages udc1~udc3 reach the same steady-state
value during t = 0~1s, which indicates that the system operates under symmetrical conditions and
achieves MPPT. In Figure 7b, output voltages of inverter#2 and inverter#3 are identical before t = 1s,
while output voltage of inverter#1 is a little different to compensate for the line reactive power.
Figure 7d shows that grid voltage and line current are inphase and a satisfactory unity PF is achieved,
where the grid voltage is at its rated value. At t = 1s, 10% grid voltage sag is implemented which
can be seen in Figure 7d. During this process, output voltage of inverter#1 reacts immediately to
compensate for the grid voltage sag as shown in Figure 7b. Meanwhile, inverter#2 and inverter#3
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reduce their output voltage amplitudes gradually according to Equation (6). Eventually, u1~u3 reach
new steady-state values to match the sagged grid voltage. In Figure 7d, the amplitude of line current
increases to a higher steady-state value after t = 1s to maintain the maximum active power output of
all PV inverters and line current is still inphase with the grid voltage to satisfy unity PF requirement.
From Figure 7a,c the steady-state values of P1~P3 and DC-link voltages udc1~udc3 stay unchanged
after t = 1s despite 10% grid voltage sag. So, MPPT operation of all PV inverters are still ensured and
self-synchronization of inverter#2 and inverter#3 are realized. Thus, the proposed method is immune
to the grid voltage fault.

4.3. Grid Frequency Fluctuation Condition

To verify the feasibility of the proposed method under grid frequency fluctuation, a simulation
test with random grid frequency variation is performed. Initially, the system operates under rated grid
frequency condition. Then random frequency fluctuation is simulated. Simulation results are shown
in Figure 8.
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Figure 8. Simulation results under grid frequency fluctuation. (a) Active power; (b) Grid voltage and
line current; (c) DC-link voltages; (d) Output voltages; (e) Frequencies.

From Figure 8a,c P1~P3 are identical and DC-link voltages udc1~udc3 reach the same steady-state
value, which indicates that the system operates under symmetrical condition and achieves MPPT.
In Figure 8d, output voltages of inverter#2 and inverter#3 are identical, while output voltage of
inverter#1 is a little different to compensate the line reactive power. Figure 8b shows that grid voltage
and line current are inphase and a desired unity PF is achieved. The frequencies of the system are
shown in Figure 8e. In the beginning, grid frequency is the rated value. f 2–f 3 are 50 Hz tracking
the rated grid frequency. Then, grid frequency varies randomly. Accordingly, f 2–f 3 follow to change
and track the real-time grid frequency tightly. Thus, the proposed control method is adaptable to the
grid frequency fluctuation and can self-synchronize the inverters’ frequencies with the grid frequency.
So, the proposed control method can maintain the stability of the system even when grid frequency
fluctuation occurs.
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4.4. No-Unity PF Operation

In most gird-connected PV generation applications, unity PF is required. However, no-unity PF
and Volt/Var capability of the inverters are required. To verify the PF controllability of the proposed
method, a simulation test with a required PF = 0.92 is performed. To achieve PF = 0.92, we just need to
set θ* = 0.4027 in Equation (6). Simulation results are shown in Figure 9.
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Figure 9. Simulation results under grid frequency fluctuation. (a) Active power; (b) DC-link voltages;
(c) Grid voltage and line current; (d) Output voltages; (e) Power factor (PF).

From Figure 9a,b P1~P3 are identical and DC-link voltages udc1~udc3 reach the same steady-state
value, which indicates that the system operates under symmetrical condition and achieves MPPT.
In Figure 9d, output voltages of inverter#2 and inverter#3 are identical, while output voltage of
inverter#1 is a little different to compensate the line reactive power. Figure 9c shows that grid voltage
and line current are not inphase and a no-unity PF is achieved. The system PF is shown Figure 9e.
Obviously, the required PF = 0.92 is achieved.

From the simulation results and analysis above, we can see the advantages and performances of
the proposed control method clearly. For an AC-stacked PV inverter system with N inverters, the main
advantages and performances of the proposed control method in comparison with the existing control
methods are summarized in Table 2.

Table 2. Comparison with Existing Control Methods.

Items Proposed Decentralized Control Existing Control Methods

Number of Communication Links 1 N
Communication Cost Low High

Communication Complexity Low High
Reliability in Case of Communication Faults High Low

Synchronization Method By Self-synchronization Mechanism By Centralized Communication
Global MPPT Operation Yes Yes

Operation Under Grid Voltage Sag Yes Yes
Operation Under Grid Frequency Fluctuation Yes Yes
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5. Conclusions

This paper proposes a one-communication-link decentralized control for AC-stacked PV inverter
system. It achieves the following objectives:

(1) It reduces the communication complexity to a great extent compared with existing control
methods. Specifically, it reduces N − 1 communication links for a system with N inverters.
Thus system reliability is greatly improved and communication cost is reduced;

(2) It achieves voltage self-synchronization with grid voltage;
(3) It can achieve a desirable unity PF or a required non-unity PF;
(4) It achieves MPPT of all cascaded inverters under symmetrical conditions and partial shading;
(5) It is available under grid voltage sag and grid frequency fluctuation.

Simulation tests under symmetrical/partial-shading condition, grid voltage sag condition,
grid frequency fluctuation condition and non-unity PF requirement condition have verified the
effectiveness of the proposed control method. Beyond this study, the possibilities of new ideas
will be inspired in future cascaded-type distributed generation systems.

For better operation of the AC-stacked PV inverter system in practical application situation,
seeking for optimal configuration of the energy storage system in this architecture and corresponding
control methods with high reliability are very important and meaningful. This aspect will be explored
in our future work.
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Nomenclature

udci DC-link voltage of i-th inverter
iPVi PV current of i-th inverter
Lline Line inductance
CDCi Capacitor in DC side
ig Line current
Vg∠δg Grid voltage
i∗g Line current reference

ure f
dc DC-Link voltage reference

θi Power angle of i-th inverter
V∗g Rated grid voltage amplitude
ω* Rated grid frequency
Vi Output voltage amplitude reference of i-th inverter
ωi Angular frequency of i-th inverter
ui Output voltage amplitude of i-th inverter
KPi, KIi Proportional and integral coefficients of DC voltage controller
kPi, kIi Proportional and integral coefficients of frequency controller

References

1. Hou, X.; Sun, Y.; Han, H.; Liu, Z.; Yuan, W.; Su, M. A fully decentralized control of grid-connected cascaded
inverters. IEEE Trans. Power Del. 2018. [CrossRef]

2. Sun, Y.; Hou, X.; Yang, J.; Han, H.; Su, M.; Guerrero, J.M. New perspectives on droop control in AC microgrid.
IEEE Trans. Ind. Electron. 2017, 64, 5741–5745. [CrossRef]

http://dx.doi.org/10.1109/TPWRD.2018.2816813
http://dx.doi.org/10.1109/TIE.2017.2677328


Energies 2018, 11, 2262 12 of 12

3. Hou, X.; Sun, Y.; Han, H.; Liu, Z.; Su, M.; Wang, B.; Zhang, X. A General Decentralized Control Scheme for
Medium/High Voltage Cascaded STATCOM. IEEE Trans. Power Syst. 2018. [CrossRef]

4. Liu, Z.; Su, M.; Sun, Y.; Li, L.; Han, H.; Zhang, X.; Zheng, M. Optimal criterion and global/sub-optimal
control schemes of decentralized economical dispatch for AC microgrid. Int. J. Electr. Power Energy Syst.
2019, 104, 38–42. [CrossRef]

5. Li, L.; Ye, H.; Sun, Y.; Han, H.; Li, X.; Su, M.; Guerrero, J.M. A communication-free economical-sharing
scheme for cascaded-type microgrids. Int. J. Electr. Power Energy Syst. 2019, 104, 1–9. [CrossRef]

6. Nuotio, M.; Ilic, M.; Liu, Y.; Bonanno, J.; Verlinden, P.J. Innovative AC photovoltaic module system
using series connection and universal low-voltage micro inverters. In Proceedings of the 2014 IEEE 40th
Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 1367–1369.

7. Bhowmik, S. Systems and Methods for Solar Photovolatic Energy Collection and Conversion.
U.S. Patent 9,531,293, 27 December 2016.

8. Lu, F.; Choi, B.; Maksimovic, D. Autonomous control of series-connected low voltage photovoltaic
microinverters. In Proceedings of the 2015 IEEE 16th Workshop on Control and Modeling for Power
Electronics (COMPEL), Vancouver, BC, Canada, 12–15 July 2015; pp. 1–6.

9. Zhang, L.; Sun, K.; Li, Y.W.; Lu, X.; Zhao, J. A Distributed Power Control of Series-connected Module
Integrated Inverters for PV Grid-tied Applications. IEEE Trans. Power Electron. 2017, 7698–7707. [CrossRef]

10. Jafarian, H.; Cox, R.; Enslin, J.H.; Bhowmik, S.; Parkhideh, B. Decentralized Active and Reactive Power
Control for an AC-Stacked PV Inverter with Single Member Phase Compensation. IEEE Trans. Ind. Appl.
2018, 54, 345–355. [CrossRef]

11. Jafarian, H.; Bhowmik, S.; Parkhideh, B. Hybrid Current-/Voltage-Mode Control Scheme for Distributed
AC-Stacked PV Inverter with Low-Bandwidth Communication Requirements. IEEE Trans. Ind. Electron.
2018, 65, 321–330. [CrossRef]

12. He, J.; Li, Y.; Wang, C.; Pan, Y.; Zhang, C.; Xing, X. Hybrid Microgrid With Parallel- and Series-Connected
Microconverters. IEEE Trans. Power Electron. 2018, 33, 4817–4831. [CrossRef]

13. Hadi Amini, M.; Bahrami, S.; Kamyab, F.; Mishra, S.; Jaddivada, R.; Boroojeni, K.; Weng, P.; Xu, Y.
Decomposition Methods for Distributed Optimal Power Flow: Panorama and Case Studies of the DC
Model. Class. Recent Asp. Power Syst. Optim. 2018, 137–155. [CrossRef]

14. Mohammadi, A.; Mehrtash, M.; Kargarian, A. Diagonal Quadratic Approximation for Decentralized
Collaborative TSO+DSO Optimal Power Flow. IEEE Trans. Smart Grid. 2018, 1. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2018.2865127
http://dx.doi.org/10.1016/j.ijepes.2018.06.045
http://dx.doi.org/10.1016/j.ijepes.2018.06.006
http://dx.doi.org/10.1109/TPEL.2017.2769487
http://dx.doi.org/10.1109/TIA.2017.2761831
http://dx.doi.org/10.1109/TIE.2017.2714129
http://dx.doi.org/10.1109/TPEL.2017.2695659
http://dx.doi.org/10.1016/B978-0-12-812441-3.00006-9
http://dx.doi.org/10.1109/TSG.2018.2796034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Modeling 
	Proposed Decentralized Control 
	Schematic Overview of the Proposed Decentralized Control 
	Proposed Decentralized Control 
	Steady-State Analysis and Self-Synchronization Mechanism 

	Simulation Results 
	Symmetrical Condition and Partial Shading 
	Grid Voltage Sag Condition 
	Grid Frequency Fluctuation Condition 
	No-Unity PF Operation 

	Conclusions 
	References

