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Abstract: In recent years, the wind energy conversion system (WECS) has been becoming the vital
system to acquire wind energy. However, the high failure rate of WECSs leads to expensive costs for
the maintenance of WECSs. Therefore, how to detect and isolate the faults of WECSs with stochastic
dynamics is the pressing issue in the literature. This paper proposes a novel comprehensive fault
detection and isolation (FDI) method for WECSs. First, a stochastic model predictive control (SMPC)
controller is studied to construct the closed-loop system of the WECS. This controller is based on the
Markov-jump linear model, which could precisely establish the stochastic dynamics of the WECS.
Meanwhile, the SMPC controller has satisfied control performance for the WECS. Second, based on
the closed-loop system with SMPC, the stochastic hybrid estimator (SHE) is designed to estimate
the continuous and discrete states of the WECS. Compared with the existing estimators for WECSs,
the proposed estimator is more suitable for WECSs since it considers both the continuous and discrete
states of WECSs. In addition, the proposed estimator is robust to the fault input. Finally, with the
proposed estimator, the comprehensive FDI method is given to detect and isolate the actuators’ faults
of the WECS. Both the system status and the actuators’ faults can be detected by the FDI method and
it can effectively quantify the actuators’ fault by the fault residuals. The simulation results suggest
that the SHE could effectively estimate the hybrid states of the WECS, and the proposed FDI method
gives satisfied fault detection performance for the actuators of the WECS.

Keywords: wind energy conversion system; Markov jump linear system; stochastic model predictive
control; stochastic hybrid estimation; fault detection and isolation

1. Introduction

With the growing of the energy crisis and the awareness of human environmental protection,
wind power is increasingly used as a green energy source [1]. Wind turbines are usually installed
in harsh environments such as coastal areas, deserts, and mountainous areas. This means that the
reliability of large wind turbine system operations need to be improved. However, in recent years,
the accidents of wind turbines and power grid disturbances (such as voltage sag mitigation [2,3] to
which wind energy conversion systems (WECSs) are highly sensitive) caused by loss of control in the
design, manufacture, installation, operation and maintenance of intermediate links have threatened
the safe operation of wind farms. The probability of failure of actuators and sensors is very high,
and maintenance costs are enormous [4,5]. Therefore, fault detection and diagnosis of wind turbines
have become a vital and stiff topic.

To realize the fault detection and isolation (FDI) of WECSs, the issue of how to construct the
closed-loop control system is a prerequisite. The WECS is a complex stochastic switching nonlinear
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dynamic system, which is integrating mechanisms, electricity and liquid. Therefore, the traditional
control methods have difficulty in achieving satisfactory performance [5]. In these features of WECSs,
the stochastic switching, which is caused by the randomness of the wind, is the most important feature
of the WECS. Notably, the stochastic switching feature can be represented as having the Markov jump
characteristics, so the WECS can be described as a Markov jump linear system (MJLS). The Markov
jump linear system is a nonlinear system that describes the system with uncertainty and disturbance
as a Markov chain process. In 2012, Bernardini and Bemporad [6] proposed a scenario-based stochastic
model predictive control for the stochastic Markov jump linear system. This kind of scenario-based
stochastic model predictive control can be well applied to stochastic MJLSs. The main benefit of
stochastic model predictive control is that it can make predictions with the full use of the statistical
information of disturbance. Stochastic model predictive control (SMPC) has been used in many
fields, such as drinking water networks [7], microgrids [8,9], electric vehicles [10], and so forth [11,12].
Furthermore, the scenario-based stochastic model predictive control has rarely been applied to solve
the optimal control problem of wind turbines under random wind speed [13].

With the closed-loop system, estimating the system states is needed by the FDI of WECSs.
Scholars also have extensive and in-depth research on state estimation [14–20]. In the literature,
the Kalman filter is the most commonly used method to estimate states [14]. For discrete-time
state-space Markov models, Crisan [15] uses a sequential Monte Carlo method to design nested
structure particle filters to approximate the posterior probability measure of the static parameters
and the dynamic state variables of the system. Hu [16], based on the Markov chain Monte Carlo
to Sequential Monte Carlo algorithm, propose a state space model with Bayesian online estimation
method to derive the optimal Bayesian estimation. Notably, it is a significant issue in the literature
to accurately locate faults for hybrid systems. Liu [21] designed the robust estimation algorithm for
a typical hybrid system (the aircraft). In this paper, the control object is the wind turbines, and the
control method is the more advanced and complicated SMPC.

A lot of research has been started in recent years for the fault diagnosis and isolation of
wind turbines [22–29]. Karim [22] designed an observer scheme for FDI, which is integrated with
a maximum-shift strategy and a time-varying Kalman filter for the additive and multiplicative
measurement failures of voltage and current. Silvio [23] used fuzzy models to estimate fault
residuals for diagnosis and isolation. Iury [24] uses data-driven methods for fault detection,
and a fuzzy/Bayesian network to distinguish faults. However, current research works do not
systematically consider the stochastic hybrid characteristics of wind turbines and do not estimate the
continuous and discrete states of the wind turbine during fault diagnosis and isolation.

This work presents a new FDI method based on stochastic hybrid estimation for WECSs.
First, the scenario-based SMPC controller is used to deal with the control problem of wind energy
conversion systems. By extracting the probability information of wind speed, the Markov jump
linearization model of the wind turbine can be constructed, so that the random switching characteristics
of the wind turbine can be accurately described. With this model, the SMPC can be benefited from
the probability information of the wind to achieve a better control performance. Second, this paper
proposed a stochastic hybrid estimator that estimates the continuous state and the discrete states of
WECSs with unknown fault inputs. The proposed estimator decouples the unknown fault inputs from
the estimation error dynamics of the hybrid system. With this decoupling, it can guarantee that the
estimation is not influenced by the fault input. At last, the comprehensive FDI method is used to detect
and isolate the actuators’ faults of WECSs. The innovation of the FDI algorithm proposed in this paper
is that it can accurately estimate both the continuous and discrete states of the WECS with unknown
fault inputs. The principle is to construct the system fault residual based on the accurate estimation
of the proposed estimator and use the statistical decision tool to realize fault detection and isolation.
The continuous state estimation of the system can be obtained by stochastic hybrid estimation, and the
discrete state estimation of the system can be derived by Bayesian theory. The simulation results show
that the SMPC controller has good control performance for the WECS, and the FDI algorithm has good
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fault detection and isolation effect. Both the fault amplitude and the fault occurrence can be effectively
estimated by the proposed method.

This paper has been divided into five parts. The first part deals with the SMPC controller design
in Section 2; the second part focuses on the stochastic hybrid estimation for WECSs in Section 3;
the third part presents the comprehensive FDI algorithm for WECSs in Section 4; the fourth part is the
simulation verification of the SMPC controller and the FDI method shown in Section 5; the last part is
the conclusion, which gives a brief summary in Section 6.

2. Scenario-Based SMPC for Wind Energy Conversion Systems

To construct the closed-loop control system of a WECS, the SMPC controller is studied to
implement this procedure in this section. The Markov jump model of the WECS is briefly given
first. With this model, the SMPC controller is used to realize the closed-loop control of the WECS.

2.1. Markov Chain Transition Matrix of the Wind Speed

For a Markov chains theory applied to wind speed time series data, the one-step (first-order)
probability transition matrix P of the wind speed includes the statistical information of the discrete
wind speed time series [30]. The one-step Markov transition matrix of the wind speed can be estimated
by a statistical method. In order to obtain the Markov chain transition matrix of the wind speed, the
wind speed is discretized into vt, t ∈ (0, 1, 2, . . . , T), then divided into different intervals according to
the wind speed (Figure 1) [5]. The state transition probability pij of the wind speed is the probability
that the state of wind speed is Si in time t (i.e., vt = Si), and is Sj in time t + 1

(
i.e., vt+1 = Sj

)
,

t ∈ (0, T − 1):
pij = Pr

{
vt+1 = Sj

∣∣vt = Si
}

(1)
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Let nij denote the number of wind speeds that are in state Si at period t and are in state Sj at
period t + 1, and then:

pij =
nij

∑3
j=1 nij

(2)

The one-step (first-order) transition matrix P
(

P ∈ R3×3) could be represented as:

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 (3)

where pij ≥ 0, ∑3
j=1 pij = 1, i, j = 1, · · · , 3 [31].
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2.2. Modeling of the WECS

The physical structure of a wind energy conversion system is presented as Figure 2, where the
system inputs are the generator torque reference Tgre f (t) and the pitch angle reference βre f (t).
Wind speed v(t) is the disturbance. Generator power Pg(t) and generator speed ωg(t) are the outputs
of the WECS.
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Since the operation of the WECS has different working domains (mainly partial load and full
load), the physical model of the WECS can be linearized for a specified working point in the different
working domains, as shown in Figure 1.
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where, v(t) = vm(t) + e, vm(t) is the mean wind speed, e ∈ N (0, 1) is the Gaussian white
noise, ω1, ω2 are the augmented state variables when e is approximated as a linear filter [32],

and A11 = − 1
τg

, A54 = −ω2
n, A55 = −2ξωn, a71 = − 1

Jg
, a77 = −

(
ηdtBdt
Jg N2

g
+

Bg
Jg

)
, a84 =

1
3Jr

∂Ta
∂β , a88 = − Bdt+Br

Jr
+ 1

Jr
∂Ta
∂ωr

, B11 = 1
τg

, B42 = ω2
n, e81 = 1

3Jr
∂Ta
∂vr

. ∂Ta
∂vr

, ∂Ta
∂ωr

and ∂Ta
∂β are the linearized

coefficients in different wind speed working points.
To obtain the parameters of the model (4), the power coefficient Cp(λ, β) of the WECS is a key

value [33], which determined by the pitch angle β and the tip-speed ratio λ.

Cp(λ, β) = 0.22
(

116
λt
− 0.4β− 5

)
e
−12.5

λt (5)

1
λt

=
1

λ + 0.08β
− 0.035

β3 + 1
(6)

The relationship of Cp, λ, β and the wind speed is shown in Figure 3.
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A tracking control algorithm with augmented state variables in model (4) [34] is implemented.
It has been used in the previous studies [5], which can be described as follows:

Consider model (4) as a continuous-time linear system

.
x = Ax + Bu + D + D1× e, y = Cx, x(t0) = x0 (7)

where, C =

[
0 0 0
−45 0 0

1 0 0
0.5 0 0

0
0

0 0
0 0

]
, y =

[
wg Pg

]T
. Let Nr be the output reference,

then the augmented state is
.
xre f

= Nr − y = Nr − Cx (8)

Then the augmented state equation can be defined as

.
x∑ = A∑x∑ + B∑u + D∑ + D1∑ × e + N∑, y = Cx, x∑ 0(t0) = x∑ 0 (9)

where

x∑ =

 x

xre f

, A∑ =

 A 0

−C 0

, B∑ =

 B

0

, D∑ =

 D

0

, D1∑ =

 D1

0

, N∑ =

 0

Nr

 (10)

Discretizing and linearizing model (9) at three working points in which the wind speeds are 5, 8
and 11 m/s, respectively. Then, it can obtain the WECS discrete-time linear system:

x(k + 1) = A(w(k))x(k) + B(w(k))u(k) + D(w(k)) + D1(w(k))e(k) + Iw× yr(k)
y(k) = Cx(k)

(11)

where Iw =

[
0 0 0
0 0 0

0 0 0
0 0 0

0
0

1 0
0 1

]T

, k ∈ N is the time index yr(k) =
[

wgre f Pgre f

]T
,

is the output reference, x(k) ∈ Rnx is the state, y(k) =
[

wg Pg

]T
is the output, u(k) ∈ Rnu is the

input, e(k) ∈ N (0, 1), w(k) ∈ W is the disturbance, and W = {1, 2, 3} ⊂ R is a finite set. A(w(k)),
B(w(k)), D(w(k)) and D1(w(k)) are the WECS model matrixes matching the three operation states of
the system Si, i = {1, 2, 3}, which seen in Appendix A.
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2.3. Wind Energy Conversion System Fault Model with Unknown Fault Inputs

This paper considers the unknown fault inputs uF(k), which is added simultaneously with the
normal input u(k) to the actuator. Consider the following discrete stochastic model of a wind energy
conversion system with unknown fault inputs:

x(k + 1) = A(w(k))x(k) + B(w(k))u(k) + F(w(k))uF(k) + D(w(k)) + D1(w(k))e(k) + Iw× yr(k)
y(k) = Cx(k)

(12)

where F(w(k)) = B(w(k)). It should be noticed that uF(k) is not considered in the design of SMPC,
for uF(k) are the unknown fault inputs. In order to investigate stochastic estimation and FDI, we make
the following assumptions for the unknown fault inputs:

Assumption 1. F(w(k)) is a full column rank matrix [35].
Assumption 1 ensures that the fault diagnosis and isolation algorithm (FDI) of this paper has

a solution.

Assumption 2. The F(w(k)) column rank does not exceed the C row rank [36,37].
Assumption 2 can be expressed equivalently that CF(w(k)) is a full column rank matrix. In the

following, it will be shown that Assumption 2 can guarantee the presence of a state estimator that is
robust to the fault input. In practical applications, Assumption 2 can be achieved by adding sensors.

2.4. Scenario-Based SMPC Design

The optimization objective function of the stochastic model predictive control can be expressed
as follow:

min
u

Ew

 ∑
j∈T\(N1∪s)

(
xj − xr

)TQ
(

xj − xr
)
+ ∑

j∈T\S
uT

j Ruj

 (13)

where Ew is the expectation, xr is the state reference value, xj is the output of scenario j, and uj is the
input of scenario j. The construction of the scenario tree can be detailed with reference to [5].

Solving problem (13), the paper systematically considers the realization of the scenarios and their
probability to minimize the expectation (Exp) performance index of the state and input. More clearly
stated: (1) the normal expectation objective function of scenario j, multiplied by its realization
probability, gets the expectation Ewj(j ∈ {1, 2, . . . s}) of the scenario j; (2) Accumulating all the scenarios’
expectations Ewj to get the entire scenario-tree’s expectation Ew. By the above two steps, a concise
solution method of the problem (13) can be obtained. In this way, the uncertain SMPC problem (13) can
be simplified to a deterministic MPC problem. At time k, based on the scenario tree introduced in [5],
the stochastic model predictive control problem with expectation performance index is defined as:

min
u ∑

j∈T\(T1∪S)
πi
(
xj − xr

)TQ
(
xj − xr

)
+ ∑

j∈T\S
πjuT

j Ruj

s.t.


x1 = x(k)
xi = A(w(k))xpre(i) + B(w(k))upre(i) + D(w(k))

+D1(w(k))e(k) + Iw× yr(k), i ∈ T\{T1}
Gxx(k) + Guu(k) ≤ g, k = 0, . . . , N, ∀w(k) ∈W

(14)

where πj is the realization probability of scenario j, R and Q are the weight matrixes, x(k) is the current
state of the system, and xi is the i-th step state. Gx ∈ Rnx+nu and Gu ∈ Rnx+nu are coefficient matrixes in
state and input constraints. The fault is not considered in the predictive model in problem (14) because
this paper considers the unknown actuator fault input. The problem (14) is a quadratic constrained
quadratic programming problem. The system input u1 of the root node N1 can be obtained by the first
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component of the solution to the problem (14). The function (14) is a receding horizon optimization
problem, and the current control law is given by online optimization.

Since the problem (14) is difficult to solve directly, it is necessary to construct a scenario tree
of the stochastic model to convert problem (14) into a deterministic problem. The scenario-based
stochastic model predictive control problem can be solved in two steps, as shown above. The predictive
control problem of one of the scenarios is the ordinary model predictive control problem. Based on the
solution of one scenario, simply multiply the J∗

(
xj
)

of each scenario j by its disturbance to realize the
probability πj, thus obtaining the expectation Ew j, (j ∈ {1, 2, . . . , s}) of the scenario j. By accumulating
the expectation Ew j of all the scenarios, the expectation Ew of the entire scenario tree is obtained.
The specific solution process can be expressed as:

J∗(x) =
min
u ∑

j∈T\(N1∪S)
πj
(
xj − xr

)TQ
(
xj − xr

)
+ ∑

j∈T\S
πjuT

j Ruj

= min
u {π1(x1 − xr)

TQ(x1 − xr) + π1U1(k)
T RU1(k)

+π2(x2 − xr)
TQ(x2 − xr) + π2U2(k)

T RU2(k)
+ . . .

+πs(xs − xr)
TQ(xs − xr) + πsUs(k)

T RUs(k)
}

(15)

where πj = ∏N
i=1 pij (pij is shown in Section 2.1) represents the realization probability of scenario j.

Let
f xj = (qxj × x(k)− qrj × xr + qdj × Iw1 + qd1j × (Iw1× e(k))

+qd3j × (Iw3× yr(k))), qxj = πjGT
Bj

QGAj , qrj = −πjGT
Bj

Q,

qdj = πjGT
Bj

QGDj , qd1j = πjGT
Bj

QGD1j , qd3j = πjGT
Bj

QGD3j ,

U = [U1; U2; . . . Us]

(16)

The semicolon in U stands for column arrangement.
In the same way as the solution of standard state space based model predictive control problem,

problem (15) can be organized as:

J∗(x) =
min
u ∑

j∈T\(N1∪S)
πj
(
xj − xr

)TQ
(
xj − xr

)
+ ∑

j∈T\S
πjuT

j Ruj

= U(k)Tdiags
j=1

{
πj(GT

Bj
QGBj + R)

}
U(k) + 2[ f x1; f x2; . . . f xs]

TU(k)
(17)

where diag is arranged in the form of a left diagonal. Let

QZ = diags
j=1{πj(GT

Bj
QGBj + R)}, f x = [ f x1; f x2; . . . f xs] (18)

Problem (15) can be rewritten as:

J∗(x) = U(k)TQZU(k) + 2 f xT ×U(k)

s.t.



x1 = x(k)
xi = A(w(k))xpre(i) + B(w(k))upre(i) + D(w(k))

+ D1(w(k))e(k) + Iw× yr(k), i ∈ T\{T1}
Auj ×Uj(k) ≤ bu + CAj × x(k) + Crj × xr + CDj × Iw1

+ CD1j × (Iw1× e(k)) + CD3j × (Iw3× yr(k))
Axj × xj ≤ bx

(19)

where Auj, bu, CAj , Crj , CD1j , CD3j , Axj and bx are coefficient matrixes in input and state constraints of
scenario j.

In this way, the SMPC’s Exp performance index (problem (14)) is solved as a quadratic
programming (QP) problem (19).
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3. Design of Stochastic Hybrid Estimator

In this section, we propose a stochastic hybrid estimator [21] for unknown faults (disturbances)
of WECSs. The faults are arranged in combination, and the continuous and discrete states of the
system are estimated separately. This approach will only require three designed filters. When the FDI
algorithm in Section 4 determines that the system has failed, the user finds the discrete state of the
system and the fault of the corresponding continuous state as needed.

3.1. The Problem of Stochastic Hybrid Estimation Algorithm

Combing the wind turbine discrete Markov jump linearization model (11) with the wind speed
Markov state transition matrix P ∈ R3×3 established in Section 2.1, the stochastic hybrid estimation
problem can be described as the estimated system status. In order to estimate the state of the system,
it is necessary to estimate the probability distribution of the discrete state of the system and then
estimate the continuous state of the system that is not affected by the fault input.

This paper proposes a stochastic hybrid estimation algorithm for hybrid systems which
is insensitive to actuators’ unknown fault inputs. Note that when the WECS operates in
a discrete state, its characteristics are the same as those of linear time-invariant (LTI) systems
{A(w(k)), B(w(k)), C, F(w(k))|w ∈W}. Therefore, a state estimator is designed for an LTI system.

Consider

x̂(k + 1) = A(w(k))x̂(k) + B(w(k))u(k)
+L(w(k))[y(k + 1)− CA(w(k))x̂(k)− CB(w(k))u(k)]

(20)

r(k) = T(w(k))[y(k + 1)− CA(w(k))x̂(k)− CB(w(k))u(k)] (21)

where x̂(k) is the continuous state estimation, w(k) is the discrete state, and L(w(k)) is the parameter
matrix to be designed. For the sake of easy understanding, L(w(k)) and T(w(k)) are regarded as the
fixed matrix of the state w; from the next section, L(w(k)) and T(w(k)) are the time-varying matrix,
which needs to be updated online with the simulation. Define the estimation error as

es(k) : = x(k)− x̂(k) (22)

Combining model (12) and Equation (20) with Equation (22), the error dynamics of the discrete
state w can be detailed as:

es(k + 1) = (A(w(k))− L(w(k))CA(w(k)))es(k) + (F(w(k))− L(w(k))
CF(w(k)) f (k) + (I − L(w(k))C)w(k)− L(w(k))ν(k + 1)

(23)

r(k) = T(w(k))C[A(w(k))es(k− 1) + F(w(k))uF(k− 1)
+ D(w(k)) + D1(w(k))e(k) + Iw× yr(k)]

(24)

To ensure that the state is not affected by the unknown fault inputs, namely the robustness of the
estimation algorithm, f (k) is decoupled from estimation error (23) and residual dynamics (24). The
decoupling problem is equivalent to

F(w(k))− L(w(k))CF(w(k)) = 0 (25)

T(w(k))CF(w(k)) = 0 (26)

3.2. Individual Robust Estimator Design

The design of a single robust estimator can be expressed as a constrained optimization
problem [21].
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Problem 1: For the robust state estimator of the LTI system {A(w(k)), B(w(k)), C, F(w(k))|w ∈W},
the design of L(w(k)) and T(w(k)) should meet the following objectives:

Minimize: minimize the mean square estimation error tr{Pw(k + 1)}.
Subject to: Constraint (25) and (26) being satisfied, that is, the actuator fault input is decoupled

from the system estimation error (23) and residual (24).

Theorem 1. The solution matrix of Problem 1 can be parameterized as

L(w(k)) = F(w(k))(CF(w(k)))+ + [
(
ψ(w(k))CPw(k)

)T − F(w(k))(CF(w(k)))+

S(w(k))ψ(w(k))T ][ψ(w(k))S(w(k))ψ(w(k))T ]
−1

ψ(w(k))
(27)

T(w(k)) = ψ(w(k)) (28)

where ψ(w(k)) = Υ(w(k))
(

I − CF(w(k))(CF(w(k)))+
)

and Υ(w(k)) ∈ Rn×(p−m f ) is the full row rank
matrix of the corresponding appropriate dimension.

Proof. Assumptions 1 and 2 guarantees that (25) is solvable. The solution of (25) can be expressed as

L(w(k)) = F(w(k))(CF(w(k)))+ + L(w(k))ψ(w(k)) (29)

where (CF(w(k)))+ = [(CF(w(k)))TCF(w(k))]
−1

(CF(w(k)))T represents the Moore–Penrose
pseudo-inverse of the matrix CF(w(k)). ψ(w(k)) is a full row rank matrix whose row space is orthogonal
to the column space of CF(w(k)). We can assume ψ(w(k)) = Υ(w(k))

(
I − CF(w(k))(CF(w(k)))+

)
,

where Υ(w(k)) ∈ Rn×(p−m f ) is a full row rank matrix of suitable dimension. In Equation (29), L(w(k)) is
the parameter matrix to be solved. From (26), T(w(k)) can be given as T(w(k)) = ψ(w(k)).

From the system state estimate (20) and the estimation error (23), the covariance matrix of the
estimation error es(k + 1) can be written as

P(w(k + 1)) = (A(w(k))− L(w(k))CA(w(k)))P(w(k))
(A(w(k))− L(w(k))CA(w(k)))T

+(I − L(w(k))C)Q(k)(I − L(w(k))C)T + L(w(k))RL(w(k))T
(30)

Define
P(w(k)) = A(w(k))P(w(k))A(w(k))T + Q(k) (31)

And
S(w(k)) = CP(w(k))CT + R(k) (32)

Then, Equation (30) can be rewritten as

P(w(k + 1)) = P(w(k))− L(w(k))CP(w(k))− P(w(k))CT L(w(k))T

+L(w(k))S(w(k))L(w(k))T (33)

Substituting (29) into Formula (33):

P(w(k + 1)) = P(w(k))−
[

F(w(k))(CF(w(k)))+ + L(w(k))ψ(w(k))
]
CP(w(k))

−P(w(k))CT
[

F(w(k))(CF(w(k)))+ + L(w(k))ψ(w(k))
]T

+[F(w(k))(CF(w(k)))+
[
+L(w(k))ψ(w(k))

]
S(w(k))F(w(k))(CF(w(k)))+ + L(w(k))ψ(w(k))]T

(34)

Minimizing tr[P(w(k + 1))] is equivalent to minimizing the mean square of the estimation error.
Note that in Equation (34), only L(w(k)) is a free variable to be determined, and P(w(k + 1)) can be
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regarded as a quadratic function of L(w(k)). Referring to the method of finding the extremum from
the quadratic function, tr[P(w(k + 1))] is partially derived to L(w(k)), and then

∂tr[P(w(k+1))]
∂L(w(k))

= −2
[
ψ(w(k))CP(w(k))

]T
+ 2F(w(k))(CF(w(k)))+S(w(k))

ψ(w(k))T + 2L(w(k))
[
ψ(w(k))S(w(k))ψ(w(k))T

]T (35)

let ∂tr[P(w(k + 1))]/∂L(w(k)) = 0, solving (35),

L(w(k)) = [
(
ψ(w(k))CP(w(k))

)T − F(w(k))(CF(w(k)))+

S(w(k))ψ(w(k))T ][ψ(w(k))S(w(k))ψ(w(k))T ]
−1 (36)

It should be noted that in (36), L(w(k)) is a time-varying matrix. Substituting (36) into (29) yields
the solution L(w(k)) as given in Equation (27). �

3.3. Stochastic Hybrid Estimation Algorithm

Based on the design of the single-state estimator in the previous section, this section will introduce
the stochastic hybrid estimation algorithm [21] in this paper. The stochastic estimator algorithm is
illustrated in Figure 4. To estimate the continuous and discrete states of WECSs, a robust estimator
is used in this paper. The algorithm of a single robust estimator is given in Section 3.2. The discrete
state estimated by the stochastic hybrid estimator is the state of the most likely previous state of the
system, and the continuous state is the weighted sum of the outputs of the estimators. Since each
estimator has been decoupled from the fault and the estimation error has been minimized, the entire
stochastic hybrid estimator is not influenced by the fault input and the estimation is fairly accurate.
State estimation of hybrid systems is quite complex. If the historical operating record of the hybrid
system is not available, the possible evolutions of the hybrid system state may increase exponentially.
In order to prevent this, a hybrid strategy similar to the interacting multiple model (IMM) algorithm
is introduced to reduce the complexity of the algorithm from exponential to constant. The stochastic
hybrid estimation algorithm is derived as follows:
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denote different model, model L represent that there is a lot of models.).

Assume that the initial probability distribution of the mixed state (w, x) is

p[x(0)|w(0) = i] = Nn(x(0); x̂i(0), Pi(0)) (37)
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Pr{w(0) = i} = αi(0) (38)

where αi ≥ 0(∀i),
nd
∑

i=1
αi(0) = 1. p[·] is the discrete probability distribution, Pr{·} indicates the

probability of an event. For state i ∈W : p[x(k)|w(k) = i, y(k)] = Nn(x(k); x̂i(k), Pi(k)), the probability
density distribution p[w(k)|y(k)] of the state i is calculated in real time.

The online running process in Figure 4 are shown as follows:

1. Calculate the mixing probability: the mixing probability is defined as Pr{w(k) = i|w(k + 1) = j, y(k)},
(i, j ∈W). According to the Bayesian theory

Pr{w(k) = i|w(k + 1) = j, y(k)}
= 1

Cj
Pr{w(k + 1) = j|w(k) = i, y(k)}Pr{w(k)|y(k)} (39)

where

Cj =
nd

∑
i=1

Pr{w(k + 1) = j|w(k) = i, y(k)}p[w(k)|y(k)] (40)

is a constant. In order to calculate the Equation (39), the following method can be used to
evaluate the state transition probability pij = Pr{w(k + 1) = j|w(k) = i, y(k)}: For Markov
jump systems, such as the Markov jump linear system of wind turbines established in
Section 2, the Markov transition matrix has recorded the transition probability between states.
Then Pr{w(k + 1) = j|w(k) = i, y(k)} in (39) can be written as:

Pr{w(k + 1) = j|w(k) = i, y(k)} = pij = const (41)

2. Calculate the initial conditions of each robust estimator: at each moment, the initial state of
each robust estimator can be approximated by a simple Gaussian distribution. The initial state
(estimated mean x̂j0(k)) of the j-th robust estimator can be given by:

x̂j0(k) =
nd

∑
i=1

Pr{w(k) = i|w(k + 1) = j, y(k)}x̂i(k) (42)

3. Mode-matched filter: For each robust estimator, the estimated mean x̂j(k + 1) is calculated under
the current system condition w(k) = j. According to the calculation process of a single robust
estimator in Section 3.2, the gain Lj(w(k)) can be given by (27); the robust estimator (REs) can
be given by (20), and the robust estimator residuals rj(k + 1), weighting matrix Tj(w(k + 1)),
and covariance matrix Sj(w(k + 1)) will be updated in a similar way.

4. Update the discrete state probability density function: For each SHE, the likelihood function
p[y(k + 1)|w(k + 1) = j, y(k) ] is

Λj(k + 1) := p[y(k + 1)|w(k + 1) = j, y(k) ]
= N

(
rj(k + 1); 0, Sj(w(k + 1))

) (43)

where rj(k + 1) and Sj(w(k + 1)) are the residual vectors and its covariance generated
by the j-th robust estimator. By the Bayes’ theorem, the discrete state probability
αj(k + 1|k + 1) := Pr{w(k + 1) = j|y(k + 1)} is given by

αj(k + 1|k + 1) =
1
δ

Λj(k + 1)Cj (44)

where δ is an appropriate normalizing constant.
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5. Output: the estimation of the continuous state is obtained by a weighted sum of the output of
each robust estimator.

x̂(k + 1) =
nd

∑
j=1

x̂j(k + 1)αj(k + 1|k + 1) (45)

The discrete state estimation is given by the discrete state with the highest probability.

Pr{w(k + 1) = j|y(k + 1)} = αj(k + 1|k + 1) (46)

and

ŵ(k + 1) =
argmax
j

Pr{w(k + 1) = j|y(k + 1)} (47)

4. Comprehensive Fault Detection and Isolation Method

This section designs the FDI algorithm [21] for WECSs. Based on the results of Section 3,
the state-space equation of the system is reconstructed by the idea of replication. Then, use the
residual rc(k) to fit the fault input uF(k− 1) of the system. Finally, statistical decision tools are used to
determine whether the fitted fault input uF(k− 1) is a fault. The block diagram of the FDI scheme is
shown in Figure 5.Energies 2018, 11, x FOR PEER REVIEW  12 of 22 
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4.1. Residual Generation Algorithm and Reconstruction of the Fault

Before studying the characteristics of the residual, review the Assumption 2 of Section 2.3:
the column rank of F(w(k)) does not exceed the row rank of C. This assumption can be explained as
to isolate different fault inputs, at least one of the elements corresponds to a single fault input in rc(k).
rc(k) can be defined as:

rc(k) := W(k)
nd
∑

j=1
αj(k|k− 1)[ŷ(k)− C(Aj x̂j(k− 1) + Bju(k− 1)

+D(w(k− 1)) + Iw× yr(k− 1))
(48)

where

W(k) = [
nd

∑
j=1

αj(k|k− 1)CFj]

+

(49)



Energies 2018, 11, 2227 13 of 22

αj(k|k− 1) := Pr{w(k) = j, y(k− 1)}

=
nd
∑

i=1
Pr{w(k) = j|w(k− 1) = i, y(k− 1)}

×Pr{w(k− 1) = i, y(k− 1)}

=
nd
∑

i=1
µji(k− 1)Pr{w(k− 1) = i, y(k− 1)}

(50)

where µji = Pr{w(k + 1) = j|w(k) = i, y(k)}. To ensure that the algorithm proposed in this paper is
solvable, make the following assumptions:

Assumption 3. The Moore–Penrose pseudo-inverse solution of ∑nd
j=1 αj(k|k− 1)CFj.

Remark 1. It is assumed by Assumption 2 that CFj is of full column rank. Therefore, only αj(k|k − 1) is

distinct; let
nd
∑

j=1
αj(k|k− 1) be irreversible. Since αj(k|k− 1) is a random variable in the range (0, 1), it is almost

inevitable that αj(k|k− 1 takes the value of 0 at some specific time. ∑nd
j=1 αj(k|k− 1) = 1, and CFj 6= 0 make

the ∑nd
j=1 αj(k|k− 1)CFj Moore–Penrose pseudo-inverse be able to be resolved.

Equation (48) gives to the residual rc(k) and output estimate ŷ(k) a one-to-one corresponding
value. The following will demonstrate that the unknown fault inputs of the system can be estimated
by E[rc(k)|ŷ(k− 1)] .

Theorem 2. Calculated from (48)–(50), rc(k) satisfies

E[rc(k)|ŷ(k− 1)] = uF(k− 1) (51)

rc(k) ∼ N (uF(k− 1), σ) (52)

where σ > 0.

Proof. Based on the stochastic hybrid estimator in Section 3, coupled with the idea of replication,
we can reconstruct the WECS system, and then use the reconstructed system to derive the unknown
fault inputs.

Considering that the estimator designed in Section 3 is not affected by the actuator failure, we
always have the relation x(k) = x̂(k). Recalling (12), we obtain

x̂(k + 1) = A(w(k))x̂(k) + B(w(k))u(k) + F(w(k))uF(k)
+D(w(k)) + D1(w(k))e(k) + Iw× yr(k)

(53)

Cx̂(k) = C[A(w(k− 1))x̂(k− 1) + B(w(k− 1))u(k− 1) + F(w(k− 1))uF(k− 1)
+D(w(k− 1)) + D1(w(k− 1))e(k− 1) + Iw× yr(k− 1)]

(54)

ŷ(k)− C[A(w(k− 1))x̂(k− 1) + B(w(k− 1))u(k− 1) + D(w(k− 1)) + Iw× yr(k− 1)]
= C[F(w(k− 1))uF(k− 1) + D1(w(k− 1))e(k− 1)]

(55)

Substituting (55) into (48), then

rc(k) = W(k)
nd
∑

j=1
αj(k|k− 1)C[F(w(k− 1))uF(k− 1)

+D1(w(k− 1))e(k− 1)]
(56)

Combined with (49), then (56) can be reorganized as

rc(k) = (CF)+[CF(w(k− 1))uF(k− 1) + C× D1(w(k− 1))e(k− 1)]
= uF(k− 1) + (CF)+C× D1(w(k− 1))e(k− 1)

(57)
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∵ e ∼ N (0, 1), ∴

E[rc(k)] = E
[
uF(k− 1) + (CF)+C× D1(w(k− 1))e(k− 1)

]
= uF(k− 1) + E

[
(CF)+C× D1(w(k− 1))e(k− 1)

]
= uF(k− 1)

(58)

Then (51) is proved. �

It is noted in (57) that the rc(k) and e(k− 1) are both satisfied with a Gaussian distribution,
and letting σ, the variance of (CF)+C × D1(w(k− 1))e(k− 1), be a positive real number, then (52)
is proved.

4.2. Statistical Decision-Making Algorithm

After calculating the residuals in Section 4.1, this section will design the FDI algorithm to detect
any significant changes in the residuals which indicate faults. Section 4.1 showed that the residual
follows a Gaussian distribution, and once the mean rc(k) is offset by 0, the system fails. There are
many algorithms that can detect changes in time series. The algorithm for determining whether the
system has failed is the same one to determine whether the mean value of the system fault input is 0.
In this way, the purpose of fault isolation is achieved.

For the sake of determining each fault component separately, (52) is re-expressed as:

rc(i)(k) ∼ N
(

uF(i)(k− 1), σi

)
(59)

In order to detect significant changes in the system (deviation from mean value 0), a detection
algorithm proposed by Segen [38] can be used. This algorithm can detect whether the random sequence
is offset by the Gaussian process.

Define:

ξi(k) :=
1√
2

[
k

∑
j=1

rc(i)(j)σ−1
i rc(i)(j)− 1

]
(60)

When the system state maintains a Gaussian random process, ξi(k) is basically constant.
When the system state deviates from the Gaussian process, ξi(k) is a monotonic increasing function.
Therefore, the difference ∆ξi(k) for ξi(k), ∆ξi(k) is close to 0 when the system is in the Gaussian
process. In contrary, when the system deviates from the Gaussian process (∆ξi(k) > τ∗i , τ∗i is the set
threshold), it can be determined that the input component has failed. The process to detect the fault
input uF(k− 1) and quantify its amount was shown in Algorithm 1.

Algorithm 1 The process to detect the fault input uF(k− 1) and quantify its amount

For k = 1:T % T is the simulation time
If ∆ξi(k) < τ∗i then

The system is normal;
uF(i)(k− 1) = 0; % uF(i)(k− 1) is the i-th component of fault input uF(k− 1)

Else
The system is abnormal;

uF(i)(k− 1) = E
[
rc(i)(k)

∣∣∣ŷ(k− 1)
]
;

End If
End For
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5. Simulation Results

The simulations are designed and given in this chapter to validate the control effectiveness of
the scenario-based SPMC controller, the performance of the stochastic hybrid estimator, and the fault
detection and isolation ability of the proposed FDI algorithm.

Table 1 gives the physical parameters of the simulated WECS, which is a 225 kW power system [32].
As a prerequisite, the WECS model (4) is discretized and linearized to model (11) at three operating
points (the wind speeds are 5, 8 and 11 m/s, respectively), and the parameters of the model are shown
in Table 2.

Table 1. Model parameters.

Parameter Value Unit Parameter Value Unit

Jr 90,000 kg ·m2 Pg,nom 225 kW
Jg 10 kg ·m2 ωr,nom 4.29 rad/s
Ks 8 × 106 Nm/rad ωg,nom 105.534 rad/s
Ds 8 × 104 kg ·m2/(rad · s) ωr,min 3.5 rad/s
Ng 24.6 - ωg,min 86.1 rad/s
R 14.5 m θmin 0 deg
τθ 0.15 s θmax 25 deg

τΓ 0.1 s
∣∣∣ .
θ
∣∣∣
max

10 deg/s

Table 2. Parameters of the linearized wind energy conversion system (WECS) model in different
operation points.

v(m/s)
Parameters

a84 a88 e81 a1 a2 a3

v1 = 5 −0.409 −0.50 1.90 0.3125 2.92 0.9375
v2 = 8 −0.479 −0.53 2.31 0.33 3.65 2.3

v3 = 11 −0.833 −0.53 2.50 0.625 5 5

With the WECS assembly model, the next step is to obtain the Markov transition matrix.
Respectively, the input and state constraint are Tg ∈ (−6000 Nm, 0 Nm) and β ∈

(
0
◦
, 90

◦)
,

prediction horizon N = 4, scenario tree layer nmax = 3, the Markov transition matrix

P =

 0.7230 0.2770 0
0.1554 0.8383 0.0063

0 0.4138 0.5862

, weight matrix Q =


0 · · ·
...

. . .

0 0 0
...

...
...

0 · · ·
0 · · ·
0 · · ·

0 0 0
0 1 0
0 0 1


9×9

and

R =

[
1 0
0 1

]
.

Furthermore, the simulations are performed in the environment (MATLAB R2015a) on an Intel®

Core™ i5-2400 CPU 3.10 GHz RAM 4 GB (FOUNDER, Beijing, China). The simulation Simulink
structure of the proposed FDI algorithm is shown in Figure 5, which contains three part: SMPC,
SHE and FDI running synchronously. The major calculation load is solving a SMPC problem (14)
quadratic constrained quadratic programming (QCQP), which costs 2.1 ms on average.

5.1. The Control Performance of the SMPC Controller without Fault

The control performance of the SMPC controller is investigated for a WECS without fault. In this
simulation, the maximum power reference Pgre f can be given through reference to the table in [39].
Meanwhile, the generator speed reference ωgre f can be calculated with the best tip speed ratio λ = 6.
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The Figure 6 shows the tracking performance of a wind energy conversion system’s maximum wind
energy under the random wind speed. All the red solid and blue dotted lines are the WECS references
and outputs, respectively. First, the tracking of maximum power and generator speed are shown
in Figure 6a,b. It can be seen that the proposed SMPC controller has good control performance to
minimize the tracking errors. Meanwhile, Figure 6d reveals that there has been a steady fluctuation for
the pitch angle β (about 7–12◦) in accordance with the actual situation. Finally, as shown in Figure 6e,
the tip speed ratio λ is close to its optimal value λopt = 6 with limited tracking errors. These simulation
results indicate that in normal status, the presented stochastic model predictive controller can capture
the maximum wind energy precisely and effectively.

Energies 2018, 11, x FOR PEER REVIEW  15 of 22 

 

Table 2. Parameters of the linearized wind energy conversion system (WECS) model in different 

operation points. 

𝒗 (𝐦/𝐬) 
Parameters 

a84 a88 e81 a1 a2 a3 

𝑣1 = 5 −0.409 −0.50 1.90 0.3125 2.92 0.9375 

𝑣2 = 8 −0.479 −0.53 2.31 0.33 3.65 2.3 

𝑣3 = 11 −0.833 −0.53 2.50 0.625 5 5 

With the WECS assembly model, the next step is to obtain the Markov transition matrix. 

Respectively, the input and state constraint are 𝑇𝑔 ∈ (−6000 Nm, 0 Nm) and 𝛽 ∈ (0°, 90°), prediction 

horizon 𝑁 = 4 , scenario tree layer 𝑛𝑚𝑎𝑥 = 3 , the Markov transition matrix 𝑃 =

[
0.7230 0.2770 0
0.1554 0.8383 0.0063
0 0.4138 0.5862

], weight matrix 𝑄 =

[
 
 
 
 
0 ⋯
⋮ ⋱

0 0 0
⋮ ⋮ ⋮

0 ⋯
0 ⋯
0 ⋯

0 0 0
0 1 0
0 0 1]

 
 
 
 

9×9

 and 𝑅 = [
1 0
0 1

]. 

Furthermore, the simulations are performed in the environment (MATLAB R2015a) on an 

Intel®  Core™ i5-2400 CPU 3.10 GHz RAM 4 GB (FOUNDER, Beijing, China). The simulation 

Simulink structure of the proposed FDI algorithm is shown in Figure 5, which contains three part: 

SMPC, SHE and FDI running synchronously. The major calculation load is solving a SMPC problem 

(14) quadratic constrained quadratic programming (QCQP), which costs 2.1 ms on average. 

5.1. The Control Performance of the SMPC Controller without Fault 

The control performance of the SMPC controller is investigated for a WECS without fault. In 

this simulation, the maximum power reference 𝑃𝑔𝑟𝑒𝑓 can be given through reference to the table in 

[39]. Meanwhile, the generator speed reference 𝜔𝑔𝑟𝑒𝑓 can be calculated with the best tip speed ratio 

𝜆 = 6 . The Figure 6 shows the tracking performance of a wind energy conversion system’s 

maximum wind energy under the random wind speed. All the red solid and blue dotted lines are the 

WECS references and outputs, respectively. First, the tracking of maximum power and generator 

speed are shown in Figure 6a,b. It can be seen that the proposed SMPC controller has good control 

performance to minimize the tracking errors. Meanwhile, Figure 6d reveals that there has been a 

steady fluctuation for the pitch angle 𝛽 (about 7–12°) in accordance with the actual situation. 

Finally, as shown in Figure 6e, the tip speed ratio 𝜆 is close to its optimal value 𝜆𝑜𝑝𝑡 = 6 with 

limited tracking errors. These simulation results indicate that in normal status, the presented 

stochastic model predictive controller can capture the maximum wind energy precisely and 

effectively. 

  
(a) (b) 

Energies 2018, 11, x FOR PEER REVIEW  16 of 22 

 

  
(c) (d) 

 
(e) 

Figure 6. Wind energy conversion system’s maximum wind energy capture under random wind 

speed with the stochastic model predictive controller: (a) maximum power capture; (b) generator 

speed 𝜔𝑔; (c) generator torque  𝑇𝑔𝑟𝑒𝑓; (d) input pitch angle  𝛽𝑟𝑒𝑓; (e) tip speed ratio. 

5.2. Stochastic Hybrid Estimation with Unknown Fault Inputs 

In this section, the simulations are designed and implemented to verify the effectiveness of the 

proposed stochastic hybrid estimator with unknown fault inputs. 

First, the pre-defined faults are shown in Figure 7a. The faults of the generator torque reference 

 𝑇𝑔𝑟𝑒𝑓 occur at (100, 130 s), and the fault values are from 0 to 500 Nm; the time range of the input 

fault pitch angle reference  𝛽𝑟𝑒𝑓 is (110, 140 s) and the pitch angle values are in the range (0–6°). 

This setting of the faults is based on two purposes: (1) the set of the time range can investigate 

different combinations of the two kinds of actuators’ faults (only  𝑇𝑔𝑟𝑒𝑓  failure in  (100, 110 s), 

 𝑇𝑔𝑟𝑒𝑓  failure and  𝛽𝑟𝑒𝑓  failure at the same time in (110, 130 s) , and only  𝛽𝑟𝑒𝑓  failure in 

 (130, 140 s)); (2) the set of the value range can cover all three operating domains of the WECS. 

Therefore, the fault sets are reasonable to verify the estimation performance of the proposed 

stochastic hybrid estimator. 

 
(a) 

Figure 6. Wind energy conversion system’s maximum wind energy capture under random wind speed
with the stochastic model predictive controller: (a) maximum power capture; (b) generator speed ωg;
(c) generator torque Tgre f ; (d) input pitch angle βre f ; (e) tip speed ratio.

5.2. Stochastic Hybrid Estimation with Unknown Fault Inputs

In this section, the simulations are designed and implemented to verify the effectiveness of the
proposed stochastic hybrid estimator with unknown fault inputs.
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First, the pre-defined faults are shown in Figure 7a. The faults of the generator torque reference
Tgre f occur at (100, 130 s), and the fault values are from 0 to 500 Nm; the time range of the input fault
pitch angle reference βre f is (110, 140 s) and the pitch angle values are in the range (0–6◦). This setting of
the faults is based on two purposes: (1) the set of the time range can investigate different combinations
of the two kinds of actuators’ faults (only Tgre f failure in (100, 110 s), Tgre f failure and βre f failure at
the same time in (110, 130 s), and only βre f failure in (130, 140 s)); (2) the set of the value range can
cover all three operating domains of the WECS. Therefore, the fault sets are reasonable to verify the
estimation performance of the proposed stochastic hybrid estimator.
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Figure 7. The settings of the WECS actuator’s unknown fault inputs, the system continuous state
estimation error and discrete state estimated by the stochastic hybrid estimator: (a) unknown fault
inputs setting of the generator torque and pitch angle; (b) the input generator torque reference Tgre f ;
(c) the input pitch angle reference βre f ; (d) estimation error of output continuous state generator speed
ωg and power Pg; (e) estimation of the WECS discrete states.

Second, Figure 7b,c show the bad tracking performance of the actuators caused by the fault set
above. In the period of (100, 130 s) in Figure 7b, the generator torque Tg cannot achieve the set value
Tgre f when the actuator is faulty. Meanwhile, the pitch angle reference βre f in Figure 7c has obvious
errors when the fault occurs from 110 s to 140 s. These results suggest that the actuators’ fault cannot
be ignored since it leads to bad operating performance of the WECS.

Third, the proposed stochastic hybrid estimator is used to estimate the system states (including the
discrete states and the continuous states). Figure 7d shows the estimation results of the generator speed
and the power of the WECS. The estimation errors are very small, this means the proposed estimator
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can estimate the states of the WECS effectively. Meanwhile, the estimation error has only small
fluctuations during the simulation, which suggests the estimator has stable estimation performance.
Figure 7e is the estimation of the discrete state of the WECS. Each discrete state represents one working
point of the WECS. The proposed method can quickly and precisely estimate the current working
point of the WECS. Notably, the proposed estimator does not have the information of the fault sets,
this means the estimator is robust to the faults of the actuators. This is valuable for designing a fault
detection algorithm to detect whether the WECS is in fault mode, which is one optional future work
for the authors.

5.3. Fault Detection and Isolation of WECS

In this section, the simulation is given to verify the comprehensive FDI algorithm to accomplish
the fault diagnosis and isolation of a WECS with an unknown actuator fault input. This section follows
the same fault sets in Section 5.2. Figure 8a shows the unknown fault inputs residuals, which are
generated by the proposed FDI algorithm. The time of the fitted fault by the FDI algorithm is the
same as the time of the pre-defined fault, and the value of the fitted fault is in the small range around
the fault. Besides, it can be seen that the Tgre f fluctuation is smaller and the pitch angle reference
βre f fluctuation is relatively larger. This is because the amplitude of the Tgre f is about 1000 times
larger than the value of βre f . Therefore, the impact of the Gaussian white noise on Tgre f is very small.
The simulation results show that the proposed FDI algorithm can fit the fault input accurately.
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Figure 8. Fitting the WECS actuator unknown fault inputs, fault diagnosis and isolation results:
(a) Fault residuals of the system unknown input generator torque reference Tgre f and pitch angle
reference βre f ; (b) Fault model probability.

Figure 8b is the result of the statistical decision part of the FDI method. This decision is based
on the quantitatively fitting results in the Figure 8a. To make the decision, we set a small threshold
τ∗i (such as 0.05) to the statistical decision result in Figure 8b. When the curve indicating the probability
of failure of Tgre f and βre f exceeds the threshold, it is determined that the WECS has faults. Figure 8b
precisely indicates that the Tgre f has failed in the time range (100, 130 s), and βre f has failed in that
of (110, 140 s). The determination result is in accordance with the fault sets of Figure 7a, and the
determination results of the two failures do not affect each other. These results suggest that the fault
diagnosis and isolation are all achieved with great success.

6. Conclusions

This paper proposes a comprehensive stochastic hybrid state estimation and FDI method for
WECSs. To describe the stochastic dynamics of the WECS, the Markov-jump linear model is developed.
Based on this model, the SMPC controller with a scenario-tree gives good control performance of the
WECS. With the closed-loop control system, the stochastic hybrid estimation is studied and used to
estimate the system states. Finally, based on the information from the proposed estimator, the FDI
algorithm is given to implement the fault detection and isolation of the WECS’ actuators unknown
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fault inputs. The simulation results suggest that the proposed method has good FDI performance,
and that is a powerful method for the fault detection and isolation of WECS.

However, this work only considers the unknown fault inputs uF(k). Future research should be
undertaken to investigate other uncertainties (such as parametric variations, faults on the outputs
measurements, etc.). Furthermore, the proposed stochastic hybrid estimation and FDI algorithm may
be integrated to mitigate voltage dips [2,3] to improve the industrial value of the proposed method.

Author Contributions: Y.-T.S. initiated and directed the study on the fault detection and isolation of WECSs. Y.Z.
wrote the paper as well as designing the stochastic hybrid estimation for WECSs (Section 3) and performing the
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Funding: This is a national fund project, which is supported by [National Natural Science Foundation of China]
(61473002).

Acknowledgments: The authors are thankful for Weichuan Liu’s valuable suggestions and guidance.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

(1) 3.5≤v<6.5 m/s

A1 =



4.5400× 10−5 0 0 0 0 0 0 0 0

0 −6.0321× 10−4 7.3507× 10−5 0 0 0 0 0 0

0 −0.0091 −0.0016 0 0 0 0 0 0

−8.3117× 10−4 −1.4149 −0.1032 0.0860 32.4126 0 0 0 0

−3.4620× 10−5 −0.0590 −0.0043 0.0036 1.3518 0 0 0 0

0 0 0 0 0 0.9291 0.3093 0 0

0 0 0 0 0 −0.0967 0.0259 0 0

0.0013 1.0805 0.0733 −0.1390 −25.5764 0 0 1 0

4.5004 0.5402 0.036 −0.0695 −12.7882 0 0 0 1



B1 =



1.0000 0
0 1.0006
0 0.0091

−0.0131 −9.0458
−2.4851× 10−4 −0.4063

0 0
0 0

0.0083 3.5330
40.5044 1.7665


D1 =



0
0
0

48.5951
2.1619

0
0

−21.4320
−10.7160


D11 =



0
0
0

48.5951
2.1619
0.2126
0.2900
−21.4320
−10.7160


(2) 6.5 ≤ v < 9.5 m/s

A2 =



4.5400× 10−5 0 0 0 0 0 0 0 0

0 −6.0321× 10−4 7.3507× 10−5 0 0 0 0 0 0

0 −0.0091 −0.0016 0 0 0 0 0 0

−8.1346× 10−4 −1.6156 −0.1181 0.0840 31.5691 0 0 0 0

−3.3811× 10−5 −0.0673 −0.0049 0.0035 1.3139 0 0 0 0

0 0 0 0 0 0.9350 0.2548 0 0

0 0 0 0 0 −0.0841 0.0049 0 0

0.0013 1.2487 0.0848 −0.1382 −25.2203 0 0 1 0

4.5004 0.6243 0.0424 −0.0691 −12.6101 0 0 0 1
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B2 =



1.0000 0
0 1.0006
0 0.0091

−0.0130 −10.4649
−2.4538× 10−4 −0.4696

0 0
0 0

0.0083 4.1037
40.5043 2.0518


D2 =



0
0
0

93.2141
4.4124

0
0

−41.2993
−20.6497


D12 =



0
0
0

58.2588
2.5890
0.4527
0.5861
−25.8121
−12.9060


(3) 9.5 ≤ v < 12 m/s

A3 =



4.5400× 10−5 0 0 0 0 0 0 0 0

0 −6.0321× 10−4 7.3507× 10−5 0 0 0 0 0 0

0 −0.0091 −0.0016 0 0 0 0 0 0

−8.1346× 10−4 −2.8096 −0.2053 0.0840 31.5691 0 0 0 0

−3.3811× 10−5 −0.1170 −0.0086 0.0035 1.3139 0 0 0 0

0 0 0 0 0 0.9032 0.1838 0 0

0 0 0 0 0 −0.1149 −0.0159 0 0

0.0013 2.1715 0.1475 −0.1382 −25.2203 0 0 1 0

4.5004 1.0858 0.0737 −0.0691 −12.6101 0 0 0 1



B3 =



1.0000 0
0 1.0006
0 0.0091

−0.0130 −18.1988
−2.4538× 10−4 −0.8166

0 0
0 0

0.0083 7.1365
40.5043 3.5682


D3 =



0
0
0

138.7114
6.1643

0
0

−61.4573
−30.7287


D13 =



0
0
0

63.0507
2.8019
0.7746
0.9191
−27.9351
−13.9676
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14. Ćetenović, D.N.; Ranković, A.M. Optimal parameterization of Kalman filter based three-phase dynamic state
estimator for active distribution networks. Int. J. Electr. Power Energy Syst. 2018, 101, 472–481. [CrossRef]

15. Crisan, D.; Míguez, J. Nested particle filters for online parameter estimation in discrete-time state-space
Markov models. Bernoulli 2018, 24, 3039–3086. [CrossRef]

16. Hu, Y.-W.; Zhang, H.-C.; Liu, S.J.; Lu, H.T. Sequential Monte Carlo Method toward Online RUL Assessment
with Applications. Chin. J. Mech. Eng. 2018, 31. [CrossRef]

17. Pradeep, C.; Cao, Y.; Murugesu, R.; Rakkiyappan, R. An event-triggered synchronization of semi-Markov
jump neural networks with time-varying delays based on generalized free-weighting-matrix approach.
Math. Comput. Simul. 2017. [CrossRef]

18. Li, L.; Qi, W.; Chen, X.; Kao, Y.; Gao, X.; Wei, Y. Stability analysis and control synthesis for positive
semi-Markov jump systems with time-varying delay. Appl. Math. Comput. 2018, 332, 363–375. [CrossRef]

19. Rakkiyappan, R.; Maheswari, K.; Velmurugan, G.; Park, J.H. Event-triggered Hinfinity state estimation for
semi-Markov jumping discrete-time neural networks with quantization. Neural Netw. 2018, 105, 236–248.
[CrossRef] [PubMed]

20. Rakkiyappan, R.; Maheswari, K.; Sivaranjani, K.; Joo, Y.H. Non-fragile finite-time l2–l∞ state estimation for
discrete-time neural networks with semi-Markovian switching and random sensor delays based on Abel
lemma approach. Nonlinear Anal. Hybrid Syst. 2018, 29, 283–302. [CrossRef]

21. Liu, W.; Hwang, I. Robust estimation and fault detection and isolation algorithms for stochastic linear hybrid
systems with unknown fault input. IET Control Theory Appl. 2011, 5, 1353–1368. [CrossRef]

22. Beddek, K.; Merabet, A.; Kesraoui, M.; Tanvir, A.A.; Beguenane, R. Signal-Based Sensor Fault Detection and
Isolation for PMSG in Wind Energy Conversion Systems. IEEE Trans. Instrum. Meas. 2017, 66, 2403–2412.
[CrossRef]

23. Simani, S.; Farsoni, S.; Castaldi, P. Fault Diagnosis of a Wind Turbine Benchmark via Identified Fuzzy Models.
IEEE Trans. Ind. Electron. 2015, 62, 3775–3782. [CrossRef]

24. Bessa, I.V.D.; Palhares, R.M.; Filho, J.E.C. Data-driven fault detection and isolation scheme for a wind turbine
benchmark. Renew. Energy 2016, 87, 634–645. [CrossRef]

25. Dey, S.; Pisu, P.; Ayalew, B. A Comparative Study of Three Fault Diagnosis Schemes for Wind Turbines.
IEEE Trans. Control Syst. Technol. 2015, 23, 1853–1868. [CrossRef]

26. Badoud, A.E.; Khemliche, M.; Bouamama, B.O.; Bacha, S. Bond Graph Algorithms for Fault Detection and
Isolation in Wind Energy Conversion. Arab. J. Sci. Eng. 2014, 39, 4057–4076. [CrossRef]

27. Fernandez-Canti, R.M.; Blesa, J.; Tornil-Sin, S.; Puig, V. Fault detection and isolation for a wind turbine
benchmark using a mixed Bayesian/Set-membership approach. Annu. Rev. Control 2015, 40, 59–69.
[CrossRef]

28. Zhang, J.; Xiong, J.; Ren, M.; Shi, Y.; Xu, J. Filter-Based Fault Diagnosis of Wind Energy Conversion Systems
Subject to Sensor Faults. J. Dyn. Syst. Meas. Control 2016, 138, 061008. [CrossRef]

29. Peng, Y.; Qiao, W.; Qu, L.; Wang, J. Sensor fault detection and isolation for a wireless sensor network-based
remote wind turbine condition monitoring system. In Proceedings of the IEEE Industry Applications Society
Meeting, Cincinnati, OH, USA, 1–5 October 2017.

30. Song, Z.; Geng, X.; Kusiak, A.; Xu, C. Mining Markov chain transition matrix from wind speed time series
data. Expert Syst. Appl. 2011, 38, 10229–10239. [CrossRef]

31. Ross, S.M. Introduction to Probability Models, 1st ed.; Elsevier: New York, NY, USA, 2007.
32. Thomsen, S. Nonlinear Control of a Wind Turbine. Master’s Thesis, Technical University of Denmark,

Kongens Lyngby, Denmark, 2006.

http://dx.doi.org/10.1109/TCST.2017.2657606
http://dx.doi.org/10.1109/TII.2017.2766095
http://dx.doi.org/10.1109/TCST.2017.2658193
http://dx.doi.org/10.1016/j.jprocont.2016.04.008
http://dx.doi.org/10.1016/j.ijepes.2018.04.008
http://dx.doi.org/10.3150/17-BEJ954
http://dx.doi.org/10.1186/s10033-018-0205-x
http://dx.doi.org/10.1016/j.matcom.2017.11.001
http://dx.doi.org/10.1016/j.amc.2018.02.055
http://dx.doi.org/10.1016/j.neunet.2018.05.007
http://www.ncbi.nlm.nih.gov/pubmed/29870931
http://dx.doi.org/10.1016/j.nahs.2018.03.002
http://dx.doi.org/10.1049/iet-cta.2010.0287
http://dx.doi.org/10.1109/TIM.2017.2700138
http://dx.doi.org/10.1109/TIE.2014.2364548
http://dx.doi.org/10.1016/j.renene.2015.10.061
http://dx.doi.org/10.1109/TCST.2015.2389713
http://dx.doi.org/10.1007/s13369-014-1044-4
http://dx.doi.org/10.1016/j.arcontrol.2015.08.002
http://dx.doi.org/10.1115/1.4032827
http://dx.doi.org/10.1016/j.eswa.2011.02.063


Energies 2018, 11, 2227 22 of 22

33. Slootweg, J.G.; Polinder, H.; Kling, W.L. Dynamic modeling of a wind turbine with doubly fed induction
generator. In Proceedings of the 2001 Power Engineering Society Summer Meeting, Vancouver, BC, Canada,
15–19 July 2001; pp. 644–649.

34. Bryson, A.E. Applied Linear Optimal Control: Examples and Alogrithms; Cambridge University Press: Cambridge,
UK, 2002.

35. Parlangeli, G.; Valcher, M.E. Optimal filtering, fault detection and isolation for linear discrete-time systems
in a noisy environment. Int. J. Adapt. Control Signal Process. 2003, 17, 729–750. [CrossRef]

36. Chen, J.; Patton, R.J. Optimal filtering and robust fault diagnosis of stochastic systems with unknown
disturbances. IEEE Proc. Control Theory Appl. 1996, 143, 31–36. [CrossRef]

37. Kitanidis, P.K. Unbiased minimum-variance linear state estimation. Automatica 1987, 23, 775–778. [CrossRef]
38. Segen, J.; Sanderson, A. Detecting Change in a Time-Series. IEEE Trans. Inf. Theory 1980, 26, 249–255.

[CrossRef]
39. Munteanu, I. Optimal Control of Wind Energy Systems; Springer: Berlin, Germany, 2008.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/acs.762
http://dx.doi.org/10.1049/ip-cta:19960059
http://dx.doi.org/10.1016/0005-1098(87)90037-9
http://dx.doi.org/10.1109/TIT.1980.1056151
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Scenario-Based SMPC for Wind Energy Conversion Systems 
	Markov Chain Transition Matrix of the Wind Speed 
	Modeling of the WECS 
	Wind Energy Conversion System Fault Model with Unknown Fault Inputs 
	Scenario-Based SMPC Design 

	Design of Stochastic Hybrid Estimator 
	The Problem of Stochastic Hybrid Estimation Algorithm 
	Individual Robust Estimator Design 
	Stochastic Hybrid Estimation Algorithm 

	Comprehensive Fault Detection and Isolation Method 
	Residual Generation Algorithm and Reconstruction of the Fault 
	Statistical Decision-Making Algorithm 

	Simulation Results 
	The Control Performance of the SMPC Controller without Fault 
	Stochastic Hybrid Estimation with Unknown Fault Inputs 
	Fault Detection and Isolation of WECS 

	Conclusions 
	
	References

