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Abstract: Due to micro-nanopores in tight formation, fluid-solid interaction effects on fluid flow in
porous media cannot be ignored. In this paper, a novel model which can characterize micro-fluid flow
in micro scales is proposed. This novel model has a more definite physical meaning compared with
other empirical models. And it is validated by micro tube experiments. In addition, the application
range of the model is rigorously analyzed from a mathematical view, which indicates a wider
application scope. Based on the novel model, the velocity profile, the average flow velocity and flow
resistance in consideration of fluid-solid interaction are obtained. Furthermore, the novel model is
incorporated into a representative pore scale network model to study fluid-solid interactions on fluid
flow in porous media. Results show that due to fluid-solid interaction in micro scales, the change
rules of the velocity profile, the average flow velocity and flow resistance generate obvious deviations
from traditional Hagen-Poiseuille’s law. The smaller the radius and the lower the displacement
pressure gradient (∇P), the more obvious the deviations will be. Moreover, the apparent permeability
in consideration of fluid-solid interaction is no longer a constant, it increases with the increase of ∇P
and non-linear flow appears at low ∇P. This study lays a good foundation for studying fluid flow in
tight formation.

Keywords: fluid-solid interaction; velocity profile; the average flow velocity; flow resistance;
pore network model

1. Introduction

With the development of petroleum industry, tight oil is gradually becoming one of the main
fields to improve oil recovery [1–3]. However, there are large numbers of micro-nanopores in tight
formation [4–7]. The large specific surface area and surface effect exhibiting in micro-nanoscales cause
micro scale flow different from fluid flow in macro scales [8,9]. Therefore, figuring out microscopic
flow law in consideration of micro scale effect is of great importance to the development of tight oil
reservoirs. The research of micro-machining technology and micro-electro-mechanical system triggers
a new field for the study of micro scale flow, which provides a new insight for studying fluid flow in
tight reservoirs [10–13].

Recently, many micro flow experiments have been carried out and results show obvious deviations
from traditionally theoretical prediction, which indicates that fluid flow in micro tubes no longer abides
by traditional N-S equation [14–18]. Pfaler et al. [19] found that the experimental result is consistent
with theoretical prediction when the micro channel size is large enough. However, an obvious deviation
occurs when the size is reduced to 0.8 µm. Makihara et al. [20] conducted a water flow experiment
in micro tubes with Silica and stainless steel and found that the relationship of the Reynolds number
versus displacement pressure gradient did not obey theoretical values when the micro-tube diameter

Energies 2018, 11, 2197; doi:10.3390/en11092197 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/9/2197?type=check_update&version=1
http://dx.doi.org/10.3390/en11092197
http://www.mdpi.com/journal/energies


Energies 2018, 11, 2197 2 of 20

was smaller than 150 µm. Qu et al. [21] performed a water flow experiment in Trapezoidal microtubules
and concluded that fluid flow deviated from the theoretical value of N-S equation. Wu [22] carried out
a deionized water flow experiment in micro tubes with radii ranging from 1.38–10.03 µm at low ∇P
and found that water flow did not agree with classical Hagen-Poiseuille law; the boundary layer was
formed in the near wall area.

Fluid-solid interactions are used to account for these deviations. With the decrease of flow scale,
microscopic forces acting on fluid flow become dominated, which eventually results in micro flow
characteristics different from macro flow [23,24]. The Coulomb force generated by the wall molecules
on the liquid, the Van der Waals force by the molecular polarization and the space configuration force
affect micro fluid flow greatly [25]. Due to strong interaction between fluid and solid, the fluid near
the solid wall is adsorbed on the wall surface and cannot move. Researchers define the immovable
layer as boundary layer [26]. Under the influence of fluid-solid interaction, the effective flow space
is compressed and the flow resistance becomes larger. Pertsin et al. [27] theoretically proved that
there exists a density profile in a cylindrical pore. The closer the distance is away from the solid
wall, the larger the density will be. Rene et al. [28] studied the meniscus thickness of pure water
extended on clean quartz surface by image analysis interferometer and found that the thickness near
the solid wall is larger than 0.1 µm, indicating the great effect of boundary layer on fluid flow in
micro scales. The boundary layer thickness is not a constant [29–31], it is a function of hydrodynamics.
The boundary layer thickness is large due to strong fluid-solid interaction at low∇P. With the increase
of ∇P, the shear force of the wall fluid increases, more and more fluid begins to flow, the boundary
layer becomes thinner and the flow curve is closer to classical Hagen-Poiseuille’s law [32–35].

Boundary layer effect on micro scale flow cannot be neglected owing to strong fluid-solid
interaction. Its effect on fluid flow will become more and more significant with the decrease of
flow scale. In addition, the wettability of the fluid on the solid surface will also affect micro fluid flow.
When fluid has a strong wettability on the solid surface, the microscopic forces such as electrostatic
forces and Van der Waals forces play a dominant role in micro fluid flow. The fluid in micro tubes
is strongly affected by the fluid-solid interaction. There will be a large portion of fluid absorbed
on the solid surface, which results in large boundary layer thickness. In order to characterize
fluid flow in micro scales, boundary layer thickness must be described quantitatively in advance.
While molecular dynamics simulation offers a good way to characterize fluid-solid interaction [36], it is
very time-consuming and powerless for large-scale flow simulation, especially for porous media with
thousands of pores and throats. In addition, the theoretical model which can characterize boundary
layer thickness is hard to propose as fluid- solid interaction is very complex. Therefore, many empirical
models combined with micro tube experiments have been developed so as to characterize boundary
layer thickness [26,33,37–39]. At present, many empirical models are obtained in a traditional way.
In addition, these models either have limited application range or lack physical meaning. Therefore,
it is necessary to establish a novel model which not only offers definite physical meaning but also has
a wider application range so as to study fluid flow in porous media with various pores.

In this work, a novel model which can characterize boundary layer thickness and fluid flow
in micro scales is developed from a new prospective. Different micro tube experiments are used
to validate the novel model. Furthermore, its application range is strictly proved mathematically,
indicating a wide application scope. Based on the novel model, fluid-solid interaction effects on micro
flow in micro tubes are studied, mainly including three parts: velocity profile, the average flow velocity
and flow resistance. Finally, the novel model is incorporated into pore scale network model to study
fluid-solid effects on fluid flow in tight formation.
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2. Establishment of a Novel Model Considering Fluid-Solid Interaction

2.1. Construction of Modified Hagen-Poiseuille’s Formula

So as to obtain the modified model in consideration of boundary layer effect which is caused
by fluid-solid interaction, we assume that fluid flow belongs to steady flow in lateral micro tubes.
Since the radius is small and the micro-tube is laterally placed (see Figure 1), gravity can be ignored.
X-axis is set along the flow direction in micro tubes, while r-axis is set vertically to the flow direction
with its origin located in the center of micro tube. The radial and circumferential velocity component is
zero. The velocity component parallel to the micro tube axis is ux (only depends on r) and the pressure
gradient along X-axis is a constant. The fluid viscosity is µ. The radius and the length of the micro
tube is R and l respectively. The boundary layer thickness is h (caused by fluid-solid interaction).
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Figure 1. Scheme of fluid flow in lateral placed micro tube.

The modified Hagen-Poiseuille’s formation is derived in terms of Newton’s law of viscosity.
The detailed derivation process is shown as follows.

Based on the element of cylindrical fluid, the pressure difference in the horizontal direction is,

∆F = ∆Pπr2 (1)

The viscous force of the surrounding fluid acting on the surface of the cylindrical fluid is,

f = µ2πrl
dv
dr

(2)

With the increase of micro tube radius, the velocity decreases. Therefore, the velocity gradient
dv
dr < 0.

As fluid flow in micro tube belongs to steady flow, the resultant force above is zero. That is,

∆F + f = 0 (3)

Equations (1) and (2) are then incorporated into (3). After simplification, the expression is,

dν = − r
2µ
∇Pdr (4)

Integrate the Equation (4) from r to R−h,

0∫
v

dν = −
R−h∫
r

r
2µ
∇Pdr (5)

The velocity distribution in micro tube in consideration of boundary layer effect is obtained,
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v =

[
(R− h )2 − r2

4µ

]
∇P (6)

Integrate (6) along the flow section and the flow flux expression is acquired,

Q =

R−h∫
0

v(r)× 2πrdr =
π(R− h)4

8µ
∇P (7)

The average flow velocity can be calculated as follow,

v =
Q
A

=
(R− h )4

8µR2 ∇P (8)

If boundary layer effect is ignored, the Equations (7) and (8) degenerate into classical
Hagen-Poiseuille’s law.

Boundary layer thickness should be known in advance so as to predict the velocity and flow flux
in micro tubes.

2.2. Establishment of Boundary Layer Thickness Expression

In this section, the expression of boundary layer thickness is developed from a new perspective
based on Li ’s micro tube experiment [31].

2.2.1. Micro Tube Experiment

The system of micro tube experiment and micro-flow parameters are satisfied with the assumption
of micro fluid flow in Section 2.1. The micro tube system mainly consists of three parts: pressure
supply unit, micro flow unit and measurement unit (See Figure 2). Every unit is specially designed to
guarantee the accuracy of the experimental results.
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1. Pressure Supply Unit

In core scale displacement experiment, high precision displacement pump is usually chosen as
the driving source. However, the actual pressure presents periodic fluctuations within a certain range
in micro tube experiment. Constant pressure nitrogen is selected as the driving source after many
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experiments and screening, which guarantees the constant pressure boundary conditions at both ends
of the micro tube.

2. Micro Flow Unit

Micro tube is the most important part in the experimental system. A fused silica micro tube made
in the world’s most advanced micro capillary manufacturing company—Polymicro Technologies,
Inc. (Phoenix, AZ, USA)—is used. The micro tube is coated with polymide on the outer wall,
which guarantees its flexibility and intensity. Quanta200 environmental scanning electron microscopy
(ESEM) made in the company of FEI (Eindhoven, The Netherlands) is used to measure the radius
of micro tube with its measurement accuracy 0.05 µm. And the measured radius is used for
further calculation rather than nominal size. Fluid flow in micro tubes cannot be considered as
Hagen-Poiseuille flow when roughness is large enough. After measurement through atomic force
microscope, the relative roughness is much lower than 5%, which can be considered as hydraulic
smooth pipe.

In micro tube experiment, deionized water is used as the flow medium. As the flow scale is
extremely small, a small amount of impurity may lead to pipeline jam. Therefore, the deionized water
must experience the process of sterilization, filtration and degassing before the experiment.

3. Measurement Unit

In order to reduce the error of measurement, capillary glass tube made in Sutter instrument
Company is used as the measuring tube. The tube is treated with quenching and polishing. And its
radius is uniform and the character is stable. As the flow rate in micro tube is rather small, photoelectric
sensor is used to measure the process of displacement.

The process of the experiment is as follow.
N2 is expelled out from high pressure nitrogen cylinder. Through the pressure relief valve,

the pressure reduces to required value. Then, N2 flows into liquid storage device to displace deionized
water to micro tube and measurement tube. Photoelectric sensor is used to record the time that is
elapsed after a period of distance in measurement tube.

Fluid flow in micro tubes with the nominal radius of 10 µm, 7.5 µm, 5 µm and 2.5 µm
(the measured radius is actually 10.03 µm, 6.79 µm, 5.62 µm and 2.62 µm) is respectively carried
out. The experimental velocity can be calculated by Equation (9),

vexp =
l

∆t
(9)

where l is the distance of deionized water in measurement tube; ∆t represents the time that deionized
water travels through l.

The Hagen-Poiseuille’s velocity can be calculated by Equation (10),

vHP =
QHP

A
=

R2

8µ
∇P (10)

The deviation is defined as follow,

Sv =
vHP − vexp

vHP
(11)

Through data processing, the relationship of flow velocity versus displacement pressure gradient
is obtained (See Figure 3).
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Figure 3. Relationship of velocity deviation versus displacement pressure gradient in different
radial micro-tubes.

As can be seen from Figure 3, the deviation between experimental velocity and traditional
Hagen-Poiseuille’s velocity becomes larger with the decrease of micro-tube radius, which indicates
that boundary layer effect (caused by fluid-solid interaction) on micro fluid flow cannot be ignored.

2.2.2. Representation of Boundary Layer Thickness

In this part, we will develop a representative boundary layer thickness model from the perspective
of deviation between the experimental and traditional Hagen-Poiseuille’s velocity.

As can be known, boundary layer forms near the wall surface due to fluid-solid interaction.
When the displacement pressure gradient is zero, it can be reckoned that the boundary layer thickness
is equivalent to the radius of the micro tube since there is no fluid flow in micro tubes. With the
increase of the displacement pressure gradient, the shear force of the wall fluid becomes larger and the
proportion of movable fluid grows, indicating a thinner boundary layer [22] (See Figure 4).
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From Equations (8), (10) and (11), the expression of boundary layer thickness can be obtained.

h = R− R 4
√

1− Sv (12)

From Equation (12), we can know that boundary layer thickness can be obtained
through determining the expression of deviation between the Hagen-Poiseuille’s velocity and
experimental velocity.
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According to the above analysis of boundary layer thickness and Equation (12), the deviation
(Sv) reaches the maximal value 1 when the displacement pressure gradient is zero. And the deviation
declines in the form of exponential function with the increase of ∇P (See Figure 3). So as to reflect
the physical meaning when ∇P is zero and changing trend of deviation. The deviation model can be
expressed as follow,

Sv = e−b∇Pc
(13)

Parameters (b and c) in Equation (13) need to be determined so as to obtain Sv. Here, single variable
method is used to obtain the parameters. Through fitting the experimental result of Sv by Equation (13)
(See Figure 5), the parameters versus radius of micro tubes are obtained (See Table 1).
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Figure 5. Fitting results with the novel deviation model: (a) R = 10.03 µm; (b) R = 6.79 µm;
(c) R = 5.62 µm; (d) R = 2.62 µm.

Table 1. Parameters (b and c) versus radius of micro tubes.

Radius (µm) b c

2.62 0.7187 0.486
5.62 1.199 0.3372
6.79 1.527 0.284
10.03 2.77 0.1712

In order to make the model appropriate to wilder range, the exponential form is used to represent
the relationship between the parameters and radius. The fitting result is shown in Figure 6.
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The exponential expression is shown as follow,{
b = 0.4323e0.1851R

c = 0.6974e−0.1343R (14)

Through substituting Equations (13) and (14) into (12), the boundary layer expression is
eventually obtained,

h = R− R
4
√

1− e−0.4323e0.1851R ∇P0.6974e−0.1343R
(15)

Finally, the modified Hagen-Poiseuille’s Formula can be expressed as,

Q = π(R−h )4

8µ ∇P

h = R− R
4
√

1− e−0.4323e0.1851R∇P0.6974e−0.1343R
(16)

3. Validation and Application Range Analysis of the Model

3.1. Validation of the Model

As there exists some deviation in fitting the relationship of Sv versus ∇P and the parameters
(b and c) versus radius, we will firstly use the modified model to predict Li’s micro-tube experimental
results in turn. The predictive results in contrast with Li’s experiments are shown in Figure 7. We can
see that the predictive results are consistent with the experimental ones, indicating the accuracy of the
modified model.

Furthermore, micro-tube experimental experiments at low ∇P conducted by Wu [22,40] are used
to validate the accuracy and reliability of the novel model (See Figure 8). The predictive values by the
novel model are still in agreement with the experimental results.

Through validation by the experimental results of Li [31] and Wu [22,40], it can be seen that the
novel model can accurately characterize fluid flow in micro tubes. In addition, it has a definite physical
meaning, which provides a good foundation for studying fluid-solid interaction effects on fluid flow
in porous media.
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Figure 7. Comparison of predictive velocity versus∇P and Li’s experimental results [31]: (a) R = 10.03µm;
(b) R = 6.79 µm; (c) R = 5.62 µm; (d) R = 2.62 µm.
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Figure 8. Comparison of calculated velocity versus ∇P and Wu’s experimental results [22,40]:
(a) R = 15.36 µm; (b) R = 10.03 µm; (c) R = 7.61 µm; (d) R = 1.38 µm.
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3.2. Application Range Analysis of the Model

As there exist different sizes of pores and throats in tight formation, the model’s application range
and change rule must be discussed in advance when applied to microscopic flow in porous media.
Otherwise, there may appear some singular values in some pores and throats, which may lead to
inaccurate flow law in porous media. In this part, the application range and change rule of this novel
model will be analyzed mathematically.

From the novel model (16) and Equation (12), we can obtain its range and change rule through
analyzing the range of the deviation between experimental and traditional Hagen-Poiseuille’s velocity.
By taking the partial derivative of Equation (13) with respect to ∇P, the following equation can
be obtained,

∂Sv

∂∇P
= −bc∇Pc−1e−b∇Pc−1

(17)

As b > 0, c > 0 and ∇P ≥ 0, then ∂Sv
∂∇P ≤ 0. That is to say Sv declines with the increase of ∇P.

When ∇P equals to zero, both Sv and the ratio of the boundary layer thickness arrive at the maximal
value 1, which obeys to the physical meaning. When∇P tends to infinite, almost all the fluids in micro
tubes start to flow, Sv and the ratio of boundary layer thickness tend to zero, which is also consistent
with common sense. The detailed changing rule of the ratio of boundary layer thickness versus ∇P is
shown in Figure 9.

As can be seen from Figure 9, the ratio of boundary layer thickness declines sharply with the
increase of∇P at first and then goes down as∇P increases further. The larger the radius is, the quicker
the decline rate will be. In addition, the boundary layer thickness will not be out of range at any∇P as
long as the radius is given and the flow pattern belongs to laminar flow.Energies 2018, 11, x FOR PEER REVIEW  11 of 21 
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Figure 9. Ratio of boundary layer thickness versus ∇P under different radial micro tubes.

From the above analysis, the novel model has a broader application range than traditional
empirical models. And singular values can be avoided in flow simulation in porous media with
various sizes of pores and throats.

4. Fluid-Solid Interaction Effects on Microscopic Flow

In this section, the novel model will be applied to study fluid-solid interaction effects on
microscopic flow from three aspects: the velocity profile, the average flow velocity and flow resistance.
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Furthermore, we will incorporate the novel model into porous media to study fluid-solid interaction
in tight formation.

4.1. Velocity Profile

Micro-tube radii of 2.62 µm, 5.62 µm, 6.79 µm and 10.03 µm are selected to study fluid-solid
interaction effects on velocity profile. The viscosity and displacement pressure gradients are
respectively set to be 0.92 mPa·s and 0.1 MPa/m.

As can be inferred from Figure 10, the velocity in the micro tube is smaller than that predicted by
the traditional Hagen-Poiseullie’s formula due to fluid-solid interaction while the velocity profile is
still parabolic. The closer fluid is away from the wall surface, the stronger the fluid-solid interaction
will be, which results in an immovable layer (boundary layer) near the surface. The velocity profile in
consideration of fluid-solid interaction is consistent with the simulation result of dissipative particle
dynamics (DPD) [41], which further confirms the accuracy of the model.Energies 2018, 11, x FOR PEER REVIEW  12 of 21 
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Figure 10. Velocity profile in different radial micro tubes: (a) R = 2.62 µm; (b) R = 5.62 µm;
(c) R = 6.79 µm; (d) R = 10.03 µm.

In order to see the influence degree of fluid-solid interaction on fluid flow at different positions in
micro tubes quantitatively, a velocity deviation which is described by Equation (18) is defined,

Dv =
V′HP −V′model

V′HP
(18)
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where V’HP represents Hagen-Poiseullie’s velocity in the micro tubes; V’model represents the velocity,
in consideration of the fluid-solid interaction in the micro tubes.

The calculated velocity deviations in different radial micro tubes are shown in Figure 11.
As can be seen from Figure 11, the velocity deviation at different positions in every radial micro

tube varies a lot. When the fluid is close to the wall surface, the fluid-solid interaction is strong
enough to adsorb the boundary fluid to the wall and generates an immovable layer, which results
in the maximal deviation 1. As the distance away from the wall surface increases, the decline rate of
velocity deviation goes down quickly at first and then slows down, which indicates that the forces of
the fluid-solid interaction belong to a short-range force. With the increase of the distance away from
the wall surface, fluid-solid interaction effects on fluid flow decreases significantly. The fluid-solid
interaction is the weakest in the center of the micro tube, which leads to minimal deviation. The smaller
the radius of micro tube, the stronger the fluid-solid interaction, the larger the deviation will be.Energies 2018, 11, x FOR PEER REVIEW  13 of 21 
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Figure 11. Deviations of velocity profile in different radial micro tubes.

4.2. The Average Flow Velocity

In this part, fluid-solid interaction on average flow velocity will be studied under the same micro
tube radius and the same displacement pressure gradient respectively. The parameters used are shown
in Table 2.

Table 2. Parameters used to study fluid-solid interaction on average flow velocity.

Constant Radius of Micro Tube Constant Displacement Pressure Gradient

Fluid viscosity (mPa·s) 0.92 Fluid viscosity (mPa·s) 0.92
Radius (µm) 5 ∇P (MPa/m) 0.5

The calculation results are shown in Figure 12.
As shown in Figure 12a, the average flow velocity in consideration of fluid-solid interaction

(Vnew model) is smaller than traditional Hagen-Poiseuille’s velocity (VHP) at the same micro tube radius.
With the increase of displacement pressure gradient, fluid-solid interaction effects on fluid flow
decline and the boundary layer thickness is reduced, resulting in larger effective flow space and
smaller deviation between Vnew model and VHP. It can be known from Figure 12b that Vnew model
is smaller than VHP and decreases with the increase of radius at the same displacement pressure



Energies 2018, 11, 2197 13 of 20

gradient, which indicates that the effect of fluid-solid interaction on fluid flow declines as micro-tube
radius increases.
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Figure 12. Fluid-solid interaction on average flow velocity under two conditions: (a) Average flow
velocity versus ∇P; (b) Average flow velocity versus radius.

4.3. Flow Resistance

As can be seen from the above analysis, the flow law in micro scale is different from traditional
Hagen-Poiseuille’s law due to fluid-solid interaction. In this part, the flow resistance in micro tubes in
consideration of fluid-solid interaction will be further analyzed. The Reynolds number (Re), Resistance
coefficient (f ) and Poiseuille number (Po) after considering fluid-solid interaction can be respectively
calculated as,

Re =
ρvD

µ
=

ρD(R− h)4∇P
8µ2R2 (19)

f =
2D
ρv2∇P =

2D

ρ

(
(R−h)4

8µR2 ∇P
)2∇P (20)

Po = f Re =
16R2D2

(R− h)4 (21)

where D is diameter of micro tubes; ρ is fluid density.
The relationships of Re and f versus∇P are shown in Figure 13. With the increase of displacement

pressure gradient, the fluid initially adsorbed on solid wall begins to flow reducing the boundary layer
thickness. The average flow velocity increases which eventually leads to the increase of Re and decrease
of resistance coefficient. Since the fluid-solid interaction effects on micro fluid flow weaken with the
decrease of flow scale at the same displacement pressure gradient, the deviations of Re and f between
the novel model and traditional Hagen-Poiseuille’s Formula becomes smaller and smaller as flow scale
increases. In addition, we notice that the Reynolds number in micro fluid flow is far less than 2300
which suggests that the fluid flow in micro tubes belongs to laminar flow. This phenomenon further
declares the reality of the novel model’s assumption. It can be seen that the resistance coefficient is
always larger than 1, which demonstrates the non-negligible effects of fluid-solid interaction on micro
scale flow.

In terms of classical laminar flow, the Poiseuille number is a constant with the value of 64 when
fluid flow in horizontal circular tube is fully developed. However, some researchers hold the idea that
the Poiseuille number is no longer a constant as the flow scale becomes smaller. Here, the change rule
of Poiseuille number in micro tubes is analyzed based on the novel model. And the calculated results
are shown in Figure 14.
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As can be seen from Figure 14, the Poiseuille number is indeed no longer a constant when
considering fluid-solid interaction. It declines with the increase of ∇P. When ∇P is large enough,
the effect of fluid-solid interaction on fluid flow is reduced and the boundary layer thickness becomes
thinner. As a result, the Poiseuille number in consideration of fluid-solid interaction is more and
more close to traditional Poiseuille number. The deviation between the Poiseuille number considering
fluid-solid interaction and traditional one increases with the decrease of micro-tube radius at the same
displacement pressure gradient.

4.4. Pore Scale Network Model

The above investigation of fluid-solid interaction effects on microscopic flow mainly focuses
on micro tubes. In this part, we will apply this novel model to pore scale network model which
can represent the complex structure of tight formation to study fluid-solid interactions on fluid flow
in porous media. Pore-throat radii and throat lengths are assumed to obey the truncated Weibull
distribution in the pore network model.

R = (Rmax − Rmin)
(
−δ ln

[
x
(

1− e
−1
δ

)
+ e

−1
δ

]) 1
η
+ Rmin (22)

where R represents pore and throat radii; Rmax and Rmin represent respectively the maximal throat and
the minimal throat radius; δ represents scale distribution parameters; η represents shape distribution
parameters; x ∈ [0, 1], which is a random number.
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Detailed parameters in the pore network model are shown in Table 3. As the aspect ratio (the value
of pore radius divided by throat radius) is large, the fluid-solid interaction effects on fluid flow will be
only considered into throats.

Table 3. Parameters of pore scale network model.

Parameters Values Parameters Values

Model size 10 × 10 × 10 Throat radius (µm) 1–4
Pore radius (µm) 10–100 Throat length (µm) 30–40

Fluid viscosity (mPa s) 0.92

The conductance in consideration of fluid-solid interaction in pore network model can be
modified as,

g =
πr2

e f f

8µ
=

π(R− h)2

8µ
=

π

(
R

4
√

1− e−0.4323e0.1851R∇P0.6974e−0.1343R
)2

8µ
(23)

Fluid flow through every pore satisfies mass conservation law at every displacement pressure
gradient (See Figure 15a),

∑
k

qjk = 0 (24)

where qjk represents the flow flux between pore i and a neighboring pore j. The flow flux between two
neighboring pores can be calculated as follow,

qjk =
gjk

Ljk

(
Pj − Pk

)
(25)

where gjk represents the conductance between pore j and k. It can be calculated by the harmonic mean
of the conductance of the throat and two neighboring pores (See Figure 15b).

gjk =
Ljk

Lj
gj
+ Lt

gt
+ Lk

gk

(26)

where Ljk is the distance between pore j and k; Pj and Pk represent fluid pressure in pore j and
k respectively.
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Figure 15. Scheme of pore network model (red part represents boundary layer while blue part
represents the effective flow space): (a) Flow through every pore; (b) Conductance between two
neighboring pores.
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The apparent permeability in the pore network model in consideration of fluid-solid interaction
can be calculated by Equation (27),

Ka =
µQL

A(Pin − Pout)
(27)

The detailed calculation flow chart considering fluid-solid interaction is shown in Figure 16.
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The calculation results are shown in Figure 17.
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Figure 17. Relationship between apparent permeability and flow rate versus∇P: (a) Apparent permeability
versus∇P; (b) Flow velocity versus∇P.

As is known from Figure 17a, the apparent permeability is no longer a constant when considering
fluid-solid interaction. The effect of fluid-solid interaction on fluid flow weakens with the increase
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of displacement pressure gradient, the boundary layer thickness declines and the effective flow
space is enlarged. As a result, the deviations of the apparent permeability grow smaller. When the
displacement pressure gradient is large enough, the apparent permeability is basically consistent with
the one ignoring fluid-solid interaction. From Figure 17b, we can see that nonlinear flow occurs at low
displacement pressure gradient due to fluid-solid interaction. The velocity deviation also decreases
with the increase of displacement pressure gradient.

In order to further investigate fluid-solid interactions on fluid flow in porous media, the throat
radii are modified to change the flow scale in pore network model. The average aspect ratio is used to
reflect the flow scale. The deviation of apparent permeability is defined in Equation (28).

Dk =
Khp − K f−s

Khp
(28)

where Khp represents the apparent permeability, ignoring the fluid-solid interaction, and Kf − s in
consideration of fluid-solid interaction.

For calculation, we respectively set the displacement pressure gradient as 0.1 MPa/m, 0.3 MPa/m
and 0.5 MPa/m. The fluid viscosity is 0.92 mPa·s. The results are respectively shown in Figure 18.
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Figure 18. Relationship between apparent permeability versus average aspect ratio at different ∇P:
(a) Apparent permeability; (b) Permeability deviation.

It can be seen from Figure 18 that the curves of apparent permeability versus the average aspect
ratio without considering the fluid-solid interaction overlap, which indicates that apparent permeability
has nothing to do with ∇P at different average aspect ratios. The apparent permeability decreases
with increased average aspect ratio which suggests that the apparent permeability is the function of
pore structures. When taking fluid-solid interaction into consideration, the apparent permeability at
different ∇P is smaller than that ignoring its effects. Meanwhile, the curves of apparent permeability
versus average aspect ratio no longer overlap. The effect of fluid-solid interaction on fluid flow
is weakened and the boundary layer thickness is reduced with the increase of ∇P, which results
in a larger effective flow space and smaller deviation of apparent permeability from that ignoring
fluid-solid interaction. The decline trend of the apparent permeability also exhibits great difference
with the increase of average aspect ratio due to fluid-solid interaction.

5. Conclusions

In this study, a novel model which can characterize fluid flow in micro scales is developed from a
new perspective. Micro tube experiments are used to verify the novel model. Its application range is
further analyzed mathematically. After the analysis of the novel model, fluid-solid interaction effects
on the velocity profile, the average flow velocity and flow resistance in micro tubes are respectively
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studied. Finally, the novel model is incorporated into pore scale network model to study fluid-solid
interaction effects on fluid flow in porous media. The following conclusions are arrived at:

1. When fluid-solid interaction is taken into consideration, the velocity in micro tube is smaller
than that predicted by traditional Hagen-Poiseuille’s law. The fluid-solid interaction declines
significantly as the distance away from the solid wall grows larger, which results in largest
velocity deviation near the wall surface and the smallest one in the center of micro tube.

2. Non-linear flow occurs both in micro tubes and porous media at low displacement pressure
gradient due to fluid-solid interaction. Moreover, the effect of fluid-solid interaction on micro
flow declines with increased displacement pressure gradient, which leads to smaller and smaller
velocity deviation.

3. The changing rules of the Reynolds number, the Resistance coefficient and Poiseuille number
do not obey traditional Hagen-Poiseuille’s law owing to fluid-solid interaction. The smaller the
radius and the lower the displacement pressure gradient, the stronger the fluid-solid interaction,
the larger the deviation will be.

4. The apparent permeability in porous media is no longer a constant when incorporating the novel
model into pore scale network model. The apparent permeability increases and the permeability
deviation declines with increased displacement pressure gradient.
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