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Abstract: This work presents a microporous silver cathode membrane reinforced with infiltration of
samarium-doped ceria (SDC). The ion-conducting SDC effectively confines the surface of a porous
silver membrane to maintain microporous structure and prevents the electrode agglomeration.
SDC precursor solution is fired together with silver membrane at 700 ◦C for 2 h and formed as
a nanocrystalline SDC on the silver pore surface. The SDC-infiltrated microporous silver membrane
shows superior resistance to agglomeration without noticeable change in microstructures even
at 900 ◦C for 12 h, which makes it promising for the application of solid oxide fuel cells as
a cathode support.

Keywords: solid oxide fuel cells; samarium-doped ceria; infiltration; silver; cathode-supported solid
oxide fuel cells

1. Introduction

The use of catalytically active metals can likely be an alternative to oxide electrodes in solid oxide
fuel cells (SOFCs) operating at low temperatures (<500 ◦C). Nanoporous platinum-based thin films
have been frequently used as electrodes for its superior catalytic activity at low temperatures [1–3],
but the cost ineffectiveness is an obvious drawback. In this regard, silver can be a good candidate as
a metallic cathode for low temperature SOFCs due to its high electrical conductivity, oxygen diffusivity,
catalytic activity for oxygen reduction reaction (ORR), and much lower price than platinum. However,
the extremely poor thermal stability of silver makes it challenging to maintain its overall porous
structure at elevated temperatures [4–6]. The thermal agglomeration of porous silver results in loss of
triple phase boundary (TPB) density and gas diffusion limitation, consequently making a degradation
of overall fuel cell performance.

One effective method to maintain porous structure is coating a thin layer of ion-conducting oxide
over the metal surface using vacuum-based deposition processes [7–12]. The thin oxide layer acts as
a physical confinement to hinder the thermally-driven agglomeration. Another method to stabilize the
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morphology of porous cathode is solution infiltration, which is preferred because of the flexibility of
materials selection and cost-effective process [13–15]. The infiltrated oxides were reported not only to
increase the TPB density, but also to promote oxygen surface adsorption process, which can improve
the ORR.

A high-performance SOFC operating at temperature below 500 ◦C was still relying on the
micro-SOFCs with a nanoscale thin film electrolyte [16–20]. As the thin film electrolyte is always
deposited at a high temperature by atomic layer deposition (ALD) or pulsed laser deposition
(PLD) [21–24], thermally-induced residual stress is inevitably generated, and results in membrane
fracture during fabrication or fuel cell operation [16,25,26]. In our previous study, a new architecture
of silicon-based micro-SOFCs with circular membrane reinforced with a tapered thin edge support
was developed to further reduce the residual stress [20]. However, nanoscale thin and freestanding
electrolyte membrane was still very fragile, leading to a low membrane survival rate, especially for the
large-scale membranes. Therefore, developing an alternative substrate or structure is worthwhile for
high-performance SOFCs.

In this work, we demonstrated that a SDC-infiltrated microporous silver membrane can be used as
an efficient cathode support which is sustainable at a high temperature up to 900 ◦C without significant
thermal agglomeration. SDC was selected for its high ionic conductivity, catalytic activity, and low
phase formation temperature. The infiltrated SDC solution was formed as a thin layer of scattered
nanoparticles on the porous silver surface, acting as physical confinement to hinder agglomeration of
silver. In addition, SDC-infiltrated silver cathode-supported SOFC was also demonstrated by applying
a 300 nm-thick yttria-stabilized zirconia (YSZ) electrolyte and a nanoporous platinum anode to verify
its functionality.

2. Experimental

2.1. Preparation of SDC Precursor Solution and SDC Infiltration Process

Commercial silver filter membrane with nominal filterability to be 0.2 µm of particle size (SKC
Asia HSE Sampling Technologies Pte Ltd., Singapore) was used for the study. The thickness of
the silver membrane was 60 µm, and the filter diameter was 13 mm. The SDC precursor solution
was prepared by dissolving stoichiometric amounts (molar ratio of 4:1 for Sm3+:Ce3+) of samarium
(III) nitrate hexahydrate (Sm(NO3)3·6H2O, Alfa Aesar, 99.9%) and cerium (III) nitrate hexahydrate
(Ce(NO3)3·6H2O, Sigma Aldrich, 99%) into deionized water with stirring. Triton X-100 (Bio-Rad
Laboratories Pte Ltd., Singapore) was added to the nitrate solution as a surfactant. The porous silver
membrane was first immersed into the solution for 5 min, and then dried at room temperature.
One step of infiltration process was performed in fabricating SDC-infiltrated Ag membrane. The dried
SDC-infiltrated Ag membrane was baked at 110 ◦C for 1 h, followed by firing at 700 ◦C for 2 h to
decompose the nitrate and form crystalline SDC.

The crystallinity of the SDC fired at 110 ◦C and fired at 700 ◦C were identified by X-ray
diffractometer (XRD, PANalytical Empyrean) with Cu Kα radiation source in the 2θ range from
20◦ to 80◦. The morphologies were characterized by field emission scanning electron microscopy
(FESEM, JSM-7600F, JEOL, Tokyo, Japan) using 10 kV as operating voltage. The energy dispersive X-ray
spectroscopy (EDS, JEOL 7600F with energy-dispersive X-ray spectroscopic detectors) was utilized for
characterizing the composition and element distribution of SDC-infiltrated silver membrane.

2.2. Fabrication of SDC-Infiltrated Silver Cathode-Supported Cell

A 10 µm-thick silver nanoparticle thin film was first deposited on the silver membrane by
inkjet-printing, followed by SDC infiltration process. Inkjet-printed silver nanoparticles were covered
on the top of the silver membrane to narrow down the open pores for YSZ electrolyte deposition.
A 100 nm-thick and 200 nm-thick YSZ thin film were subsequently deposited on the top of the
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inkjet-printed silver thin film by atomic layer deposition and sputtering, respectively. The sputtered
platinum was then deposited on the YSZ electrolyte as an anode.

2.3. Electrochemical Characterization

SDC-infiltrated silver cathode-supported cell was characterized under fuel cell operation condition
with dry hydrogen as fuel and ambient air as oxidant at 450 ◦C. The polarization curves and
polarization resistances (Rp) were measured using a potentiostat (Solartron 1470E, Solartron Analytical,
USA) with a frequency analyzer (Solartron 1255B, Solartron Analytical, USA).

3. Result and Discussion

3.1. Crystallinity of SDC Precursor Solution

The crystal structures of SDC precursor solution were examined using XRD, as shown in Figure 1.
The samples were prepared on the (100) Si wafer followed by baking at 110 ◦C and firing at 700 ◦C.
The cubic fluorite structure with (111) preferred orientation consists of SDC phases appeared at fired
temperature of 700 ◦C for 2 h (JCPDS #75-0158), while an amorphous phase was observed when the
SDC solution was only baked at 110 ◦C. In addition, the average crystallite size of the fired SDC was
around 15 nm, which was determined by Scherrer equation from XRD data. XRD results showing that
the SDC solution fired at 700 ◦C is cubic nanocrystalline structure, which was reported to have high
ionic conductivity [27].
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Figure 1. XRD patterns of SDC precursor solution on Si baked at 110 ◦C and fired at 700 ◦C.

3.2. Morphology and Element Distribution of SDC-Infiltrated Silver Membrane

Figure 2a shows the cross-sectional FESEM images of SDC-infiltrated silver membrane fired at
700 ◦C. The micro-pores were well-maintained at 700 ◦C, and showed similar microstructures to that of
the pure silver membrane (Figure 2b). The discretely distributed SDC was coated on the silver surface
to form a physical confinement to prevent agglomeration at high temperature (Figure 2c). The EDS
mapping results shown in Figure 2d–h further confirmed the distribution of SDC on the silver surface.
Even though some big SDC clusters were formed, the infiltrated SDC still discretely distributed over
the entire silver surface. In addition, the atomic ratio of Ce to Sm was close to 4, which were consistent
with the ratio of synthesized SDC precursor solution.
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3.3. Thermo-Morphological Stability of SDC-Infiltrated Silver Membrane

The thermo-morphological stability of SDC-infiltrated silver membrane fired at 700 ◦C was
verified under extremely high temperature and long term heating. The surface morphology changes
after heating at 700, 800, and 900 ◦C for 12 h were shown in Figure 3. Serious agglomeration of the
pure silver membrane was observed after heating at temperature above 700 ◦C. The micro-pores were
tended to be collapsed and became a dense film at 900 ◦C. On the other hand, the SDC-infiltrated silver
membrane greatly retained its microporous structure even heated at temperature of 900 ◦C, which is
very close to the melting temperature of silver (961 ◦C). Therefore, the infiltrated SDC formed a physical
confinement to prevent the microporous structure from thermally-driven agglomeration. This result
justified the superior effectiveness of SDC infiltration in maintaining the micro-pores of silver.
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Figure 3. FESEM images of pure silver and SDC-infiltrated silver membranes at different heating
temperature for 12 h. (a) Pure silver membrane without heating and heated at (b) 700 ◦C, (c) 800 ◦C,
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3.4. Electrochemical Characterization of SDC-Infiltrated Silver Cathode-Supported Cell

The schematic of the SDC-infiltrated silver cathode-supported cell is shown in Figure 4a, and the
cross-sectional FESEM images of the SDC-infiltrated silver cathode-supported cell are shown in
Figure 4b,c. The silver nanoparticles thin film was fully covered on the top of silver membrane
surface and a 300 nm-thick YSZ electrolyte layer was deposited on the silver nanoparticles thin film as
an electrolyte. Figure 4d shows the polarization curve of SDC-infiltrated silver cathode-supported cell.
The open circuit voltage (OCV) obtained from the cell was only 0.23 V, which was much smaller than
a typical SOFCs (~1 V), and the peak power density only reached to 1.4 mW/cm2. The low OCV was
possibly due to the current leakage through the pinhole of YSZ electrolyte or the silver ion migration
through YSZ during fuel cell operation. Silver is highly mobile at elevated temperature, and therefore,
easily diffuses into electrolyte through the pinholes. Moreover, silver ion also tends to migrate toward
to the platinum anode when applying an electric field, making an electrical conduction bridge between
silver cathode and platinum anode. To overcome the silver migration into the electrolyte, thicker
electrolyte or a blocking layer can be considered.
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Figure 4. (a) Schematic of SDC-infiltrated Ag cathode-supported SOFC. (b) Cross-sectional FESEM
image of SDC-infiltrated Ag cathode. (c) Cross-sectional FESEM image near YSZ electrolyte layer.
(d) Polarization curve and (e) Nyquist plot (acquired at open circuit voltage) of SDC-infiltrated Ag
cathode-supported cell measured at 450 ◦C. Inset: equivalent circuit model for EIS fitting.
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Recently, a high-performance SOFC using thicker SDC electrolyte with thickness of 11.8 µm was
reported and the peak power density of around 1.1 W/cm2 with the ohmic resistance of 9.05 Ω cm2 was
achieved at 500 ◦C [28]. In this work, the electrolyte thickness is only 300 nm; it is therefore challenging
to have such a dense and pinhole-free thin layer on a porous silver membrane. In addition, the ohmic
and polarization resistance of the SDC-infiltrated silver cathode-supported cell using 300 nm-thick YSZ
electrolyte are 4.4 and 2.1 Ω·cm2, respectively (Figure 4e). These high resistance values may also come
from the current leakage under fuel cell operation. Therefore, by increasing the thickness of electrolyte
to micrometer-scale to avoid the current leakage and silver migration, comparable performance to the
typical micro-SOFCs can be achieved.

4. Conclusions

We demonstrated a feasibility of SDC-infiltrated silver as a cathode support with superior
thermo-morphological stability at high temperature. The morphology of SDC-infiltrated silver
membrane was well maintained without thermal agglomeration even after heating at 900 ◦C for
12 h, while the initial morphology of pure silver membrane was significantly agglomerated at
heating temperature above 700 ◦C. Cubic nanocrystalline SDC with a correct composition was
coated on a porous silver membrane and discretely distributed to maintain the porous structure from
thermally-driven agglomeration. The SDC-infiltrated silver cathode-supported cell with 300 nm-thick
YSZ electrolyte showed only OCV of 0.23 V and low power density of 1.5 mW/cm2 at 450 ◦C. However,
the cell performance can be possibly further improved by using a thicker electrolyte layer.
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