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Abstract: This paper proposes a position control method for a low-cost exhaust gas recirculation (EGR)
valve system for automotive applications. Generally, position control systems used in automotive
applications have many restrictions, such as cost and space. The mechanical structure of the actuator
causes high friction and large differences between static friction and coulomb friction. When this large
friction difference occurs, the position control vibrates when the controller uses a conventional linear
controller such as the P or PI controller. In this paper, we introduce an inexpensive position control
method that can be applied under the high-difference-friction mechanical systems. The proposed
method is verified through the use of experiments by comparing it with the results obtained when
using a conventional control system.

Keywords: position control; static friction; exhaust gas recirculation (EGR) valve system;
automotive application

1. Introduction

Recently, many mechanical components used in vehicles have been replaced by electrical
components to increase efficiency. These components are not only found in hybrid electric vehicles
or electric vehicles but they have also been applied to gasoline and diesel vehicles such as Motor
Driven Power Steering (MDPS) and Integrated Starter and Generator (ISG). These electric automotive
components increase drive efficiency and reduce fossil fuel consumption. These changes are being
applied to the transmission system and the engine valve system. Among these changes, the exhaust
gas recirculation (EGR) valve is the mechanical component being targeted to replace the small DC
motor [1–5]. However, in general, the mechanical systems using the EGR valve have a low acceptable
cost and a narrow space for implementation; therefore, the electrical system including the actuator
should be cost-effective and small. To achieve this, the mechanical actuating system cannot avoid
being roughly designed, which implies high friction forces. Also, the difference between coulomb
friction and static friction is very large, so obtaining a correct and a fast response in terms of position
control is almost impossible using a conventional linear control system such as P, PI, or PID.

To achieve position control given this friction torque, some research has been proposed [6–10].
In [6], H infinite control and impulse control were combined for a fast control response. Robust control
was achieved using a disturbance observer [7]. A fuzzy controller [8] and a neural network controller [9]
were proposed to overcome this problem. In [10], an adaptive control method for friction compensation
was proposed. These methods can dramatically reduce the effect of friction; however, a large number
of parameters have to be set and the processing burden for realization is also complex in a low-cost
drive system.

This paper proposes a position control method for a low-cost system. The general position control
method for this low-cost system is a P-PI control method, as described in [11]. As mentioned above,
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correct and fast control cannot be achieved with this linear controller in mechanical systems that have
this friction condition. Generally, in this case, feedforward compensation is adopted for improving
the control performance [11–13]. However, these feedforward data are incorrect because of the aging
of the mechanical system and environmental changes, such as temperature and humidity. Moreover,
feedforward compensation can improve the dynamics of the controller; however, it cannot be the
solution for unstable control performance that is caused by the difference in static and coulomb friction
torque. In this paper, to achieve the stable position control, we first analyze the EGR valve mechanical
model, define the cause of the vibration. Then, a proposed novel and simple algorithm that may be
adapted to low-cost system to solve this problem are illustrated. Finally, we compare the performance
of the conventional method to our proposed method to verify its superiority using experiments.

2. Mechanical Model of EGR Valve and Torque Measurement

2.1. Model Analysis of EGR Valve

Figure 1 shows the mechanical composition of an EGR valve. In general, an EGR valve is
composed of a spring for recovering the initial position of the valve, joint and gear for transforming
the power from rotation to translation, a DC motor, and a throttle valve, which is the source and the
actuator of the mechanical system, respectively.
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Figure 1. Mechanical composition of exhaust gas recirculation (EGR) valve.

First, the motor operating this system is a DC motor. Therefore, the generated torque from the
motor is:

Te = ktia (1)

where kt is the torque constant and ia is the armature current of DC motor.
The mechanical equation of the valve system shown in Figure 1 can be described as:

Te = J
d2θr

dt2 + Tf ric + Tspring + TL (2)

where J is inertia, θr is the rotating angle, Tfric is the friction torque, Tspring is the spring torque, and TL
is the load torque.

This rotating angle is transferred to a linear position by the mechanical joint and gear. The linear
position x can be expressed as:

x = r{cos(θL0)− cos(θL + θL0)} (3)

θL =
θr

n
(4)
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where n is the ratio of the gear, r is the joint distance, θL is the joint angle, and θL0 is the initial
joint angle.

The spring force according to the linear position is described as:

Fspring = kspr(x + x0) (5)

where kspr is the spring character constant and x0 is the initial linear position.
This spring force can be transferred to the torque on the load side:

TspringL =
rkspr

n
(x + x0) sin(θL + θL0) (6)

Then, by transferring the spring torque on the load side to the motor side, Equation (6) can be
changed to:

Tspring =
rkspr

n
sin(θL + θL0)[r{cos(θL0)− cos(θL + θL0)}+ x0] (7)

Equation (7) indicates that the spring torque is only affected by the spring position. However,
in practice, the spring torque is not only affected by the position but also by the speed direction.
To apply this to Equation (7), we defined the spring coulomb friction torque as:

fspr_c = Fspr_colsgn(
dx
dt

) (8)

As shown in Equation (8), the spring coulomb friction is negative when the motor speed is in
reverse. As a result, spring torque can be modelled as:

Tspr_col =
rFspr_col

n
(9)

Tspring

=
rkspr

n sin(θL + θL0)[r{cos(θL0)− cos(θL + θL0)}+ x0] + Tspr_col sin(θL + θL0)sgn(ωr)
(10)

The EGR valve mechanical system is not only affected by the spring but also by the joint and the
gear. The low-cost gear and the joint causing friction like a lead-screw emphasize the nonlinear static
friction. In this paper, the LuGre friction model described by Yao et al. [10] is derived:

Tf ric = [Tge_col + (Tge_sta − Tge_col)e−(ωr/ωs)
2
]sgn(ωr) (11)

where Tge_col is the coulomb friction torque on the gear and joint, Tge_sta is the static friction torque on
the gear and the joint, and ωs is the Stribeck velocity.

In this paper, these modeled load torques were measured experimentally to implement a
feedforward controller as previously reported [12]. This feedforward compensation can reduce the
burden on the feedback controller and can help to enhance the control performance when nonlinear
load has to be controlled by a linear controller.

2.2. Measurement Procedures of Spring and Friction Torque

Figures 2 and 3 show the measured spring torque and friction torque of the tested EGR valve,
respectively. First of all, the electric torque from the motor is proportional to the DC motor current
based on Equation (1). Therefore, we assumed that the current waveform can indirectly describe the
generated torque. To measure the spring torque, we followed the steps below for identifying them.

1. Perform speed control on the initial EGR valve position.
2. Apply the speed reference from 10 rpm to 300 rpm.
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3. Measure the averaged current. The speed at which the lowest averaged current is observed is the
Stribeck velocity. Repeat the experiment as necessary for gathering data.

4. Control the motor using Stribeck velocity. The measured instantaneous current on steady state is
the spring torque, with the assumption that the friction torque at Stribeck velocity can be ignored.
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With the obtained spring torque, we measured the static friction torque with the following steps.

1. Perform speed control started on each EGR valve position.
2. Set up the small gain on the current controller in order to apply the ramp increasing

current reference.
3. Sudden current changes occur due to the position of the movement; measure the peak

current point.
4. Subtract the spring torque amount from the measurement in Step 3. The remaining value is the

static friction torque.

The coulomb friction torque can be obtained with the following steps.

1. Perform speed control started on the initial EGR valve position.
2. Apply the speed reference from 100 rpm and 300 rpm.
3. Measure the instantaneous current on the steady state of each speed.
4. Subtract the instantaneous current at 100 rpm from the current at 300 rpm.
5. Divide 200 rpm from the result of Step 4 for removing the spring torque component.
6. Multiply the speed from the result obtained in Step 5. This is the coulomb friction torque.

As shown in Figure 2, different spring torques occurred according to the valve position direction.
If the valve position direction was to open the valve, the spring torque increased due to the coulomb
friction in the spring torque, which is depicted in Equation (8). Reversely, if the valve position direction
was to close the valve, the spring torque decreased. Figure 3 indicates that the friction torque at each
position had almost the same static friction torque. Also, the static friction in the reverse direction had
different values from the positive direction value. Coulomb friction torque calculation is based on a
simple principle. First, the torque equation at 300 rpm can be described as:

Te(ωr2) = J
d2θr

dt2 + Tf ric(ωr2) + Tspring(ωr2) (12)

where ωr2 is the angular speed of 300 rpm.
If the steady state condition is only effective for identifying the coulomb friction torque, the inertia

term can be neglected. With Equation (12), the torque difference that represents Step 4 can be calculated
as:

Te(ωr2)− Te(ωr1)

= (Tf ric(ωr2) + Tspring(ωr2))− (Tf ric(ωr1) + Tspring(ωr1))
(13)

where ωr1 is the angular speed of 100 rpm.
As described in Equation (5), if the positions coincide, the spring torque is not affected by the

speed. Static friction torque does not interfere during the constant speed operation, so Equation (13)
can be simply described as:

Te(ωr2)− Te(ωr1) = Tge_col(ωr2)− Tge_col(ωr1) (14)

If the coulomb friction is proportional to the speed, it can be expressed by the coulomb friction
gain and the speed. The assumption that this gain is almost the same all over the position, to simplify
the coulomb friction, Equation (14) can be transformed into:

Te(ωr2)− Te(ωr1) = B(ωr2 −ωr1) (15)

where B is the coulomb friction gain.
In this paper, we assumed that the coulomb friction occurs over the Stribeck velocity.

Estimated coulomb friction gain is 0.0082 rpm/A for the forward direction and 0.0089 rpm/A for the
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reverse direction, respectively. Stribeck velocity of forward direction is 21 rpm and reverse direction is
17 rpm, respectively.

Figure 4 illustrates the measurement of the static friction torque. As shown in the figure,
the current is increased to overcome the static friction force. However, the valve position does not
move. If the current reaches the point described in the figure, the valve position starts to move due to
the generated motor torque being greater than the static torque. At this time, speed increases radically
when the static friction torque and the coulomb friction torque has a large difference. Note that the
controlled speed is 20 rpm, which is the Stribeck velocity. In this case, the coulomb friction torque
current is 0.8 A. However, the static friction torque is 10.4 A, which means that the static friction torque
is over the 10 times that of the coulomb friction torque.
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3. Proposed Position Controller

Figure 5 shows the conventional P-PI controller and the proposed control system [11]. As shown
in the figure, the proposed control system does not use a speed controller. The main reason for this is
that the motor position detection sensor is absent in the actual products to reduce the cost. Although
the speed information can be obtained from the linear position sensor used for detecting the valve
position, the sensing dynamics of the linear position sensor is insufficient to calculate the motor speed.
Moreover, the speed information is the derivative component of the position information, so it is
essential to use a filter to mitigate the noise. This worsens the restrictions on the bandwidth of the
controller, which is already restricted due to the slow response of the linear position sensor.

For the same reason, the D controller cannot be used because the effective derivative component
of the position error is difficult to obtain. Moreover, it can amplify the noise of the position information
signal. Therefore, the PI controller was selected as the position controller in this system. Essentially,
this position control system has performance problems.
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First, proposed position control transfer function shown in Figure 5 can be described as:

θr
θ∗r

=
Gp(s)Gc(s)Gm(s)

1 + Gp(s)Gc(s)Gm(s)
(16)

The control dynamic of the current controller is much faster than the position controller.
The transfer function of the current controller Gc(s) can be approximated as the unity in the position
control view. Assuming that the spring load torque is fully compensated by the feedforward path,
the transfer function can be changed to:

θr
θ∗r

=
kpkms + kikm

s3 + kpkms + kikm
(17)

where km is kt/J.
Insert this transfer function into the final value theorem. The error of the step response can be

obtained as:
e∞ = lim

s→0

1
1 + Gp(s)Gm(s)

= 1 (18)

From the above equation, the PI controller for position control has an error in the steady
state. To solve this problem, the proposed control method was derived from the hysteresis control.
The proposed control sets the allowable boundary to perceive that the practical position follows the
reference. If the sensed linear position is inside the boundary, the timer is activated to observe that the
controlled position is stably located in the boundary or it is just during a transient operation. In this
paper, the time to perceive the controlled position to be in the steady state was 200 ms.

Figure 6 shows the problems experienced by the conventional PI controller. If the sensed position
gradually reaches the reference position, the controller output is also reduced. It also reduces the
generated current and the motor speed. In advance, if the speed is reduced below the Stribeck velocity,
the static friction torque majorly affects the entire load torque. As a result, as indicated by the figure,
the motor is stopped when the motor current does not overcome the static friction torque. Next, the I
controller integrates the position error when the sensed position does not exactly follow the reference.
This integrated error gradually increases or decreases the current reference. If the specific current
value reached by the generated motor torque is above the static friction torque, it causes sudden speed
variation shown in Figure 4, which creates the position vibration.
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To solve this problem, the variable I controller gain was adopted according to the position
error. When the position error reached the boundary, I controller gain was reduced to the minimum
accordance with the position error, as shown in Figure 7. As mentioned above, the I controller is the
root of the position control vibration, so this controller was inactivated, since the valve position was
located inside the allowable range. In this case, only the P controller affects the current reference
generation. As a result, position vibration did not occur with the proposed position control method.
In this paper, this allowable range was 5% of the position reference.
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4. Experimental Results

Figure 8 shows the experimental test setup. To compare our method with the conventional
control method, a high performance DSP TMS320F28335 from TI was used. A speed sensor was
also instantaneously implemented in the mechanical system. The sampling frequency of the current
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controller and the switching frequency were the same: 20 kHz. The position control frequency was
2 kHz. The motor parameters are shown in Table 1.Energies 2018, 11, x FOR PEER REVIEW  9 of 11 
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Table 1. Motor parameters.

Parameter Value Unit

Rated power 200 W
Input voltage 12 V
Max. current 20 A
Rated speed 500 rpm

Figure 9 shows the position dynamic responses of 10% and 100% of the valve reference. Due to
the high static friction torque, if the position error was small, the I controller needed some time to
generate the output for the suitable torque against the static friction torque. Therefore, the gain had
to be tuned considering the maximum allowable control response time when the smallest position
reference was applied. As shown in the figure, when the 10% reference was applied, the control
response time was much longer than the result obtained when the 100% reference was applied because
of the static friction torque. This control gain cannot be increased infinitely because of the overshoot
restriction. Therefore, control gain tuning involves a trade-off by considering two aspects: response
time and overshoot.
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Figure 10 compares the experimental results obtained using both a conventional P-PI
controller [11] and the proposed controller. As shown in the figure, the position controlled by the
conventional method vibrated due to the large difference between static and coulomb friction torque.
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When the current reaches 2.5 A for the forward direction, the position movement is limited because the
static friction torque resists the movement, however, since the current is above the 10 A, the position is
radically moved forward because of the sudden friction change to coulomb friction torque. Due to the
I controller affection, the current reaches to almost 17 A, and then, the position is over the reference.
When the current reaches 17 A, the conventional controller starts to operate to move the position
to the reverse direction. However, the position is almost stuck because of the high static friction
torque, resulting in a slow decrease of the current to 2.5 A due to a small error integration of I
controller. Subsequently, the controller starts to operate, and the position moves forward repeatedly.
This operation caused the vibration as shown in Figure 10a. Note that the repeated current and the
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5. Conclusions

This paper proposed a position control method for a cost effective and a fast response time,
which could be used in vehicle valve systems. Because the low-cost mechanical system has large
differences in static friction and coulomb friction, the position and the current vibrations occur with
the conventional P-PI linear controller. To solve this problem, this paper analyzed the EGR valve
mechanical system and illustrated the procedure of extracting the parameters based on the predefined
mathematical analysis. From this analysis, the proposed control method entailed acceptable boundary
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and selectable operation of the I controller. As a result, it could achieve the proper control performance
which has an acceptable position error. The proposed method was verified by comparing our method
with the conventional method in an experiment.
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