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Abstract: This paper proposes a novel adaptive consensus algorithm (ACA) for distributed
heat-electricity energy management (HEEM) of an islanded microgrid. In order to simultaneously
satisfy the heat-electricity energy balance constraints, ACA is implemented with a switch between
unified consensus and independent consensus according to the dynamic energy mismatches.
The feasible operation region of a combined heat and power (CHP) unit is decomposed into eight
searching sub-regions, thus its electricity and heat energy outputs can simultaneously match the
incremental cost consensus requirement and the heat-electricity energy balance constraints. Case
studies are thoroughly carried out to verify the performance of ACA for distributed HEEM of an
islanded microgrid.

Keywords: adaptive consensus algorithm; distributed heat-electricity energy management; eight
searching sub-regions; islanded microgrid

1. Introduction

Over the past decades, microgrids have attracted extensive attention and study as they provide
an efficient and flexible way to integrate various distributed energy resources (DERs), local loads,
and energy storage devices [1]. In general, a microgrid is a local energy grid which can be operated
in either grid-connected or islanded modes [2]. When a microgrid is islanded, it needs to achieve an
energy balance between the energy supply and the demand without the adequate power supply from
the main grid [3].

In order to handle this issue, the economic dispatch (ED) is usually employed to minimize the
total operating cost while satisfying various operating constraints (e.g., energy balance constraints) [4].
So far, ED of an islanded microgrid can be implemented with two frameworks, including the centralized
and distributed frameworks. Under the first framework, the energy management system (EMS) needs
to collect the operating parameters of all the energy suppliers and consumers [5], then an optimal
dispatch scheme can be determined by a centralized optimization method. As a result, it will inevitably
result in three critical problems:

• Communication bottleneck [6] due to the great increasing amount of data from the large
integration of DERs;

• Expensive computation [7] for the growing controllable variables and operating constraints from
the large integration of DERs;

• Low individual privacy and security [8].
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Compared with the centralized ED, a distributed ED can automatically address all of the above
problems [6]. Owing to this advantage, many distributed optimization techniques have been proposed
for a distributed ED in a microgrid, such as distributed λ-iteration [9], population game method [10],
and dual decomposition based optimization (DDO) [11]. Among these approaches, consensus-based
algorithms were widely studied due to their remarkable self-organizing ability, significant robustness,
and easy scalability [12–16]. In [12], a simple consensus-based optimization was designed for optimal
resource management in an islanded microgrid. By considering the ramp rate limitations, a novel
consensus and innovations [13] were presented for a multistep ED in a microgrid. Moreover, a novel
consensus algorithm based ED was proposed by taking the impacts of communication time delays
into account [15]. However, all of these consensus algorithms did not address two important issues:

• Multi-energy dispatch: The above ED only considers the electricity energy dispatch, and did not
consider the optimal dispatch of other energies, e.g., the heat energy dispatch;

• Tight coupling features among various energies: As the participation of a combined heat and
power (CHP) unit, the electricity and heat energy outputs are tightly coupled because of the
feasible operation region constraint, which needs to be carefully designed in the distributed ED.

Therefore, this paper proposes a novel adaptive consensus algorithm (ACA) for distributed
heat-electricity energy management (HEEM) of an islanded microgrid, which can not only realize
the optimal multi-energy dispatch but also consider the tight coupling features between heat and
electricity energies.

The remainder of this paper is organized as follows: Section 2 introduces the mathematical model
of distributed HEEM, including the objective function, the operation constraints, and a detailed feature
analysis of the incremental cost. Section 3 presents the optimization principle of ACA for distributed
HEEM, while the detailed solving process is provided. Case studies on a microgrid with ten energy
suppliers and seven energy consumers are given in Section 4, in which four optimization methods are
introduced for performance comparison with ACA. Finally, Section 5 concludes the paper.

2. Mathematical Model of Distributed HEEM

In this study, the distributed HEEM aims to minimize the total operating cost of the entire islanded
microgrid while satisfying the heat and electricity energy balance constraints and other operating
constraints, as illustrated in Figure 1. Note that each controllable unit only communicates with the
adjacent units during the computation of distributed HEEM, which is the main difference compared
with the centralized ED [17].
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2.1. Objective Function

The total operating cost f total is equal to the sum of all the energy suppliers and consumers,
which can be written as:

ftotal = ∑
i∈ΩG

fi(PGi, HGi) + ∑
i∈ΩD

fi(∆PDi), (1)

where PGi and HGi are the electricity and heat energy outputs of the ith energy supplier, respectively;
∆PDi is electricity energy curtailment of the ith energy consumer which participates in demand response
(DR); ΩG and ΩD are the sets of the energy suppliers and consumers, respectively; and fi denotes the
operating cost of the ith energy supplier or consumer, which can be calculated as follows [18]:

fi(PGi, HGi) =



0, for WT or PV unit
αi + βiPGi + γiP2

Gi, for diesel generator
αi + βi HGi + γi H2

Gi, for heat− only unit
αi + βiPGi + γiP2

Gi+

δi HGi + θi H2
Gi + ξi HGiPGi, for CHP unit

, (2)

fi(∆PDi) =
−1
bi

∆P2
Di +

P0
Di − ai

bi
∆PDi, i ∈ ΩD, (3)

where αi, βi, γi, δi, θi, and ξi are the operating cost coefficients of the ith energy supplier; ai and bi are
the operating cost coefficients of the ith energy consumer; WT and PV represent the the wind turbine
and photovoltaic unit, respectively; and PDi

0 is the current initial electricity energy demand of the ith
energy consumer.

2.2. Constraints

2.2.1. Energy Balance Constraints

The total energy outputs of all the energy supplier needs to match the total energy demands of all
the energy consumers, is as follows:

∆E = ∑
i∈ΩG

PGi − ∑
i∈ΩD

(
P0

Di − ∆PDi

)
= 0, (4)

∆H = ∑
i∈ΩG

HGi − ∑
i∈ΩD

HDi = 0, (5)

where HDi is the heat energy demand of the ith energy consumer; ∆E and ∆H are the electricity
energy mismatch and heat energy mismatch, respectively, which will be combined into ACA in the
latter section.

2.2.2. Lower and Upper Capability Limits

The energy outputs of each energy supplier, and the electricity energy curtailment of each energy
consumer should be limited within their lower and upper bounds, as [18,19]:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , for diesel generator
Hmin

Gi ≤ HGi ≤ Hmax
Gi , for heat− only unit

Pmin
Gi (HGi) ≤ PGi ≤ Pmax

Gi (HGi), for CHP unit
Hmin

Gi (PGi) ≤ HGi ≤ Hmax
Gi (PGi), for CHP unit

, (6)

0 ≤ ∆PDi ≤ ηiP0
Di, i ∈ ΩD, (7)

where PDi
min and PDi

max are the minimum and maximum electricity energy outputs of the ith energy
supplier, respectively; HDi

min and HDi
max are the minimum and maximum heat energy outputs of the
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ith energy supplier, respectively; and ηi is the maximum allowable electricity energy curtailment factor
of the ith energy consumer.

Note that both the WT and PV units are operated at their maximum power points under the
current weather conditions [18], thus they do not require a consensus interaction with other controllable
devices. Besides, it can be found from Equation (6) that both the lower and upper limits of the
electrical energy output of CHP units are determined by different heat energy outputs and vice versa,
which indicates that the energy outputs of CHP units should be enclosed by the boundary curve ABCD
(i.e., the feasible operating region) [19], as shown in Figure 2.
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2.3. Feature Analysis

Since only the strictly convex feasible operating region is considered for each CHP unit,
the proposed distributed HEEM is a strictly convex optimization with a unique optimum according
to the quadratic objective functions Equations (1)–(3) and the linear constraints Equations (4)–(7).
Hence, a feasible solution which simultaneously satisfies all the constraints can be regarded as the
global optimum of distributed HEEM if all the energy suppliers and consumers can reach a consensus
on the incremental cost, as [20]:

∂ f1(PG1)

∂PG1
= · · · = ∂ fi(PGi)

∂PGi
=

∂ fi(HGi)

∂HGi
= · · · = ∂ fn(∆PDn)

∂∆PDn
= λ, (8)

where n is the number of controllable devices; and λ is the incremental cost.
Note that such a consensus condition Equation (8) will not hold for a constrained optimization

problem, as well as for distributed HEEM. In order to approximate the global optimum, all the
constraints Equations (4)–(7) must be satisfied while the consensus condition should be satisfied as
much as possible [20].

According to Equation (8), the incremental cost of each agent can be calculated as follows:{
λE

i = 2γiPGi + βi, for diesel generator
λH

i = 2γi HGi + βi, for heat− only unit
, (9)

{
λE

i = 2γiPGi + ξi HGi + βi,
λH

i = 2θi HGi + ξiPGi + δi,
for CHP unit, (10)

λE
i =
−2
bi

∆PDi +
P0

Di − ai

bi
, i ∈ ΩD, (11)

where λi
E and λi

H denote the electricity and heat incremental costs of the ith energy supplier or
consumer, respectively.
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Since all the operating cost coefficients except bi are the positive constants during each dispatch
time interval, the incremental costs of the diesel generator, heat-only unit, and energy consumer,
increase linearly with the electricity energy output, heat energy output, and electricity energy
curtailment, respectively, as shown in Figure 3. In contrast, the electricity and heat incremental
costs of the CHP unit are determined by both the electrical and heat energy outputs, as illustrated in
Figure 4. For example, both the electrical and heat incremental costs will increase when the CHP unit
is operated from the current operating point to the green region.Energies 2018, 11, x FOR PEER REVIEW  5 of 17 
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3. Design of ACA for Distributed HEEM

3.1. Graph Theory of Interaction Network

The interaction network among different agents can be typically built with a directed graph
G = (V, E, A), where V = {v1, v2, . . . , vn} is the set of nodes (agents); E ⊆ V × V denotes the edges
(interactions); and A = [aij] ∈ Rn × n is a weighted adjacency matrix [21]. Based on these basic elements,
the Laplacian matrix L = [lij] ∈ Rn × n and row stochastic matrix D = [dij] ∈ Rn × n of the graph G can
be determined as follows: 

lij = −aij, ∀i 6= j

lii =
n
∑

i=1,i 6=j
aij

, (12)

dij [k] =
∣∣lij∣∣/ n

∑
j=1

∣∣lij∣∣, i = 1, 2, . . . , n (13)

where k is the discrete time index.
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In this paper, the weighted adjacency matrix is set to be a simple (0, 1)-matrix, thereby aij = 1 if
the ith agent and the jth agent communicate with each other, otherwise aij = 0.

3.2. Adaptive Consensus Algorithm

The basic principle of ACA is that each agent aims to reach a consensus on a specific state with
the adjacent agents by regulating its own state based on the current states from the adjacent agents.
This process can be described by the first-order consensus, as [20]:

xi[k + 1] =
n

∑
j=1

dij[k]xj[k], (14)

where xi is the state of the ith agent, which refers to the incremental cost of each agent for distributed
HEEM on the basis of Equation (8).

In this study, each agent will transmit its own energy output or demand to the microgrid EMS at
each iteration, then EMS will update ∆E and ∆H, and send them to each agent. In order to satisfy the
energy balance constraints Equations (4) and (5), these two mismatches need to be fully considered in
the consensus interaction among the agents, which can be achieved as follows:

• Unified consensus: If the signs of ∆E and ∆H are consistent, i.e., ∆E∆H ≥ 0, then all the agents
can update their incremental cost state in a unified interaction network, as

λi[k + 1] =


n
∑

j=1
dij[k]λj[k]− µ∆E, i ∈ ΩE

n
∑

j=1
dij[k]λj[k]− µ∆H, i ∈ ΩH

, (15)

• Independent consensus: If the signs of ∆E and ∆H are inconsistent, i.e., ∆E·∆H < 0, then the
electricity agents and heat agents need to be separated to update their incremental cost state in
two independent interaction networks, as:

λE
i [k + 1] = ∑

j∈ΩE

dE
ij[k]λ

E
j [k]− µ∆E, i ∈ ΩE

λH
i [k + 1] = ∑

j∈ΩH

dH
ij [k]λ

H
j [k]− µ∆H, i ∈ ΩH

, (16)

where ΩE and ΩH represent the sets of electricity agents and heat agents, respectively; dij
E is the

(i, j) entry of the row stochastic matrix of the interaction network among the electricity agents; dij
H

is the (i, j) entry of the row stochastic matrix of the interaction network among the heat agents;
and µ denotes the adjustment factor of energy mismatch, µ > 0.

Therefore, each agent will regulate its incremental cost between these two consensus modes
according to the sign of (∆E·∆H), as illustrated in Figure 5. After a series of consensus interactions
by Equations (15) and (16), the energy balance constraints Equations (4) and (5) can be satisfied since
both the electricity energy mismatch ∆E and heat energy mismatch ∆H will be sufficiently small. It is
important that each interaction network should be strongly connected, i.e., any vertex can be realized
from any other vertex by a directed path, thereby the consensus convergence can be guaranteed.
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3.3. Constraints Handling

Owing to the lower and upper capability limits Equations (6) and (7), all the agents may not
reach a consensus on the incremental cost. Hence, a virtual incremental cost [17] is designed in ACA,
which corresponds to the actual incremental cost of each agent. Note that each agent is responsible for
computing its own incremental cost. More specifically, each agent can update its virtual incremental
cost via a consensus interaction with adjacent agents by Equations (15) and (16), which is not limited
by the constraints Equations (6) and (7). After updating the virtual incremental cost at each iteration,
each agent can calculate its controllable variable by fully considering the constraints, while the actual
incremental cost can be determined by Equations (9)–(11). Hence, all the constraints of distributed
HEEM can be satisfied, while all the agents can reach a consensus on the incremental cost as much
as possible.

1. Diesel generator: The electrical energy output can be modified as follows:

Pc
Gi =

(
λE

i − βi

)
/2γi, (17)

PGi =


Pmin

Gi , if Pc
Gi < Pmin

Gi
Pc

Gi, if Pmin
Gi ≤ Pc

Gi ≤ Pmax
Gi

Pmax
Gi , if Pc

Gi > Pmax
Gi

, (18)

where PGi
c is the consensus value of the electrical energy output of the ith energy supplier.

2. Heat-only unit: The heat energy output can be modified as follows:

Hc
Gi =

(
λH

i − βi

)
/2γi (19)

HGi =


Hmin

Gi , if Hc
Gi < Hmin

Gi
Hc

Gi, if Hmin
Gi ≤ Hc

Gi ≤ Hmax
Gi

Hmax
Gi , if Hc

Gi > Hmax
Gi

, (20)

where HGi
c is the consensus value of the heat energy output of the ith energy supplier.

3. Energy consumer: The electricity energy curtailment can be modified as follows:

∆Pc
Di =

(
P0

Di − ai − biλ
E
i

)
/2, (21)
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∆PDi =


0, if ∆Pc

Di < 0
∆Pc

Di, if 0 ≤ ∆Pc
Di ≤ ηiP0

Di
ηiP0

Di, if ∆Pc
Di > ηiP0

Di

, (22)

where ∆PDi
c is the consensus value of the electrical energy curtailment of the ith energy consumer.

4. CHP unit: Since the electrical and heat energy outputs are highly coupled, the incremental cost
should be controlled to meet the energy balance constraints and the feasible operating region
constraint. Hence, the feasible operating region is decomposed into eight searching sub-regions,
See Figure 6, allowing the CHP unit to adjust its energy outputs based on the current energy
mismatches and the consensus value of incremental costs, as given in Table 1.
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Table 1. Adjusting rules of energy outputs of CHP unit.

∆E > 0 ∆H > 0 λi
E[k] > λi

AE[k − 1] λi
H[k] > λi

AH[k−1] (PGi, HGi)

True True True True No adjustment
True True True False No adjustment
True True False True No adjustment
True True False False Sub-region #5
True False True True Sub-region #2
True False True False No adjustment
True False False True Sub-region #3
True False False False Sub-region #4
False True True True Sub-region #8
False True True False Sub-region #7
False True False True No adjustment
False True False False Sub-region #6
False False True True Sub-region #1
False False True False No adjustment
False False False True No adjustment
False False False False No adjustment

Note that the CHP unit does not need to adjust its electrical and heat energy outputs if the
consensus requirement and energy balance constraints cannot be satisfied simultaneously. For instance,
when both the current virtual incremental costs (λi

E[k], λi
H[k]) are larger than the last actual incremental

costs (λi
AE[k− 1], λi

AH[k− 1]), while both the energy mismatches are positive (∆E > 0, ∆H > 0), then the
CHP unit will readjust the energy balances by increasing its incremental costs, thus its electrical and
heat energy outputs will remain unchanged. In addition, when the CHP unit needs to adjust its energy
outputs, the electrical and heat energy outputs can be updated according to the energy mismatches,
as follows:
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{
PGi[k + 1] = PGi[k]− µE∆E
HGi[k + 1] = HGi[k]− µH∆H

, (23)

where µE and µH denote the adjustment factors of electrical and heat energy outputs, respectively.
If the operating point of the CHP unit is beyond the corresponding sub-region, then the electrical

and heat energy outputs should be modified by the closest point (the point with the shortest Euclidean
distance to the updated operating point) within the sub-region.

3.4. Execution Procedure

To sum up, the detailed execution procedure of ACA for distributed HEEM of an islanded
microgrid is given in Algorithm 1, where τ is the energy mismatch tolerance, which is set to be 0.001
in this paper.

Algorithm 1. ACA for distributed HEEM.

1: Initial the algorithm parameters;
2: Design the interaction network among different agents;
3: Input the operating data of the current optimization task;
4: Calculate the electricity and heat energy mismatches by Equations (4) and (5);
5: While |∆E| > τ or |∆H| > τ

6: If ∆E·∆H ≥ 0 then
7: Update the virtual incremental cost of each agent by unified consensus

Equation (15);
8: Else
9: Update the virtual incremental cost of each agent by independent consensus

Equation (16);
10: End If
11: Calculate the electricity energy output of each diesel generator by Equations (17)

and (18);
12: Calculate the heat energy output of each heat-only unit by Equations (19) and (20);
13: Calculate the electricity energy curtailment of each energy consumer by

Equations (21) and (22);
14: Modify the energy outputs of each CHP unit based on the adjusting rule in Table 1

and the eight searching sub-regions in Figure 6;
15: Calculate the electricity and heat energy mismatches by Equations (4) and (5);
16: Set k: = k + 1;
17: End While
Output the optimal energy dispatch strategy of each agent.

4. Case Studies

4.1. Simulation Model

In order to test the multi-energy dispatch, the islanded microgrid [18] with three PV units,
two WTs, two diesel generators, one heat-only unit, two CHP units, and seven controllable energy
consumers, is used for the simulation. Hence, both the electrical and heat parts are simultaneously
considered in simulation, where the detailed mathematical model of distributed HEEM can be
constructed by acquiring the operating constraints and operating cost function of energy for each
supplier or consumer. Furthermore, the operating cost coefficients are given in Table 2; the physical
topology is provided in Figure 7, and the interaction network among them is illustrated in Figure 8.
In addition, three operating scenarios (i.e., scenarios #1 to #3) with different energy outputs of
renewables (i.e., 0.8, 0.6, and 1 MW), instead of a single operating scenario, are designed for evaluating
the optimization performance of different algorithms more scientifically. The adjustment factors µ,
µE, and µH are set to be 10, 0.1, and 0.1, respectively. The following simulations will be carried out in
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Matlab R2016a by a personal computer with Intel(R) Xeon (R) E5-2670 v3 CPU at 2.3 GHz with 64 GB
of RAM.

Table 2. Operating cost coefficients of controllable units.

Type No. αi βi γi δi θi ζi

Diesel generator G1 10.193 210.36 250.2 - - -
G2 2.305 301.4 1100 - - -

Heat-only unit G3 33 12.3 6.9 - - -

CHP unit
G4 339.5 185.7 44.2 53.8 38.4 40
G5 100 288 34.5 21.6 21.6 8.8

Energy
consumer

L1 1 −0.002 - - - -
L2 1 −0.002 - - - -
L3 1 −0.001 - - - -
L4 1 −0.001 - - - -
L5 1 −0.001 - - - -
L6 1 −0.0035 - - - -
L7 1 −0.0035 - - - -
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4.2. Study of Convergence

This case study is executed to reveal the convergence of ACA. Figure 9 shows the convergence
process of ACA for distributed HEEM under scenario #1. It can be found from Figure 9a that the
virtual incremental cost of each agent will update between unified consensus mode and independent
consensus mode according to the dynamic energy mismatches, in which the incremental heat costs
cannot reach a consensus with other incremental electrical costs due to the energy balance constraints
Equations (4) and (5). Besides, some energy agents have reached their energy capability limits after a
few interactions, as shown in Figure 9b. Moreover, two CHP units can adaptively adjust their energy
outputs based on the adjusting rule in Table 1, see Figure 9c, where the zero searching sub-region
indicates that the energy outputs of the CHP unit remain unchanged. Finally, both the electrical
and heat energy mismatches (∆E and ∆H) can simultaneously satisfy the energy mismatch tolerance
after approximately 150 iterations, see Figure 9d, i.e., |∆E| < τ and |∆H|<τ. All of this proves that
the convergence of ACA can be effectively guaranteed, while the consensus requirement and all the
constraints Equations (4)–(7) can be fully satisfied.
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Here, the implementation period of distributed HEEM is set as 2 s for testing the real-time
optimization performance of ACA. Note that the total time of each iteration includes the calculation
time and information transmission time, which can be set as 1 ms with a conservative estimation.
Figure 10 gives the real-time optimization of distributed HEEM obtained by ACA under three different
scenarios as the total energy output of PV and WT units varies. It also verifies that ACA can converge
to an optimal solution of distributed HEEM, while it can fully satisfy the real-time optimization of
distributed HEEM because its convergence time is much shorter than the implementation period.
Furthermore, it is clear that the incremental electrical cost decreases with the increasing electrical
energy outputs of renewables.
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4.3. Comparative Results and Discussions

In order to further test the performance of ACA, four optimization algorithms, including genetic
algorithm (GA) [22], interior point method (IPM) [23], distributed particle swarm optimization
(DPSO) [24], and DDO [11], are introduced for comparisons, where the first two methods are
centralized; and the latter two methods are distributed.

Table 3 provides the dispatch strategies obtained by different algorithms under scenario #1.
It illustrates that ACA can converge to a high-quality optimum of distributed HEEM, which is very
similar to the global optimum obtained by centralized IPM. Furthermore, the quality of the obtained
optimum of GA is the lowest due to its premature convergence. This also demonstrates the effectiveness
of ACA for distributed HEEM.

Table 3. Obtained dispatch strategies under scenario #1.

No. Energy Type
Dispatch Strategy (MW)

GA IPM DPSO DDO ACA

G1 Electrical 0.4013 0.3134 0.4150 0.3178 0.4427

G2 Electrical 0.1617 0.0492 0.2000 0.0500 0.0602

G3 Electrical 0.8448 0.9963 1.0000 0.9923 0.7962
Heat 0.3182 0.0056 0.0000 0.0069 0.0000

G4 Electrical 0.4588 0.5946 0.6000 0.5941 0.5999
Heat 0.2952 0.0326 0.0000 0.0354 0.0000

G5 Heat 0.3858 0.9619 1.0000 0.9577 1.0000

L1 Electrical 0.3938 0.3771 0.4500 0.3744 0.3600

L2 Electrical 0.3220 0.3310 0.3600 0.3353 0.2880

L3 Electrical 0.4736 0.5359 0.5400 0.5360 0.5400

L4 Electrical 0.3624 0.4030 0.4050 0.4034 0.4050

L5 Electrical 0.4395 0.4919 0.4950 0.4921 0.4950

L6 Electrical 0.3922 0.3614 0.4500 0.3605 0.3600

L7 Electrical 0.2840 0.2531 0.3150 0.2524 0.2520

HD Heat 1 1 1 1 1

PV Electrical 0.3 0.3 0.3 0.3 0.3

WT Electrical 0.5 0.5 0.5 0.5 0.5

Total operating cost ($/h) 1201.48 1091.38 1153.99 1091.57 1113.91

Table 4 gives the comparison results obtained by three algorithms under different scenarios in
100 runs. It shows that IPM, DDO, and ACA always converge to the same optimum with a given initial
solution and parameters as they are essentially the deterministic optimization algorithms. In contrast,
both GA and DPSO often search different optimums in different runs due to their random heuristic
operators. Furthermore, these two heuristic optimization algorithms also result in a much longer
execution time than that of the other three methods, where the execution time of DPSO is shorter than
that of GA due to its higher computation efficiency and distributed feature. Besides, the quality of
optimum obtained by DDO is only lower than that of IPM, but its execution time is about four times
that of ACA. Similarly, the optimum obtained by ACA is similar to the global optimum obtained by
IPM, while the execution time is nearly the same. Hence, ACA is very suitable to yield the distributed
HEEM because of its excellent performance regarding optimum quality and execution time.
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Table 4. Comparison results obtained by five algorithms under different scenarios in 100 runs.

Scenario No. Algorithm Type Execution Time (s)
Total Operating Cost ($/h)

Max Avg Min

#1

GA Centr. 9.45 1250.29 1207.94 1148.17
IPM Centr. 0.32 1091.38 1091.38 1091.38

DPSO Distr. 4.17 1153.99 1151.90 1124.50
DDO Distr. 1.27 1091.57 1091.57 1091.57
ACA Distr. 0.20 1113.91 1113.91 1113.91

#2

GA Centr. 9.16 1334.22 1299.12 1251.35
IPM Centr. 0.56 1168.46 1168.46 1168.46

DPSO Distr. 4.14 1228.44 1228.15 1226.12
DDO Distr. 1.49 1198.32 1198.32 1198.32
ACA Distr. 0.51 1212.54 1212.54 1212.54

#3

GA Centr. 9.36 1178.54 1135.87 1083.35
IPM Centr. 0.26 1020.67 1020.67 1020.67

DPSO Distr. 4.42 1080.39 1078.45 1041.42
DDO Distr. 1.24 1020.77 1020.77 1020.77
ACA Distr. 0.34 1024.73 1024.73 1024.73

4.4. Scalability Test of ACA

This case study is used for testing the scalability of ACA for a larger scale system. In general, ACA
will lead to a slower convergence rate for a larger scale microgrid with more agents. For testing the
scalability of ACA, different scales of microgrid are designed based on the presented microgrid with
12 agents, in which the scales are 5, 10, 50, 100, and 500 times of the presented microgrid, respectively.
Figure 11 shows the convergence process of ACA for two scales of microgrids under scenarios #3.
It can be found that ACA can also converge to the optimal virtual incremental costs when the number
of agents increases from 12 to 600. Although the number of agents increases by fifty-fold, the iteration
number of convergence only increases from 340 to 488. In addition, Figure 12 provides statistical results
of iteration number of convergence under different numbers of agents by ACA. Similarly, it shows that
the iteration number of convergence increases marginally as the number of agents increases from 12
to 6000 under different scenarios. More specifically, the iteration number of convergence with 6000
agents is only 2.8 times of that with 12 agents under scenario #1. This reveals that ACA is suitable for
real-world application with a high number of agents due to its superior scalability.
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5. Conclusions

In summary, this paper presents a novel ACA for distributed HEEM of an islanded microgrid,
which has the following contributions:

1. The ACA based distributed HEEM can effectively address the multi-energy dispatch of an
islanded microgrid in a simple distributed manner, while various constraints (e.g., the tight
coupling features among various energies) can be completely satisfied.

2. The proposed eight searching sub-regions effectively make the CHP unit adaptively adjust its
energy outputs to simultaneously meet the consensus requirement and the heat-electricity energy
balance constraints.
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3. Through the switch between unified consensus and independent consensus, ACA gradually
converges to the optimal solution of the whole system according to the dynamic
energy mismatches.

4. ACA can not only obtain a high-quality optimum of distributed HEEM, but also guarantee a
short execution time. Hence, it can be generalized to be applied to other real-time distributed
optimization issues of integrated energy systems.

Our future work will focus on improving the flexibility and generality of ACA by combining
the model-free heuristic search or machine-learning mechanisms. Hence, it can handle more complex
distributed optimization with high nonlinearity and nonconvexity, discontinuous and nondifferentiable
objective functions.
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