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Abstract: This study aimed to investigate the change of consumer behavior in electric power
consumption after the application of dynamic pricing via real-time feedback. Afield experiment
of dynamic pricing was carried out on Nushima Island, which is located in Hyogo Prefecture
in central Japan. The panel data of hourly electric power consumption among 50 households
(including 22 control households and 28 treated households) were collected from a baseline survey
(14 days before the dynamic pricing experiment was conducted) and during the 14-day experimental
period. Propensity score analysis with local linear matching was employed to analyze the average
treatment effects of dynamic pricing on consumer behavior. The results report that dynamic pricing
plays a crucial role in reducing consumers’ electric power consumption—by 9.6% compared to the
pre-experimental period.
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1. Introduction

Japan significantly lacks domestic reserves of fossil fuels and heavily depends on the import of
substantial amounts of crude oil, natural gas, and other energy sources to meet its energy demands.
Furthermore, Japan previously relied on nuclear power to meet up to one third of its electricity
demands before the serious 2011 earthquake and tsunami at Fukushima Daiichi Nuclear Power
Station. Consequently, Japan has been facing some issues in the decline in its energy self-sufficiency
ratio, the increase of electric power costs, and increasing amounts of greenhouse gas emissions
from the increase of imported crude oil, coal, and liquefied natural gas (LNG) (Agency for Natural
Resources and Energy [1]). Particularly, the energy self-sufficiency ratio of Japan dramatically declined
from 19.9% in 2010 to 6.0% in 2014, which is low compared to other OECD (The Organization for
Economic Co-operation and Development) countries. The amount of greenhouse gas emissions from
the electric power field increased by 83 million tons, from 374 million tons in 2010 to 457 million
tons in 2014. Consequently, much attention has shifted to the promotion of renewable energy as an
emergent response to satisfy Japan’s future energy needs. Renewable energy is an important source
that potentially has low CO2 emissions during electricity generation and contributes to the energy
self-sufficiency ratio. Inf 2014, the renewable energy ratio in the amount of generated electric power in
Japan was 3.2% (excluding hydroelectric power), representing an increase from 0.03% in 1973 and 1.1%
in 2010, but is still low compared to other major countries (e.g., Germany, Spain, United Kingdom,
United States, and France) [1]. However, the supply of renewable energy in Japan is unstable due
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to low capacity. Furthermore, the problems of limitation of nuclear power plants and maximization
of the usage of existing LNG-based thermal power plants are not easy to solve for the immediate
balancing and enhancing of the electricity supply. Therefore, it is necessary to focus on the perspective
of electricity demand—one of the potential ways for managing electricity needs by lowering electric
power consumption. This can also help to reduce not only the dependence on imported energy
resources from foreign countries (e.g., fossil fuels) but also the problems of environmental degradation
or greenhouse gas emissions (e.g., CO2). Demand response is expected to reduce consumers’ electric
power consumption through incentives of dynamic pricing and real-time information feedback via
smart meters.

In addition, the introduction of electric power market liberalization from the Japanese Government
since April 2016 allows customers to select from multiple supplier companies competitively selling
electricity (Agency for Natural Resources and Energy [2]). The new market system can provide great
advantages for customers in lowering the prices and empowering their choices of electricity suppliers;
however, many of these suppliers only sell locally and mainly in large cities.

Nushima Island (Figure 1) was selected as the experimental study site because it is a remote
island located in the south of Hyogo Prefecture, where the demand for electric power heavily relies
on the Kansai Electric Power Company in Osaka, Japan. The total population of this island is about
500 people with 231 households (Statistical data in 2012, Hyogo Prefecture Website [3]). The current
problem for Nushima Island is that it is far from the mainland, thus it is difficult for supplier companies
to deliver electricity to its communities. Electric power shortages might occur on Nushima as well as
more than 6500 other islands that have the same characteristics as Nushima. Therefore, it is important
for consumers in these regions to adjust their consumption in the case of electric shortages and
accommodate the fluctuations of renewable energy sources such as solar photovoltaic (PV) generation
for future energy needs.
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To the best of the authors’ knowledge, there is no previous study that has explored the treatment
effects of dynamic pricing on energy-saving behavior using the propensity score analysis with panel
data in field experiments. Therefore, the fundamental aim of the study was to assess the consumer
behavior in electric consumption through the experiment of dynamic pricing using the propensity
score analysis approach. The main differences between this study and Thoa et al. [4] include the
objectives and data analysis methodology. The former difference means that this study focused on
relatively short-term response by dynamic pricing while Thoa et al. [4] emphasized the persistence
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of dynamic pricing effects. The latter difference means that this study employed propensity score
matching to solve a selection bias issue while Thoa et al. [4] used conventional panel analysis by
dividing the households into control and treatment groups randomly.

The following hypotheses were considered: the incentive of dynamic pricing has negative effects
on electric power consumption and the tariff or specific deduction rate related to dynamic pricing
has a positive correlation with energy-saving effect. With respect to the results of this experiment,
a smart-energy community’s model that is both environmentally friendly and resistant to the electric
power market’s instability may be established.

2. Conceptual Framework

This section presents a short discussion of demand response, dynamic pricing, as well as the
effects of dynamic pricing on demand response in the electricity sector in turn.

2.1. Demand Response

The term demand response (DR) in electricity markets can be considered to mean intentional
changes in behavior related to electricity usage by end-use customers from their normal consumption
patterns to adopt to change in the price of electricity over time, or to incentive payments to lower
consumption. Demand response programs, therefore, should be designed to encourage consumers to
shift their electric power consumption from peak to off-peak periods or reduce their peak demand
in urgent or high-peak situations. Hence, demand response can be considered as a cost-effective
alternative compared to adding generation capability to meet the peak or occasional demand
spikes. The performance of demand response programs is measured by peak load reduction and
demand elasticity.

There are two main components of demand response programs involving Incentive Based
Programs (IBP) and Priced Based Programs (PBP) (Figure 2). Particularly, IBP are further classified
into classical programs (including Direct Load Control and Interruptible/Curtailable Programs) and
market-based programs (involving Demand Bidding, Emergency DR, Capacity Market, and Ancillary
Services Market). In terms of classical programs, participants receive participation payments (e.g.,
a bill credit or discount rate) for their participation in the programs. In terms of market-based
programs, participating customers are rewarded with money for their performance, depending on the
amount of load reduction during critical conditions. Furthermore, PBP are mainly based on dynamic
pricing in which electricity tariffs are not flat. PBP include the Time of Use (TOU) rate, Critical Peak
Pricing (CPP), Extreme Day Pricing (EDP), Extreme Day CPP (ED-CPP), and Real Time Pricing (RTP).
The fundamental objective of these programs is to flatten the demand curve by charging high prices
during peak periods and lower prices during off-peak periods. The rate during peak periods is higher
than the rate during other off-peak periods.

2.2. Dynamic Pricing

Dynamic pricing is considered as a demand-side management tool that can reduce peak load
by charging different prices at different times in term of demand. For instance, dynamic pricing
can reduce electric power demand by increasing the electricity rates when electric power demand is
strong and decrease when electric power demand weakens. This implies that dynamic pricing can
stimulate demand response and shift the demand from peak to off-peak. In addition, dynamic pricing
also provides each consumer with an opportunity to reduce his or her electricity bill at a constant
consumption level, just by changing the consumption pattern and by shifting the load.

Some previous studies related to field experiments reported that dynamic pricing can contribute
to a reduction in peak-time electric power demand [6–8]. In addition, the empirical results from
Faruqui [9] indicate that real-time pricing can induce a peak demand reduction of 10–14%, a resource
cost reduction of 3–6%, a market-based customer cost reduction of 2–5%, and a social welfare increase
of $141–403 million per year. Furthermore, Desai and Dutta [10] pointed out that dynamic pricing was
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economically more efficient than traditional flat rate prices since it absorbs consumer surplus, thereby
enhancing total revenue at existing cost and reduced peak load.

Energies 2018, 11, x FOR PEER REVIEW    3 of 22 

 

The  following  hypotheses were  considered:  the  incentive  of  dynamic  pricing  has  negative 

effects on electric power consumption and  the  tariff or specific deduction rate related  to dynamic 

pricing  has  a  positive  correlation with  energy‐saving  effect. With  respect  to  the  results  of  this 

experiment, a smart‐energy community’s model that is both environmentally friendly and resistant 

to the electric power market’s instability may be established. 

2. Conceptual Framework 

This section presents a short discussion of demand response, dynamic pricing, as well as the 

effects of dynamic pricing on demand response in the electricity sector in turn. 

2.1. Demand Response 

The term demand response (DR) in electricity markets can be considered to mean intentional 

changes  in  behavior  related  to  electricity  usage  by  end‐use  customers  from  their  normal 

consumption  patterns  to  adopt  to  change  in  the  price  of  electricity  over  time,  or  to  incentive 

payments  to  lower  consumption. Demand  response  programs,  therefore,  should  be designed  to 

encourage  consumers  to  shift  their electric power  consumption  from peak  to off‐peak periods or 

reduce  their  peak  demand  in  urgent  or  high‐peak  situations. Hence,  demand  response  can  be 

considered as a cost‐effective alternative compared to adding generation capability to meet the peak 

or occasional demand spikes. The performance of demand response programs is measured by peak 

load reduction and demand elasticity. 

There  are  two main  components  of  demand  response  programs  involving  Incentive  Based 

Programs (IBP) and Priced Based Programs (PBP) (Figure 2). Particularly, IBP are further classified 

into classical programs (including Direct Load Control and Interruptible/Curtailable Programs) and 

market‐based  programs  (involving  Demand  Bidding,  Emergency  DR,  Capacity  Market,  and 

Ancillary  Services  Market).  In  terms  of  classical  programs,  participants  receive  participation 

payments  (e.g., a bill  credit or discount  rate)  for  their participation  in  the programs.  In  terms of 

market‐based programs, participating customers are rewarded with money for their performance, 

depending on the amount of load reduction during critical conditions. Furthermore, PBP are mainly 

based on dynamic pricing in which electricity tariffs are not flat. PBP include the Time of Use (TOU) 

rate, Critical Peak Pricing (CPP), Extreme Day Pricing (EDP), Extreme Day CPP (ED‐CPP), and Real 

Time Pricing (RTP). The fundamental objective of these programs is to flatten the demand curve by 

charging high prices during peak periods and lower prices during off‐peak periods. The rate during 

peak periods is higher than the rate during other off‐peak periods. 

 

Figure 2. Classification of Demand Response Programs. 
Figure 2. Classification of Demand Response Programs.

3. Experimental Design

The field experiment of dynamic pricing on Nushima Island aimed to assess the possibility of
the community’s self-control of its electric energy demand through dynamic pricing as well as the
possibility of dynamic pricing policy according to solar PV generation potential.

The experiment was carried out on Nushima starting in 2012 through a five-year project. Fifty
households were randomly assigned in five districts including South district, Central district, North
district, East district, and Tomari district. In December 2012, smart meters were first installed in these
fifty participating homes (Figure 3).
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In May 2013, tablet PCs that could provide real-time feedback on electric power consumption
were distributed to those participants. A variety of real-time feedback information types, which
calculated each household’s electric power consumption and per-capita electric power consumption,
as well as ranking of the levels of electric power consumption among participating households in the
experiment, was displayed on the tablet PCs (Figure 4).Energies 2018, 11, x FOR PEER REVIEW    5 of 22 
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From the summer (August and September) of 2015 and the winter (January and February) of
2016, dynamic pricing was introduced. In this stage, the control and treatment groups were randomly
selected based on the official household list of each district guided by local leaders. A control subject
would receive a smart meter, a tablet PC, and a reward of 5000 Japanese Yen in summer at the end of
the experiment while a treatment subject would receive a smart meter, a tablet PC, and a reward of
5000 Japanese Yen as well as a monetary incentive for energy conservation. In details regarding the
monetary incentive, each treated participant was allocated 7000 points and points were then subtracted
according to their electric power consumption. They could exchange their remaining points into cash at
the end of the experiment (one point was equal to one Japanese Yen). There were three subtraction rates
of dynamic pricing of 20, 30 and 40 points. These rates changed daily based on the weather forecast
and were differentiated based on the PV power generation potential. The rate of 20-point deduction
(20 points per kWh per person) was defined when weather forecast for both the preceding and current
days included “sunny”. The rate of 30-point deduction (30 points per kWh per person) was defined
when weather forecast for either the preceding or current day included “sunny”. The rate of 40-point
deduction (40 points per kWh per person) was defined when weather forecast for neither the preceding
nor current day included “sunny”. The reason we included the weather condition on the preceding
day to decide those deduction rates is that it would have some influence on the remainder of a virtual
battery to be charged by photovoltaic solar generation. Furthermore, data regarding hourly electric
power consumption were collected based on the one-second interval data from the installed digital
smart meters. In addition, the household characteristics of treatment and control groups were collected
through a pre-experimental questionnaire survey. Secondary data from recorded meteorological data
were also included. The result of this experiment is reported in Thoa et al. [4].
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In the final stage of the project, dynamic pricing was continuously conducted from 20 July
to 16 August 2016. The panel data collected from a baseline survey (14 days before the dynamic
pricing experiment was introduced), during the 14-day experimental period, and a follow-up survey
(14 days after the treatment) spanned treated and control subjects. We implemented the experiment
for relatively short period because it aimed to investigate three short-term effect of dynamic pricing
under the hottest and sunniest weather condition when the gap between photovoltaic solar electricity
supply and demand is usually widened.

The experiment proceeded as follows:

- Firstly, all confirmed participants were told in advance about the experiment and were asked to
freely select to be a control or treatment subject after receiving a detailed explanation. A control
subject would receive a smart meter, a tablet PC at the beginning of the experiment, and a reward
of 2000 Japanese Yen at the end of the experiment while a treatment subject would receive a smart
meter, a tablet PC, and an initial 7000 points at the beginning, which would then be subtracted
from based on their actual electric power consumption during the experiment. The treatment
subjects could exchange their remaining points into cash at the end of the experiment (one point
was equal to one Japanese Yen). We took a different approach to divide them into control and
treatment group compared to the previous experiments in summer 2015 and winter 2016 when
the group was randomly divided. This selection strategy was chosen considering that some
households in Japan can choose either conventional fix electricity tariff system or time-variant
dynamic tariff system. We aimed to investigate the different effects on the two groups taking
both current choice options and selection bias into account.

- In terms of monetary incentive, namely dynamic pricing, three deduction points or tariff rates
of 20, 40 and 80 were set up. These rates changed daily based on the weather forecast and were
assumed based on the PV power generation potential (high tariff on rainy days and low tariff
on sunny days). The rate of 20-point deduction (20 points per kWh per person) was defined
when weather forecast for both the preceding and current days included “sunny”. The rate of
40-point deduction (40 points per kWh per person) was defined when weather forecast for either
the preceding or current day included “sunny”. The rate of 80-point deduction (80 points per
kWh per person) was defined when weather forecast for neither the preceding nor current day
included “sunny”.

- Then, experimental data of 22 control participants and 28 treated participants regarding hourly
electric power consumption, frequency of access to tablet PCs, and weather data were recorded.
In addition, household characteristics were collected through a pre-experimental questionnaire
survey. Figure 5 depicts the experimental procedure in July and August 2016.
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4. Research Method and Data Description

The previous field experiment in the summer of 2015 and winter of 2016, which was assigned by
means of administrator selection or local leaders who decided which households should get control
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or treatment, was defined as a quasi-experiment with the lack of random assignment. Meanwhile,
the experiment in summer of 2016 divided those confirmed households again into control and treated
groups based on their intentions, which could be motivated by some individual or economic factors.
This could meet a challenge of selection bias or hidden bias that may lead to bias estimations, since
true experimental designs are not always possible. (“Hidden bias is essentially a problem created
by the omission in statistical analysis of important variables, and omission renders nonrandom
the unobserved heterogeneity reflected by an error term in regression equations” [11] (p. 357).)
Therefore, this study applied the propensity score analysis with non-parametric regression developed
by Heckman et al. [12,13] with the fundamental aim to improve the problems of selection bias in
investigating changes of a consumer’s behavior by an application of monetary incentive namely
dynamic pricing.

This method is also called kernel-based matching which allows estimations of average treatment
effects for the treated using information from all possible control subjects within a predetermined span.
A three-step analytic process was employed. The best conditioning variables that are speculated to
be causing an imbalance between treated and control groups and the propensity scores P(X) were
investigated in the first step. Then, an analysis of weighted mean differences using kernel or local
linear matching through the non-parametric regression were employed to match on P(X). Finally,
sensitivity analyses and balancing test based on the matched samples were conducted.

Firstly, the propensity scores were estimated based on the predicted probability for all observations
derived from the fitted regression model or propensity score model. In detail, the propensity
score model of binary logistic regression was conducted. A binary logistic regression describes
the conditional probability of receiving treatment as follows:

P(Di/Xi = xi) =
eβiXi

1 + eβiXi
=

1
1 + e−βiXi

(1)

where Di denotes treatment variables including Treateffect, Dum_20_elas, Dum_40_elas, and
Dum_80_elas. Xi is the observable vector of control variables.

After an estimation of propensity scores, a matching algorithm must be defined to estimate the
missing counterfactual for each treated observation. In this study, to take advantage of the panel
data, the kernel-based matching algorithm (including kernel and local linear matching), which was
developed from non-parametric regression methods, was used to identify the treatment effect for the
treated (ATT). Specifically, kernel matching uses a kernel estimator for constructing the weighted mean
for a focal point while the local linear matching using local linear regression (or lowess) with a tricube
kernel function for constructing a smooth local linear regression to produce the smooth curve [12,13].
These approaches allow one-to-many matching by calculating the weighted average of the outcome
variable for all control cases and then comparing that weighted average with the outcome of the treated
cases. The difference between two terms provides an estimate of the average treatment effect for the
treated (ATT) which is given by:

ATT= (1/n)∑[Yij − ∑W (i, j)Y0j] (2)

To estimate a treatment effect for each treated case i of treatment subjects, the average of the
outcome Y1i (denoting the outcome for treatment group) was compared with an average of the
outcome Y0i (denoting the outcome for the control group) for matched case j of the control subjects in
the untreated sample. Matches were constructed based on the term of W (i, j), which is defined as the
weight derived from the distance of propensity score P(X) estimated by the binary logistic regression
on covariates X between a treated case i and each untreated case j. The W (i, j) was determined by
non-parametric regression methods. According to Fan [14], local linear regression is expected to have
more promising sampling properties and a higher minimax efficiency compared with kernel matching.
Therefore, the local linear regression estimator was deployed in this study to determine the value
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of W (i, j) and then the average treatment effect for the treated after matching on P(X). In general,
this method uses propensity scores derived from multiple matches to calculate a weighted mean that
is used as a counterfactual. This implies that kernel-based matching using local linear regression
constructs matches using all individuals in the potential control sample in such a way that it takes
more information from those who are close to matches and down-weights more distal observations.
Furthermore, the matching procedure ensures that the treated subjects will be matched to the control
subjects that are most similar to them in terms of characteristics and, therefore, dissimilar subjects and
outliers have no influence on the treatment effects.

Upon completing the matching estimation, sensitivity analyses and balancing test for propensity
score matching were employed in the final step to check the robustness and adequacy of the results.
Particularly, sensitivity analyses of different bandwidth specifications and different trimming schedules
were used to confirm the results and test the sensitivity of findings to variations. In terms of bandwidth
analysis (which is defined as the fraction that is used to determine the number of observations that
falls into a span), three values of 0.01, 0.05, and 0.8 were used. Regarding trimming analysis (which is
considered to impose a common support by dropping treated observations whose propensity scores fall
outside the lower end of the common support region and non-treated observations whose propensity
scores fall outside the upper end of the common support region), three trimming schedules to discard
2%, 5%, and 10% of study observations at the two ends were used [11]. Furthermore, the balancing test
was applied to check whether the propensity score is an adequate balancing score or the overall quality
of estimation. Among the variety of balance tests, the standardized test of differences was employed
in this study. The test was first mentioned by Rosenbaum and Rubin [15] to check the balance between
the treated and control group using the following formula for the standardized differences:

Bbe f ore(X) =
XT − XC√
VT(X)+VC(X)

2

× 100 (3)

Ba f ter(X) =
XTM − XCM√

VT(X)+VC(X)
2

× 100 (4)

where, for each covariate, XT and XC are the sample means for the full treated and control groups,
XTM and XTM are the sample means for the matched treated and control groups, and VT(X) and VC(X)
are the corresponding sample variances. Bbefore(X) and Bafter(X) are defined as the percentage of the
standardized difference or bias between the treated and control groups before and after matching,
respectively. The standardized difference is considered the size of the difference in means of a
conditioning variable Xi between the treated and control group, divided by the square root of the
variances in the original samples, which allows comparisons in the differences in X before and
after matching. They also suggest that the matching quality can be evaluated by a reduction in the
standardized difference. If the differences remain, then either the propensity score model should be
estimated using a different approach, or a different matching algorithm should be used, or both.

The authors believe that using all observations in full panel data may provide the best matching
since subjects with different demographic characteristics may reach the same action or behavior
in hourly electric consumption in the same experimental period while subjects with the same
demographic characteristics may vary in their action or behavior during the pre-experimental period
and during the experimental period.

4.1. Data Description

This study used panel data of hourly electricity consumption among households 14 days before
the experiment and 14 days during the experiment. Table 1 presents the brief definition and source of
measurement of outcome variable, treatment variables, and control variables in the study.
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Regarding the outcome variable of Lneleccon, the logarithm of hourly electric power consumption
was used to estimate the percentage of change in electricity consumption between the control and
treated group.

With respects to treatment variables, the study used four main treatment variables of Treateffect,
Dum_20_elas, Dum_40_elas, and Dum_80_elas to estimate the treatment effects of dynamic pricing
with specific deduction rate on consumer behavior change in electric power consumption.

Table 1. Description of the outcome variable, treatment variables and control variables in the study.

Abbreviation Brief Definition Unit Source

Lneleccon Logarithm of hourly electric power consumption Wh Smart meter

Treatgroup Dummy variable, 1 denotes treated group and 0
denotes control group - -

Withintreat
Dummy variable, 1 denotes experimental period (20th
July to 2nd August) and 0 denotes pre-experimental
period (from 6th July to 19th July)

- -

Treateffect = Withintreat·Treatgroup, 1 denotes the treated group
during experimental period and 0 denotes otherwise - -

Dum_20 20-point deduction day dummy during the
experimental period - -

Dum_20_elas
= Dum_20·Treatgroup, 1 denotes treated group in
20-point deduction days during the experimental
period and 0 denotes otherwise

- -

Dum_40 40-point deduction day dummy during the
experimental period - -

Dum_40_elas
= Dum_40·Treatgroup, 1 denotes treated group in
40-point deduction days during the experimental
period and 0 denotes otherwise

- -

Dum_80 80-point deduction day dummy during the
experimental period - -

Dum_80_elas
= Dum_80·Treatgroup, 1 denotes treated group in
80-point deduction days during the experimental
period and 0 denotes otherwise

- -

Happy-e Happy-e contract dummy (discount after 10 p.m.) - Questionnaire survey

Aircon Number of air-conditioners Unit Questionnaire survey

Refrigerator Number of refrigerators Unit Questionnaire survey

Com_refrigerator Number of commercial refrigerators Unit Questionnaire survey

Wood Wooden house dummy - Questionnaire survey

Member Household members Person Questionnaire survey

Accesstimes Frequency of access to tablet PC Times/hour Smart meter

District_n Regional dummy variables District 1~4 Questionnaire survey

Period_n Hour dummy variables Period 1~7 Questionnaire survey

Wind Hourly mean wind speed m/s Japan Meteorological
Agency

Cool_d Cooling degree hour Degree Japan Meteorological
Agency

Temp Hourly mean temperature Degree Japan Meteorological
Agency

In terms of control variables, some demographic variables associated with the number of people
in family, the number of air conditioners, the number of refrigerators and commercial refrigerators
were expected to have positive impacts on electric power consumption. In addition, electric power
consumption was expected to be more when households are living in wooden houses. Moreover,
the variable related to real-time feedback (i.e., frequency of access to tablet PCs) was hypothesized
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to have a negative impact on electric power consumption. This means that the more a household
accessed the tablet PCs to check the real-time feedback information and real consumption, the more
energy they saved. Some other variables refer to weather conditions, namely the cooling degree hour,
hourly mean wind speed, and hourly mean temperature, that were also expected to affect consumers’
electric power consumption.

The statistical descriptions of the hourly electric power consumption, the frequency of access, and
demographic characteristics between control and treated groups in the study are shown in Table 2.

Table 2. Descriptive statistics of experimental data.

Variables
Control Group Treated Group

Observations Mean S. D.a Observations Mean S. D.

Hourly electric power consumption 14,589 783.0077 722.8344 18,761 615.5162 438.9045
Happy-e contract 22 0.2713 0.4447 28 0.3932 0.4885
Air conditioners 21 2.6217 0.6513 28 2.3572 0.6105

Refrigerators 20 1.3498 0.5725 27 1.3338 0.5447
Commercial refrigerators 21 0.5253 0.8527 28 0.2863 0.5253

Wooden house 19 0.8427 0.3641 28 0.7858 0.4103
Household members 22 2.5457 1.0332 27 2.9261 1.1202
Frequency of access 14,742 0.0016 0.0473 18,775 0.0180 0.1655

Note: a Standard deviation.

To estimate the differences between the control and treated participants, the difference test in
means was used. The p-value of t-statistics in Table 3 shows that there is a statistically significant
difference between the control and treated participants in major variable of hourly electric power
consumption and all observable variables at the either significant level of 0.01 or 0.05. More specifically,
the average hourly consumption of the control participants is significantly higher than the treated
participants. The numbers of air conditioners, refrigerators, and commercial refrigerators used by the
control participants are substantially more than those used by the treated participants. Additionally,
the control participants tend to live in wooden houses compared to the treated participants. On the
other hand, the number of household members in the control group and the frequency of access to
tablet PCs are clearly smaller than those in the treated group. Furthermore, the ownership of a happy-e
contract (discount after 22:00) within the control group is significantly smaller than that of the treated
group. Consequently, these differences imply that there is a clear existence of selection bias in the
experimental design. The employment of the propensity score analysis approach is therefore necessary
to mitigate the problem of selection bias in estimating the effects of treatment in the study.

Table 3. Differences between the control and treatment groups.

Variables
Difference

(Control vs. Treatment)

p-Value

H: Diff < 0 H: Diff 6= 0 H: Diff > 0

Hourly electric power consumption 167.4915 (6.4073) 1.0000 0.0000 0.0000
Happy-e contract −0.1219 (0.0052) 0.0000 0.0000 1.0000
Air conditioners 0.2645 (0.0070) 1.0000 0.0000 0.0000

Refrigerators 0.0160 (0.0063) 0.9941 0.0118 0.0059
Commercial refrigerators 0.2389 (0.0076) 1.0000 0.0000 0.0000

Wooden house 0.0569 (0.0045) 1.0000 0.0000 0.0000
Household members −0.3804 (0.0120) 0.0000 0.0000 1.0000
Frequency of access −0.0164 (0.0014) 0.0000 0.0000 1.0000

Note: Standard errors in parentheses.

4.2. Difference Test in Means among Treatment Variables

In term of the treatment variable of Treateffect, the result in Table 4 reports that the average
difference in the hourly electric power consumption between the treated participants during the
experimental period and of both during the pre-experimental period and the control participants is
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statistically positive at the significant level of 0.01. This means that the treated participants’ hourly
electric power consumption during the experimental period is 9.5% lower than theirs during the
pre-experimental period and the control participants’ consumption.

Table 4. Difference test of means in logarithm of hourly consumption by Treateffect variable.

Treateffect 0
(n=23,972)

Treateffect 1
(n= 9378)

Difference (0 vs. 1)
p-Value

Mean Mean H: Diff < 0 H: Diff 6= 0 H: Diff > 0

6.2858 6.1909 0.0949 (0.0090) 1.0000 0.0000 0.0000

Note: Standard errors in parentheses.

In terms of the effects of dynamic pricing with three different rates of deduction point, the result in
Table 5 shows that the average difference in the hourly electric power consumption between the treated
participants in 20-point deduction days during the experimental period and both themselves during
the pre-experimental period and the control participants is statistically positive at the significant level
of 0.01. This implies that the treated participants’ hourly electric power consumption in the 20-point
deduction days during the experimental period is less than theirs during the pre-experimental period
as well as the control participants’ consumption by approximately 4%.

Table 5. Difference test of means in logarithm of hourly consumption by Dum_20_elas variable.

Dum_20_elas 0
(n=18,775)

Dum_20_elas 1
(n= 2680)

Difference (0 vs. 1)
p-Value

Mean Mean H: Diff < 0 H: Diff 6= 0 H: Diff > 0

6.2568 6.2173 0.0395 (0.0152) 0.9953 0.0093 0.0047

Note: Standard errors in parentheses.

Similarly, the result inTable 6 indicates that the average hourly electric power consumption of the
treated participants in 40-point deduction days during the experimental period is significantly lower than
that of themselves during the pre-experimental period as well as that of the control participants by 7%.

Table 6. Difference test of means in logarithm of hourly consumption by Dum_40_elas variable.

Dum_40_elas 0
(n= 18,782)

Dum_40_elas 1
(n= 2677)

Difference (0 vs. 1)
p-Value

Mean Mean H: Diff < 0 H: Diff 6= 0 H: Diff > 0

6.2538 6.1836 0.0702 (0.0152) 1.0000 0.0000 0.0000

Note: Standard errors in parentheses.

The result in Table 7 presents that the average hourly electric power consumption of the treated
participants in 80-point deduction day during the experimental period is significantly lower than that
of themselves during the pre-experimental period as well as that of the control participants by 8.5%.

Table 7. Difference test of means in logarithm of hourly consumption by Dum_80_elas variable.

Dum_80_elas 0
(n= 19,831)

Dum_80_elas 1
(n=4021)

Difference (0 vs. 1)
p-Value

Mean Mean H: Diff < 0 H: Diff 6= 0 H: Diff > 0

6.2632 6.1781 0.0851 (0.0128) 1.0000 0.0000 0.0000

Note: Standard errors in parentheses.

According to the results of the difference test in means, the incentive of dynamic pricing via
real-time feedback with specific deduction rate demonstrates significant impacts on participating
consumers’ energy-saving or reduction of their electric power consumption.
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5. Empirical Results and Discussion

5.1. Binary Logistic Models

To reduce the problem of selection bias in the field experiment, the propensity score analysis with
local linear matching was employed to estimate the treatment effects of dynamic pricing on consumer
behavior in electric power consumption.

The binary logistic models are used to provide propensity score estimates in the first step. Table 8
shows the results of the binary logistic models for four major treatment variables.

Table 8. Binary logistic models for propensity score estimates.

Variable
Model 1 (Treateffect) Model 2 (Dum_20_elas) Model 3 (Dum_40_elas) Model 4 (Dum_80_elas)

Coefficient Marginal
Effects Coefficient Marginal

Effects Coefficient Marginal
Effects Coefficient Marginal

Effects

happy-e 0.3328 ***
(0.0293) 0.0618 *** 0.2560 ***

(0.0484) 0.0267 *** 0.2503 ***
(0.0480) 0.0266 *** 0.2730 ***

(0.0409) 0.0360 ***

aircon −0.2716 ***
(0.0226) −0.0504 *** −0.2176 ***

(0.0374) −0.0227 *** −0.2188 ***
(0.0370) −0.0233 *** −0.2321 ***

(0.0316) −0.0306 ***

refrigerator −0.1072 ***
(0.0279) −0.0199 *** −0.0966 **

(0.0459) −0.0101 *** −0.0883 *
(0.0455) -0.0094 * −0.0942 ***

(0.0389) −0.0124 ***

com_refrigerator −0.2739 ***
(0.0261) −0.0508 *** −0.2202 ***

(0.0439) −0.0230 *** −0.2188 ***
(0.0435) −0.0233 *** −0.2383 ***

(0.0370) −0.0314 ***

wood −0.7220 ***
(0.0404) −0.1340 *** −0.5681(0.0660) −0.0593 −0.5529 ***

(0.0654) −0.0589 *** −0.6081 ***
(0.0559) −0.0803 ***

member 0.3060 ***
(0.0145) 0.0568 *** 0.2514 ***

(0.0245) 0.0263 *** 0.2485 ***
(0.0243) 0.0265 *** 0.2648 ***

(0.0206) 0.0349 ***

accesstimes 2.0016 ***
(0.1466) 0.3716 *** 1.6018 ***

(0.1887) 0.1673 *** 1.8024 ***
(0.1872) 0.1919 *** 1.8812 ***

(0.1713) 0.2483 ***

district1 (South) 0.6538 ***
(0.0546) 0.1214 *** 0.5032 ***

(0.0917) 0.0526 *** 0.4957 ***
(0.0910) 0.0528 *** 0.5506 ***

(0.0773) 0.0727 ***

district2
(Central)

0.3962 ***
(0.0486) 0.0735 *** 0.3054 ***

(0.0818) 0.0319 *** 0.3144 ***
(0.0811) 0.0335 *** 0.3455 ***

(0.0689) 0.0456 ***

district3 (North) 0.3314 ***
(0.0529) 0.0615 *** 0.2616 ***

(0.0897) 0.0273 *** 0.2711 ***
(0.0890) 0.0289 *** 0.2855 ***

(0.0755) 0.0377 ***

district4 (East) 0.7444 ***
(0.0515) 0.1382 *** 0.5949 ***

(0.0858) 0.0621 *** 0.5820 ***
(0.0851) 0.0620 *** 0.6405 ***

(0.0725) 0.0845 ***

period1 (0–3
a.m.)

0.1413 ***
(0.0542) 0.0262 *** 0.0971

(0.0902) 0.0101 0.0038
(0.0894) 0.0004 0.0684

(0.0761) 0.0090

period2 (3–6
a.m.)

0.3114 ***
(0.0558) 0.0578 *** 0.3108 ***

(0.0926) 0.0325 *** 0.0413(0.0916) 0.0044 0.3746 ***
(0.0788) 0.0494 ***

period3 (6–9
a.m.)

−0.4632 ***
(0.0565) −0.0860 *** −0.6736 ***

(0.0954) −0.0704 *** −0.6515 ***
(0.0951) −0.0694 *** −0.5733 ***

(0.0794) −0.0757 ***

period4 (9
a.m.–12 p.m.)

−1.3135 ***
(0.0666) −0.243 8*** −1.7584 ***

(0.1126) −0.1837 *** −1.7074 ***
(0.1163) −0.1818 *** −1.4801 ***

(0.0931) −0.1953 ***

period5 (12–15
p.m.)

−1.5480 ***
(0.0695) −0.2874 *** −1.9676 ***

(0.1145) −0.2055 *** −1.8591 ***
(0.1167) −0.1979 *** −1.7313 ***

(0.0988) −0.2285 ***

period6 (15–18
p.m.)

−1.1691 ***
(0.0634) −0.2170 *** −1.5705 ***

(0.1065) −0.1640 *** −1.4415 ***
(0.1071) −0.1535 *** −1.3223 ***

(0.0899) −0.1745 ***

period7 (18–21
p.m.)

−0.2920 ***
(0.0545) −0.0542 *** −0.3953 ***

(0.0906) −0.0413 *** −0.2956 ***
(0.0900) −0.0315 *** −0.3664 ***

(0.0764) −0.0484 ***

wind 0.2505 ***
(0.0114) 0.0465 *** 0.2805 ***

(0.0168) 0.0293 *** 0.2163 ***
(0.0179) 0.0230 *** 0.3255 ***

(0.0157) 0.0430 ***

cool_d 0.0092
(0.0522) 0.0017 −0.3293 ***

(0.1143) −0.0344 *** 0.8315 ***
(0.0668) 0.0885 *** −1.0513 ***

(0.1188) −0.1387 ***

temp 0.3054 ***
(0.0483) 0.0567 *** 0.7554 ***

(0.1073) 0.0789 *** −0.3796 ***
(0.0578) −0.0404 *** 1.3660 ***

(0.1154) 0.1803 ***

constant −8.9565 ***
(1.1551) - −20.8767 ***

(2.5691) - 6.3469 ***
(1.3769) - −35.0739 ***

(2.7451) -

Number of
observations 29,446 - 18,916 - 18,915 - 21,027 -

LR chi2 (21) 3280.93 - 1507.21 - 1164.17 - 1996.10 -

Pseudo R2 0.0917 - 0.1022 - 0.0791 - 0.1014 -

Probability >
chi2 0.0000 - 0.0000 - 0.0000 - 0.0000 -

Note: Standard error in the parentheses. *, **, and *** mean significance with confidence interval at 90%, 95%,
and 99%, respectively.
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According to household characteristics, the variables of air conditioners, refrigerators, and
commercial refrigerators are negatively significant in the binary logistic models. This means that the
control households often have more air conditioners, refrigerators, and commercial refrigerators than
the treated group. Additionally, the control households are more likely to live in wooden houses than
the treated group.

On the other hand, the treated households are more likely to have a happy-e contract with Kansai
Electric Power Company than the control group.

The frequency of access to tablet PCs has a positive significance. For instance, the treated
households during the experimental period have higher frequency of access to tablet PCs than
themselves during the pre-experimental period and the control group by 37.16% (Model 1 in Table 8).
According to surveyed data, the treated group are more conscious of energy saving than the control
group, thus the frequency of access to tablet PCs is different between two groups (Figure 6). Particularly,
the treatment group increased the frequency of access to tablet PCs since they were more conscious of
energy saving. Meanwhile, the control group increased the frequency of access to tablet PCs because
they tended to think about the large amount of electricity consumption.
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5.2. The Average Treatment Effects for the Treated by Propensity Score Matching

After propensity scores are estimated, the matching algorithm of local linear regression is chosen
for the estimation of treatment effects by calculating the difference between the weighted average of
the outcome variable for treated subjects and the weighted average of the outcome variable for all
control subjects. Table 9 shows the estimated average treatment effects for the treated group (ATT) on
electric power consumption.

More specifically, the result of the point estimate of the ATT of dynamic pricing (based on
Treateffect variable) on electric power consumption (Table 9) is −0.0957, which falls into a 95% bootstrap
confidence interval bounded by −0.1178 and −0.0774. That means there is a significant difference on
electric power consumption between treated participants and others. More specifically, the treated
participants tended to reduce their electric power consumption during the experimental period by
9.6% compared to theirs during the pre-experimental period as well as the control participants. This
result is consistent with the result from Thoa et al. [4] which pointed out the dynamic pricing had a
significant effect on constraining the energy demand of consumers by reducing their electric power
consumption by 13.7% in the same field experiment on Nushima Island in the summer of 2015 and the
winter of 2016 through a panel random analysis (i.e., the difference in differences method).
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Regarding consumption response among various deduction rates, the point estimates of the ATT
of the three specific deduction rates on electric power consumption (Table 9) fall into a 95% bootstrap
confidence interval. This means that the incentive of dynamic pricing with the three specific deduction
rates is significantly effective in reducing consumers’ electric power consumption. Conversely, the
deduction rates during this experimental period have the same effects as tariffs, which can encourage
an energy-saving effect. More specifically, the higher the tariff (i.e., deduction rate) is, the less electric
power the household consumes. In terms of the incentive of the 20-point-deduction rate, treated
households are more likely to reduce their consumption by 5.0% during the experimental period
than theirs during the pre-experimental period as well as the control households. With respect to the
incentive of the 40-point-deduction rate, treated households tend to reduce their consumption by 7.2%
during the experimental period than theirs during the pre-experimental period as well as the control
households. Regarding the 80-point-deduction rate, treated households are also more likely to reduce
their consumption, by 9.8%, during the experimental period than theirs during the pre-experimental
period as well as the control households. This result is in line with the theoretical framework and that
reported by Shimada et al. [16], which demonstrated that there was a positive correlation between the
energy-saving effect and the deduction rate in the South District of Nushima Island, Japan when the
frequency of access to tablet PCs was double the average or more. On the other hand, Thoa et al. [4]
showed the opposite relation between the deduction rate and energy-saving effect, which might be
caused by the experiment period difference.

Table 9. Estimated average treatment effects for the treated electric power consumption: Propensity
score analysis with local linear regression.

Group and Comparison Dynamic Pricing
Effect (Treateffect)

Deduction Rate of
20-point (Dum_20_elas)

Deduction Rate of
40-point (Dum_40_elas)

Deduction Rate of
80-point (Dum_80_elas)

Treated group 6.2393 6.2687 6.2331 6.2240
Control group 6.3307 6.3024 6.2993 6.3091
Unadjusted mean
difference (=treated −
control)

−0.0913 ** −0.0338 ** −0.0662 ** −0.0851 **

Adjusted mean
difference

DID point estimate (bias
correct 95% confidence
interval)

−0.0957 ** (−0.1178;
−0.0774)

−0.0494 ** (−0.0776;
−0.0211)

−0.0739 ** (−0.1069;
−0.0409)

−0.0980 ** (−0.1195;
−0.0766)

Changing bandwidth

Small bandwidth = 0.01 −0.0951 ** (−0.1154;
−0.0748)

−0.0529 ** (−0.0870;
−0.0189)

−0.0747 ** (−0.1064;
−0.0430)

−0.0976 ** (−0.1222;
−0.0730)

Small bandwidth = 0.05 −0.0951 ** (−0.1127;
−0.0776)

−0.0496 ** (−0.0781;
−0.0212)

−0.0738 ** (−0.1048;
−0.0428)

−0.0984 ** (−0.1278;
−0.0690)

Large bandwidth = 0.8 −0.0969 ** (−0.1164;
−0.0775)

−0.0470 ** (−0.0752;
−0.0019)

−0.0773 ** (−0.1040;
−0.0505)

−0.0925 ** (−0.1165;
−0.0685)

Trimming

2% −0.0966 ** (−0.1135;
−0.0797)

−0.0490 ** (−0.0820;
−0.0160)

−0.0749 ** (−0.1029;
−0.0469)

−0.0982 ** (−0.1228;
−0.0735)

5% −0.0986 ** (−0.1168;
−0.0804)

−0.0534 ** (−0.0788;
−0.0279)

−0.0761 ** (−0.1104;
−0.0417)

−0.0937 ** (−0.1215;
−0.0658)

10% −0.1059 ** (−0.1232;
−0.0886)

−0.0607 ** (−0.0905;
−0.0309)

−0.0865 ** (−0.1171;
−0.0559)

−0.1097 ** (−0.1378;
−0.0816)

Note: ** The 95% confidence interval does not include a zero, or p < 0.05 for a two-tailed test.

The values of adjusted mean difference (in Table 9) from the propensity score analysis with local
linear matching (i.e., the values of adjusted mean difference in Table 9) produce the same substantive
findings as both of the values from the difference test in means (Tables 4–7) and the values of unadjusted
mean differences (in Table 9) for four treatment variables of Treateffect, Dum_20_elas, Dum_40_elas,
and Dum_80_elas. Although the estimation of propensity score analysis with local linear matching is
slightly larger, all three estimators find the treatment effects of dynamic pricing statistically significant
and thus lead to a consistent conclusion regarding research hypotheses. This also implies that the
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propensity score analysis approach with non-parametric regression is proper for estimating the average
treatment effects of the dynamic pricing incentive on electric power consumption.

The positive relation between the dynamic pricing with specific deduction rate and the
energy-saving effect is shown in Figure 7.
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Figure 7. Energy-saving effect change according to deduction rate.

In practice, in terms of the dynamic pricing incentive with specific deduction rates, the majority
of participants tended to check and calculate the remaining points every day (17.9%) or sometimes
(37.9%) (Figure 8). This may lead to some activities related to energy-saving to manage electric power
consumption among participants. Particularly, many participating households (46.7%) preferred to
reduce their electric power consumption on high-point rate days. Others (26.7%) planned to shift their
work and actions related to high electricity consumption to low-point rate days (Figure 9).
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5.3. Sensitivity Analyses and Balancing Test

5.3.1. Sensitivity Analyses

Finally, sensitivity analyses of different bandwidth specifications and different trimming
schedules were employed to confirm the results of the study. In terms of specific bandwidth levels
(0.01, 0.05, and 0.8), all analyses show a 95% bootstrap confidence interval bounded by non-zero
difference-in-differences estimates. Similarly, with respects to specific trimming schedules (by dropping
2%, 5%, and 10% of treated observations whose propensity scores are higher than the maximum or
less than the minimum propensity scores of the non-treated observation), all analyses depict a 95%
bootstrap confidence interval bounded by non-zero difference-in-differences estimates. The two
sensitivity analyses imply that meaningful effects are reasonably unlikely to occur by chance as
indicated by a 95% confidence interval that does not include a zero. These also confirm the importance
of analyzing the behavioral change in electric power consumption between the control and treated
groups in different periods of the experiment using a corrective procedure such as propensity score
analysis with non-parametric regression (e.g., local linear regression).

5.3.2. Balancing Test

Regarding the balancing test, the test of standardized differences is used to illustrate the reduction
in difference or bias of each covariate before and after matching for four propensity score models
(Tables A1–A4 in Appendix A).

Before matching, there are significant differences between the treated and control groups because
the p-value of most covariates is less than the significant level of 0.01, 0.05, or 0.10. This means that the
null hypothesis of the mean value of two groups significantly differ before matching.

These differences are considerably reduced after matching with many of covariates receiving
the p-value of the t-test larger than the significant level of 0.01, 0.05, or 0.10. This means that the null
hypothesis of the mean value of each covariate being the same between the treated and control group
after matching cannot be rejected. However, some other covariate differences are not eliminated.
More specifically, in term of the propensity score model of Treateffect variable, the differences
of some covariates—aircon, refrigerator, com_refrigerator, accesstimes, period1, period3, period5,
temp, and cool_d—are statistically significant (Table A1 in Appendix A). Regarding the propensity
score model of the Dum_20_elas variable, the differences of a few covariates—period1, temp, and
cool_d—are statistically significant (Table A2 in Appendix A). Similarly, the differences of a few
covariates—com_refrigerator, period5, and temp—are statistically significant in the propensity score
model of the Dum_40_elas variable (Table A3 in Appendix A). In addition, the differences of a few
covariates—accesstimes, wind, temp, and cool_d—are statistically significant in the propensity score
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model of the Dum_80_elas variable (Table A4 in Appendix A). Nevertheless, the bias was already
rather small before matching.

In this sense, the propensity score analysis may provide proper propensity score models and
adequate balancing scores. Conversely, this confirms that the overall quality of estimation and
matching are sufficiently robust because of a substantial reduction in bias. This suggests that the
full panel data with large observations can provide enough comparators for estimating the average
treatment effects via the propensity score analysis with local linear matching.

In summary, the monetary incentive of dynamic pricing via real-time feedback was found to
be effective in controlling electric power consumption. Particularly, the treatment group tended to
reduce their electric power consumption during the experimental period. Furthermore, the higher
the disincentive or tariff (i.e., point deduction rates) was, the less electric power treated participants
consumed during the experimental period. It is worth noting that the analysis using the propensity
score approach with local linear matching is accurate and robust in terms of handling the measurement
errors by eliminating temporarily invariant sources of selection bias.

6. Conclusions and Policy Implications

The study estimated the effects of dynamic pricing via real-time information feedback on electric
consumer behavior on a remote island of Japan and explored the potential utility of solar resources as
a basis for energy policy.

Using a panel data of 50 households in the pre-experimental and experimental period, propensity
score analysis with non-parametric regression (i.e., local linear regression) was employed to measure
the treatment effects of the monetary incentive of dynamic pricing via real-time feedback on hourly
electric power consumption. The results obtained from the propensity score analysis approach reveal
that the incentive of dynamic pricing had statistically significant effects on the reduction of consumers’
electric power consumption. More specifically, treated participants tended to reduce their electric
power consumption during the experimental period by 9.6% compared to both themselves during the
pre-experimental period and the control participants.

Furthermore, the results confirmed that the higher the tariff (e.g., point deduction rates) is,
the less electric power the household consumes. Particularly, in terms of the incentive of the
20-point-deduction rate, treated households are more likely to reduce their consumption, by 5.0%,
during the experimental period than both themselves during the pre-experimental period and the
control households. With respect to the incentive of the 40-point-deduction rate, treated households
tend to reduce their consumption by 7.2% during the experimental period compared to themselves
during the pre-experimental period and the control households. Regarding the 80-point-deduction rate,
treated households are also more likely to reduce their consumption, by 9.8%, during the experimental
period than themselves during the pre-experimental period and the control households.

In addition, the propensity score analysis approach with local linear matching has been reported
to precisely estimate the treatment effects of dynamic pricing with specific deduction rates when using
panel data with non-randomization due to the utility of information from all control participants for
matching with treated participants. These major results are also consistent with previously mentioned
literature that show dynamic pricing has substantial effects on consumer behavior change by reducing
their electric power consumption.

The results of this study suggest the policy implications of a demand management system to
accommodate the solar energy output fluctuation by shifting consumption to days having more solar
radiation and reducing electric power consumption at the same time. The limitations of this study
include a relatively short experiment period and a small sample size. An additional larger and longer
experiment is required to accurately depict the real-life behavior of the consumers.
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Appendix A

Table A1. Result of balancing test of propensity score model of Treateffect variable.

Variables Sample
Mean Percent

Reduction Bias

t-Test

Treated Control % Bias t p-Value

happy-e Unmatched 0.4233 0.3396 17.30 13.66 0.0000
Matched 0.4233 0.4216 0.40 97.90 0.23 0.8180

aircon
Unmatched 2.3467 2.4667 −18.70 −14.43 0.0000
Matched 2.3467 2.3093 5.80 68.80 *** 3.64 0.0000

refrigerator Unmatched 1.3466 1.3407 1.10 0.82 0.4120
Matched 1.3466 1.3318 2.60 −151.10 * 1.75 0.0800

com_refrigerator Unmatched 0.3085 0.3909 −12.90 −9.51 0.0000
Matched 0.3085 0.2678 6.30 50.70 *** 4.63 0.0000

wood
Unmatched 0.7693 0.8388 −17.60 −14.14 0.0000
Matched 0.7693 0.7740 −1.20 93.20 −0.74 0.4590

member
Unmatched 3.0001 2.8123 17.50 13.65 0.0000
Matched 3.0001 2.9768 2.2 87.60 1.45 0.1480

accesstimes
Unmatched 0.0331 0.0024 18.70 18.18 0.0000
Matched 0.0331 0.0250 4.90 73.80 ** 2.46 0.0140

district1
Unmatched 0.2307 0.1939 9.00 7.13 0.0000
Matched 0.2307 0.2295 0.30 96.90 0.18 0.8570

district2
Unmatched 0.2308 0.2273 0.80 0.65 0.5140
Matched 0.2308 0.2371 −1.50 −80.30 −0.98 0.3250

district3
Unmatched 0.1928 0.2379 −11.00 −8.47 0.0000
Matched 0.1928 0.2012 −2.00 81.40 −1.39 0.1640

district4
Unmatched 0.2308 0.1946 8.90 7.02 0.0000
Matched 0.2308 0.2294 0.30 96.20 0.22 0.8290

period1 Unmatched 0.1252 0.1259 −0.20 −0.17 0.8620
Matched 0.1252 0.1352 −3.00 −1258.70 ** −1.96 0.0500

period2 Unmatched 0.1252 0.1262 −0.30 −0.23 0.8180
Matched 0.1252 0.1283 −0.90 −216.90 −0.61 0.5390

period3 Unmatched 0.1251 0.1261 −0.30 −0.25 0.8050
Matched 0.1251 0.1358 −3.20 −922.30 ** −2.09 0.0360

period4 Unmatched 0.1249 0.1240 0.20 0.19 0.8460
Matched 0.1249 0.1168 2.40 −883.80 1.63 0.1040

period5 Unmatched 0.1249 0.1236 0.40 0.31 0.7570
Matched 0.1249 0.1152 2.90 −640.10 ** 1.96 0.0500

period6 Unmatched 0.1249 0.1242 0.20 0.15 0.8830
Matched 0.1249 0.1191 1.70 −822.40 1.16 0.2470

period7 Unmatched 0.1249 0.1260 −0.40 −0.28 0.7810
Matched 0.1249 0.1200 1.50 −309.70 0.97 0.3320

wind
Unmatched 2.3529 1.9699 29.40 22.67 0.0000
Matched 2.3529 2.3515 0.10 99.60 0.07 0.9440

cool_d
Unmatched 2.7000 2.1364 28.00 22.24 0.0000
Matched 2.7000 2.6127 4.30 84.50 *** 2.84 0.0040

temp Unmatched 26.6260 25.9960 29.20 22.96 0.0000
Matched 26.6260 26.5310 4.40 85.00 *** 2.91 0.0040

Note: *, **, and *** mean significance with confidence interval at 90%, 95%, and 99%, respectively.
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Table A2. Result of balancing test of propensity score model of Dum_20_elas variable.

Variables Sample Mean Percent
Reduction Bias

t-Test

Treated Control % Bias t p-Value

happy-e Unmatched 0.4234 0.3548 14.10 6.63 0.0000
Matched 0.4234 0.4226 0.20 98.80 0.06 0.9540

aircon
Unmatched 2.3467 2.4446 −15.40 −6.98 0.0000
Matched 2.3467 2.3323 2.30 85.20 0.76 0.4450

refrigerator Unmatched 1.3467 1.3414 1.00 0.44 0.6590
Matched 1.3467 1.3579 −2.00 −110.50 −0.7 0.4810

com_refrigerator Unmatched 0.3082 0.3748 −10.70 −4.56 0.0000
Matched 0.3082 0.2913 2.70 74.70 1.04 0.3000

wood
Unmatched 0.7693 0.8259 −14.10 −6.84 0.0000
Matched 0.7693 0.7568 3.10 78.00 1.03 0.3020

member
Unmatched 3.0008 2.8470 14.30 6.63 0.0000
Matched 3.0008 3.0064 −0.50 96.30 −0.19 0.8530

accesstimes
Unmatched 0.0321 0.0027 16.90 13.03 0.0000
Matched 0.0321 0.0249 4.10 75.40 1.09 0.2750

district1
Unmatched 0.2307 0.2007 7.30 3.47 0.0010
Matched 0.2307 0.2496 −4.60 37.30 −1.56 0.1190

district2
Unmatched 0.2299 0.2276 0.50 0.25 0.7990
Matched 0.2299 0.2332 −0.80 −40.00 −0.27 0.7880

district3
Unmatched 0.1926 0.2303 −9.20 −4.2 0.0000
Matched 0.1926 0.1782 3.50 61.70 1.31 0.1900

district4
Unmatched 0.2311 0.2012 7.30 3.45 0.0010
Matched 0.2311 0.2227 2.00 71.90 0.71 0.4780

period1 Unmatched 0.1252 0.1256 −0.10 −0.06 0.9550
Matched 0.1252 0.1425 −5.20 −4173.10 * −1.79 0.0740

period2 Unmatched 0.1252 0.1260 −0.30 −0.12 0.9070
Matched 0.1252 0.1336 −2.50 −912.50 −0.89 0.3760

period3 Unmatched 0.1248 0.1259 −0.30 −0.16 0.8760
Matched 0.1248 0.1332 −2.50 −658.40 −0.89 0.3750

period4 Unmatched 0.1252 0.1246 0.20 0.09 0.9290
Matched 0.1252 0.1108 4.40 −2168.70 1.58 0.1140

period5 Unmatched 0.1248 0.1241 0.20 0.09 0.9250
Matched 0.1248 0.1188 1.80 −806.60 0.65 0.5160

period6 Unmatched 0.1244 0.1249 −0.10 −0.07 0.9470
Matched 0.1244 0.1164 2.4 −1600.90 0.87 0.3840

period7 Unmatched 0.1252 0.1258 −0.20 −0.08 0.9340
Matched 0.1252 0.1200 1.60 −788.00 0.56 0.5750

wind
Unmatched 2.4347 1.8814 37.80 18.23 0.0000
Matched 2.4347 2.4308 0.30 99.30 0.09 0.9280

cool_d
Unmatched 2.7865 2.0104 40.70 19.15 0.0000
Matched 2.7865 2.6690 6.20 84.90 ** 2.17 0.0300

temp Unmatched 26.7360 25.8550 43.00 19.78 0.0000
Matched 26.7360 26.6140 6.00 86.10 ** 2.16 0.0310

Note: * and ** mean significance with confidence interval at 90%and 95%, respectively.
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Table A3. Result of balancing test of propensity score model of Dum_40_elas variable.

Variables Sample Mean Percent
Reduction Bias

t-Test

Treated Control % Bias t p-Value

happy-e Unmatched 0.4238 0.3553 14.10 6.62 0.0000
Matched 0.4238 0.4246 −0.20 98.80 −0.06 0.9540

aircon
Unmatched 2.3466 2.4441 −15.30 −6.95 0.0000
Matched 2.3466 2.3185 4.40 71.10 1.49 0.1360

refrigerator Unmatched 1.3466 1.3415 0.90 0.43 0.6710
Matched 1.3466 1.3317 2.70 −188.80 0.95 0.3420

com_refrigerator Unmatched 0.3088 0.3747 −10.60 −4.51 0.0000
Matched 0.3088 0.2774 5.00 52.40* 1.94 0.0530

wood
Unmatched 0.7700 0.8259 −13.90 −6.74 0.0000
Matched 0.7700 0.7696 0.10 99.30 0.03 0.9730

member
Unmatched 3.0004 2.8468 14.30 6.61 0.0000
Matched 3.0004 2.9891 1.00 92.70 0.38 0.7080

accesstimes
Unmatched 0.0306 0.0028 18.80 13.75 0.0000
Matched 0.0306 0.0249 3.80 79.70 0.99 0.3230

district1
Unmatched 0.2300 0.2007 7.10 3.37 0.0010
Matched 0.2300 0.2376 −1.90 73.90 −0.64 0.5250

district2
Unmatched 0.2312 0.2276 0.90 0.4 0.6880
Matched 0.2312 0.2376 −1.50 −77.30 −0.54 0.5920

district3
Unmatched 0.1930 0.2301 −9.10 −4.13 0.0000
Matched 0.1930 0.1998 −1.70 81.60 −0.61 0.5440

district4
Unmatched 0.2308 0.2014 7.10 3.38 0.0010
Matched 0.2308 0.2163 3.50 50.70 1.23 0.2210

period1 Unmatched 0.1251 0.1257 −0.20 −0.09 0.9290
Matched 0.1251 0.1275 −0.70 −278.10 −0.26 0.7980

period2 Unmatched 0.1251 0.1260 −0.30 −0.13 0.8950
Matched 0.1251 0.1319 −2.10 −624.00 −0.72 0.4710

period3 Unmatched 0.1255 0.1259 −0.10 −0.06 0.9530
Matched 0.1255 0.1275 −0.60 −379.10 −0.21 0.8310

period4 Unmatched 0.1247 0.1247 0.00 0.00 1.0000
Matched 0.1247 0.1267 −0.60 −8,200,000.00 −0.21 0.8310

period5 Unmatched 0.1247 0.1240 0.20 0.09 0.9240
Matched 0.1247 0.1066 5.50 −2588.00** 2.00 0.0460

period6 Unmatched 0.1255 0.1247 0.20 0.11 0.9100
Matched 0.1255 0.1230 0.70 −200.00 0.26 0.7970

period7 Unmatched 0.1247 0.1259 −0.40 −0.18 0.8570
Matched 0.1247 0.1166 2.40 −525.80 0.87 0.3840

wind
Unmatched 2.2466 1.8614 30.10 13.42 0.0000
Matched 2.2466 2.1922 4.30 85.90 1.51 0.1320

cool_d
Unmatched 2.6571 1.9957 34.10 16.22 0.0000
Matched 2.6571 2.5767 4.10 87.90 1.40 0.1610

temp Unmatched 26.5030 25.8300 31.10 14.82 0.0000
Matched 26.5030 26.3920 5.20 83.40* 1.73 0.0840

Note: *and ** mean significance with confidence interval at 90%and 95%, respectively.
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Table A4. Result of balancing test of propensity score model of Dum_80_elas variable.

Variables Sample Mean Percent
Reduction Bias

t-Test

Treated Control % Bias t p-Value

happy-e Unmatched 0.4230 0.3512 14.80 8.28 0.0000
Matched 0.4230 0.4265 −0.70 95.20 −0.30 0.7610

aircon
Unmatched 2.3467 2.4499 −16.20 −8.77 0.0000
Matched 2.3467 2.3258 3.30 79.80 1.35 0.1760

refrigerator Unmatched 1.3465 1.3411 1.00 0.53 0.5960
Matched 1.3465 1.3395 1.20 −29.20 0.53 0.5940

com_refrigerator Unmatched 0.3084 0.3784 −11.10 −5.71 0.0000
Matched 0.3084 0.2999 1.40 87.80 0.64 0.5250

wood
Unmatched 0.7689 0.8291 −15.00 −8.65 0.0000
Matched 0.7689 0.7762 −1.80 88.00 −0.75 0.4560

member
Unmatched 2.9995 2.8382 15.00 8.28 0.0000
Matched 2.9995 3.0067 −0.70 95.50 −0.29 0.7710

accesstimes
Unmatched 0.0353 0.0026 19.50 16.19 0.0000
Matched 0.0353 0.0206 8.70 55.10 *** 2.97 0.0030

district1
Unmatched 0.2311 0.1990 7.80 4.41 0.0000
Matched 0.2311 0.2305 0.10 98.30 0.05 0.9560

district2
Unmatched 0.2311 0.2275 0.90 0.48 0.6340
Matched 0.2311 0.2268 1.00 −18.90 0.44 0.6600

district3
Unmatched 0.1928 0.2323 −9.70 −5.25 0.0000
Matched 0.1928 0.2035 −2.60 72.90 −1.16 0.2460

district4
Unmatched 0.2305 0.1997 7.50 4.23 0.0000
Matched 0.2305 0.2174 3.20 57.50 1.36 0.1740

period1 Unmatched 0.1253 0.1257 −0.10 −0.06 0.9540
Matched 0.1253 0.1151 3.10 −2843.60 1.35 0.1760

period2 Unmatched 0.1253 0.1259 −0.20 −0.11 0.9150
Matched 0.1253 0.1261 −0.20 −26.20 −0.10 0.9170

period3 Unmatched 0.1250 0.1258 −0.20 −0.12 0.9030
Matched 0.1250 0.1320 −2.10 −854.00 −0.90 0.3690

period4 Unmatched 0.1248 0.1247 0.00 0.02 0.9860
Matched 0.1248 0.1170 2.30 −7134.90 1.03 0.3030

period5 Unmatched 0.1250 0.1242 0.30 0.14 0.8880
Matched 0.1250 0.1138 3.40 −1238.40 1.50 0.1340

period6 Unmatched 0.1248 0.1246 0.10 0.03 0.9780
Matched 0.1248 0.1167 2.40 −4754.40 1.07 0.2870

period7 Unmatched 0.1248 0.1259 −0.40 −0.20 0.8450
Matched 0.1248 0.1336 −2.70 −654.00 −1.14 0.2550

wind
Unmatched 2.3691 1.8999 39.00 20.17 0.0000
Matched 2.3691 2.4173 −4.00 89.70 * −1.68 0.0930

cool_d
Unmatched 2.6710 2.0289 31.10 18.01 0.0000
Matched 2.6710 2.5683 5.00 84.00 ** 2.15 0.0320

temp Unmatched 26.6330 25.8810 34.40 19.50 0.0000
Matched 26.6330 26.5390 4.30 87.40 * 1.93 0.0530

Note: *, **, and *** mean significance with confidence interval at 90%, 95%, and 99%, respectively.
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