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Abstract: Gas turbine hot component failures often cause catastrophic consequences. Fault detection
can improve the availability and economy of hot components. The exhaust gas temperature (EGT)
profile is usually used to monitor the performance of the hot components. The EGT profile is
uniform when the hot component is healthy, whereas hot component faults lead to large temperature
differences between different EGT values. The EGT profile swirl under different operating and
ambient conditions also cause temperature differences. Therefore, the influence of EGT profile swirl
on EGT values must be eliminated. To improve the detection sensitivity, this paper develops a fault
detection method for hot components based on a convolutional neural network (CNN). This paper
demonstrates that a CNN can extract the information between adjacent EGT values and consider
the impact of the EGT profile swirl. This paper reveals, in principle, that a CNN is a viable solution
for dealing with fault detection for hot components. Based on the distribution characteristics of
EGT thermocouples, the circular padding method is developed in the CNN. The sensitivity of the
developed method is verified by real-world data. Moreover, the developed method is visualized in
detail. The visualization results reveal that the CNN effectively considers the influence of the EGT
profile swirl.

Keywords: gas turbine; hot component; fault detection; exhaust gas temperature (EGT);
convolutional neural network (CNN)

1. Introduction

Gas turbines are widely used as the main power source in many areas, such as aircraft, ships,
oil and gas applications, and power generation. Reducing maintenance costs and increasing the
availability of gas turbines are two essential issues for equipment owners [1,2]. Prognostics and
health management (PHM) can solve these problems and ensure that gas turbines run safely and
economically [3-5]. The hot components, including the combustion system and turbine, are the
critical components of gas turbines. The hot components operate under the adverse environmental
conditions of high temperature, high pressure, and high speed. Hot component failures often result in
catastrophic accidents and very large economic losses. Fault detection plays an important role in PHM
systems, and usually focuses on timely detection of faults and avoiding more serious losses. Therefore,
fault detection for gas turbine hot components is particularly significant.

Exhaust gas temperature (EGT) provides the most relevant information about gas turbine hot
component performance, so it is usually used to monitor gas turbine hot components. EGT is measured
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by several thermocouples distributed equally in the gas turbine exhaust section. All thermocouple
readings are almost identical when the hot components are healthy, whereas some thermocouple
readings are variable when the hot components malfunction. Hence, the EGT profile can be used for
fault detection. The uniformity of the EGT profile indicates the health status of the hot components,
and some typical indicators are presented, such as the temperature difference between EGT and the
average EGT value [6,7], temperature difference between the maximum and the minimum EGT [8],
maximum EGT [7,9], median EGT [7] and average EGT [7]. Excessive and sudden changes or consistent
upward trends in the indicators mean the potential hot component problems. However, in practice,
the operators have found this solution to lack adequate sensitivity. In other words, the hot components
have been damaged seriously once the alarm is generated [10].

The methods above take advantage of discrepancies between different EGT values to detect faults.
However, the hot component fault is not the only reason for EGT discrepancies. Different operating
and ambient conditions also cause EGT discrepancies. Hot gas from the combustors is rotated by the
turbine blades. The swirl angle changes depending on the operating and ambient conditions. Hence,
the EGT profile swirls under different operating and ambient conditions, and the EGT profile swirl
results in the EGT discrepancies. At the same time, the EGT profile scales under different operating
and ambient conditions, which also causes the EGT discrepancies. It is difficult to detect the faults
from these complex interference factors. Obviously, by simply monitoring the EGT discrepancies,
the methods above cannot detect the faults as early as possible.

Therefore, many researchers have focused on the fault detection method of the hot components
based on the EGT model [11-21]. A normality EGT model is built [11-21]. If the estimated EGT based
on the model is different from the actual EGT, the abnormalities of the hot components are identified.
The more accurate the model, the better the detection performance is. The model may be built either
from some prior identification based on a set of training data (data-driven model) or from prior
physical knowledge of the gas turbine (physical model).

Data-driven models usually use some data mining methods to learn the relationship between the
measurable parameters and EGT. Song et al. [11] and Yilmaz [12] evaluated the relationship between
EGT and operational parameters based on a multiple linear regression. An artificial neural network
(ANN) is also usually used to build the EGT model [13,14]. Tarassenko et al. [13] presented an EGT
model of normality based on an ANN and made use of the spatial correlations in the EGT profile.
When a fault develops in one of the combustors, there is a local effect on the temperature profile; only a
small number of contiguous thermocouples are significantly affected whilst the rest of the profile
is largely unchanged. The model of normality was, therefore, constructed by learning the function
relating the temperature values from the four thermocouples opposite it. Yan [15,16] took advantage
of stacked denoising autoencoder to extract feature from EGT and used extreme learning machines
(ELM) to detect abnormalities in combustors. Hierarchical clustering and self-organizing map neural
networks were used for gas turbine pre-chamber burnout anomaly detection [17].

Some EGT physical models were also presented. Basseville et al. [18,19] presented an EGT
physical model. In this model, the swirl angle was calculated based on gas turbine physical principles.
There were some ideal hypotheses, and the size of the gas turbine need to be known. Medina et al. [20]
presented an EGT model based on both basis function expansion and the Brayton cycle. The swirl angle
was obtained based on an empirical function of the ambient temperature and the power generated,
which was provided by the manufacturer. As a universal empirical function, it is insensitive to detect
the hot component faults of a specific gas turbine. Liu et al. [21] presented an EGT model and two main
factors affecting the EGT were considered, including the operating and ambient conditions, and the
structure deviation of different combustors caused by processing and installation errors. However,
the EGT profile swirl was not considered.

Although many EGT models were presented in previously works, the influence of EGT profile
swirl on EGT values has not been well considered. Therefore, to further improve the sensitivity of fault
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detection for gas turbine hot components, the EGT model should be developed by considering the
effect of the EGT profile swirl.

Convolutional neural network (CNN) are successfully used in pattern recognition and image
processing [22-24]. A CNN, to the best of our knowledge, has not been used for gas turbine hot
components PHM applications. A CNN is good at learning local features, and it is robust to the feature
shift, scale, and distortion. The property of a CNN makes it a viable solution for dealing with the
EGT profile problem. First, the abnormal information of the hot component is contained in several
adjacent EGT values rather than all the EGT values. By perceiving local features and sharing weights,
a CNN can exactly extract key information from adjacent EGT values. Second, the EGT profile swirl
can be seen as the shift of the EGT profile. Since a CNN can ensure some degree of shift invariance,
it can effectively discern the impact of the EGT profile swirl. In this paper, the influence of the EGT
profile swirl on fault detection of the hot components is described. Furthermore, the reason why
CNN is suitable for hot components fault detection is analyzed and visualized in detail. According
to the distribution characteristics of EGT thermocouples, the circular padding method of CNN is
developed. CNN is evaluated in the context of a real-world application of gas turbine hot component
fault detection.

The remainder of this paper is organized as follows. Section 2 introduces the challenges of
fault detection of gas turbine hot components and emphasizes the influence of the EGT profile swirl.
Section 3 describes the theoretical background of CNN and analyzes the reason why CNN is suitable
for hot component fault detection. Based on the distribution characteristics of gas turbine EGT
thermocouples, the circular padding method of CNN is developed. The experimental results and
visualization results are given in Section 4, and Section 5 concludes the paper.

2. Challenges of Fault Detection for Gas Turbine Hot Components

A typical gas turbine usually consists of three components—a compressor, a combustion system,
and a turbine. EGT is a widely used parameter to monitor the performance of hot components.
EGT is measured by several thermocouples distributed uniformly in the gas turbine exhaust section.
Figure 1 describes the circumferential distribution of the combustors and thermocouples. As is known,
the burning status of the combustors is almost same in the normal operation, and all the thermocouple
readings are almost same. When the hot components are abnormal, some thermocouple readings
would be different from the other thermocouple readings. Therefore, normal hot components result in
a uniform EGT profile, while abnormal hot components give rise to an unequal EGT profile, as shown
in Figure 2. The greater the temperature discrepancy between different thermocouple readings,
the greater the possibility of the hot component faults.

Figure 1. Combustors and thermocouples distribution.
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Figure 2. Comparison between normal and abnormal operation.

However, the hot component fault is not the unique factor that causes the discrepancy between
varying EGT values.

First, every EGT value changes with the operating and ambient conditions. All the EGT values
increase or decrease at the same time, and it is shown that the EGT profile scaling under different
operating and ambient conditions. In previous work [11-14,21], this factor was mainly discussed.
In this paper, it will also be considered.

Second, the EGT profile also swirls under different operating and ambient conditions.
The combustion system heats a mixture of air and fuel at very high temperature, and the hot gas from
the combustors drives the turbine to rotate. Naturally, the hot gas is rotated by the turbine blades,
as described in Figure 3. As a result, the thermocouple does not measure the temperature of the gas
from the combustor at the same angular position. There is a swirl angle between the combustor and
the thermocouple measuring the temperature of the hot gas from this combustor. The swirl angle
depends on the operating and ambient conditions. Figure 4 illustrates the different EGT profiles under
different power. The EGT profiles are shown after mean normalization to simply eliminate the EGT
profile scaling caused by operating and ambient conditions. EGT profile a is measured at 121.56 MW
of power, and EGT profile b is measured at 148.92 MW of power. The EGT profile swirls about one
thermocouple when generated power is reduced from 148.92 MW to 121.56 MW. As depicted in
Figure 5, the position of the thermocouples is fixed, and the EGT profile swirls under the operating and
ambient conditions. It can be seen that the temperature discrepancies between different thermocouple
readings could change.

inlet | ¢,
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blade

\«5»

moving
blade

C exhaust

u

Figure 3. Rotation of hot gas in a turbine.
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Figure 4. EGT profiles swirl: (a) EGT profiles under different power; and (b) EGT profile b is manually
rotated counter-clockwise for one thermocouple.
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Figure 5. The influence of EGT profile swirl on the EGT.

In addition, the hot gas from different combustors mixes in the turbine, which reduces the
amplitude of the EGT discrepancies compared with the temperature discrepancies at the exit from
the combustors. Accordingly, the EGT discrepancies caused by the hot components’ faults would be
very small.

The false alarm rate (FAR) and the missing alarm rate (MAR) are the two most critical evaluation
indexes of fault detection. The detection threshold is small and the FAR will high, while the detection
threshold is large and the MAR will high, as shown in Figure 6. As is analyzed, EGT discrepancies
can be used as the fault detection indicator. However, different operating and ambient conditions
can also cause the EGT discrepancy. The effect of the operating and ambient conditions is not only
reflected in the EGT profile scaling, but also in the EGT profile swirl. At the early stage of the fault,
the influence of the faults is even smaller than the influence of these factors. To avoid a high false alarm
rate, the threshold should be set larger. This causes a high missing alarm rate, i.e., the fault cannot be
detected as early as possible. Hence, the challenge of fault detection for hot components is determining
how to eliminate the effects of different operating and ambient conditions on the EGT profile.

It should be mentioned that the operating points analyzed in this paper are that the start-up
process of the gas turbine is completed and then the gas turbine runs stably under different operating
and ambient conditions.
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Figure 6. Bayesian decision diagram.

3. Developed Fault Detection Method for Gas Turbine Hot Components Based On a CNN

3.1. Theoretical Background of a CNN

A CNN is a multi-stage feed-forward artificial neural network that learns a hierarchical feature
representation mechanism for input data with different levels of abstraction [25]. In each stage, a certain
number of feature maps corresponds to a level of abstraction for features. The feature map consists of
several neurons. Feature maps at different stages are connected by operations such as convolution,
nonlinear activation, and pooling. Figure 7 shows a typical CNN architecture.

f. maps f. maps

Feature maps

Input

W/\\JELLZ::::_ N
T

Convolutions Pooling Convolutions Pooling  Fully connected

Figure 7. Typical CNN architecture.

A CNN comprises three basic architectural concepts: local receptive fields, shared weights,
and sub-sampling [26]. These concepts ensure CNN has some degree of scale, shift, and
distortion invariance.

The first concept means each neuron (convolutional kernel) of the convolution layer perceives
only the local area of the input rather than the global input. Due to local receptive fields,
the elementary key features can be extracted, such as corners, end-points, and oriented edges in
digit recognition. Then these elementary key features are combined by the subsequent layers to detect
higher-order features.

The second indicates the convolutional kernel shares the same weights in feature maps at a certain
stage. The input would be scanned sequentially by a signal convolutional kernel that has a local
receptive field. Therefore, if the input is shifted, the output will be shifted by the same amount, but will
be left unchanged otherwise. Mathematically, the j-th output feature map of a convolution layer is
expressed as Equation (1):

y = f(bf + Zwif * xi> (1)

where x' is the i-th input feature map, and i/ is the j-th output feature map. w" is the convolutional
kernel between x’ and y/, and b/ is the bias. The symbol * is the convolutional operation. f(-) indicates
the nonlinear activation function, ReLU activation is usually applied in a CNN, i.e., f(x) = max(0, x).

The third concept, sub-sampling, is commonly known as “pooling”. Pooling obtains a specific
feature from every feature map. For example, in Equation (2), global average pooling [27] obtains
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the average value of the feature map 4, such as a1, whereas the feature map 4 is separated into many
non-overlapping regions, and max-pooling obtains the maximum value of each region, such as a,.
As can be seen, the location of the extracted feature is eliminated after pooling. This is because the
location is less important, once the elementary key features are detected. This property also ensures
CNN is robust to the feature shifts.

2
(1),111:[3],&1:[54] (2)
3

NN O =
= W o= e
U1 W W =

3.2. Applicability of CNNs in Gas Turbine Hot Component Fault Detection

According to thermodynamic theory, the EGT Ty is obtained as Equation (3):
k—1)/k
T4::r3[1—m(1—7r§ v/ )} 3)

where T3 is the combustor outlet temperature, 7; is turbine efficiency, 7t; is the expansion ratio, and k is
the isentropic exponent. A gas turbine usually contains several combustors. Considering the hot gas
mixing, the Ty depends on the temperature of each combustor. Then, Equation (3) can be written as
Equation (4):
n

= E o nfa—t ot o
where T3 ; is the outlet temperature of the j-th combustor and Ty is the exhaust gas temperature
measured by the i-th thermocouple. g(-) indicates the influence of each combustor on Ty ;. It is usually
modeled as the normal distribution, as shown in Equation (5) and Figure 8 [24,28]. <I>]C- is the angular
position of the j-th combustor, ®! is the angular position of the i-th thermocouple, and A and ¢ are
constant parameters that characterize the influence of the combustor.

2
g(P) = Aexp <—2q;2> ®)

0.4

0.3[

0.27

Influence

0.1

4 2 0 2 4
Thermocouple position

Figure 8. Function g(®).

Since the hot gas rotates in the turbine, the thermocouple does not measure the temperature of the
gas from the combustor at the same angular position. The swirl angle ®; is used to correct Equation
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(4). @, is related to the operating and ambient conditions. Finally, the expression for the EGT is shown
as Equation (6):

Ty = ]:21 T [1— e (1 7) g (@f - @ — ) ©6)

Based on Equation (6), it can be seen that one combustor’s performance can affect several adjacent
thermocouple readings. For illustration, Figure 9 shows a schematic diagram of the influence of the
combustor outlet temperature on thermocouple readings. As can be seen, the abnormal information
of the hot component is contained in several adjacent EGT values rather than all the EGT values.
As stated earlier, one of the advantages of CNN is the ability to perceive local features. The CNN can
extract the key information in several adjacent EGT values.

Influence of every
combustor

Combustor

Thermocouple

Figure 9. Schematic diagram of the influence of the combustor outlet temperature on
thermocouple readings.

In addition, because of the rotation of the hot gas, the same combustors would affect the different
thermocouples when the operating and ambient conditions change. That means the EGT profile swirls
under different operating and ambient conditions. For example, the hot component fault causes a
“cold zone” in the EGT profile, as shown in Figure 10. When the operating and ambient conditions
change, the cold zone would present at a different angular position. The EGT profile swirl can be
seen as the shift of some elementary key features. As stated earlier, the CNN extracts the elementary
key features from the input. After pooling, the key feature does not contain the original location
information. The CNN has the property of shift, scale, and distortion invariance. Therefore, a CNN
can effectively consider the effect of EGT profile swirl.

5

—*— EGT profilea
— % — EGTprofileb

exhaust temperature / K
=
¥

5 10 15 20 25
exhaust thermocouple
Figure 10. Abnormal EGT profiles under different operating and ambient conditions.
In general, the faulty information of the hot component is included in the local EGT profile rather

than the global EGT profile. The EGT profile swirl reflects the shift of some key features. The three
basic architectural ideas, local receptive fields, shared weights, and pooling, ensure that the CNN is
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robust to the feature scale, shift, and distortion. Therefore, a CNN is suitable for detecting early faults
in gas turbine hot components.

3.3. Improved CNN for Gas Turbine Hot Component Fault Detection

Convolutions are usually performed after padding the feature maps. Padding means adding
some values to the edge of the input matrix. On the one hand, it can save the size of feature maps so
that it is a useful way to increase the model depth. On the other hand, padding in feature maps can
better use the border information of feature maps, which is beneficial for the detection performance.
No-padding means there is no padding operation. A typical padding method in CNNs is zero-padding.
In zero-padding, zeros are added to the edge of the input matrix, as shown in Figure 11. The EGT
thermocouples are circumferentially distributed. Based on the distribution characteristics of EGT
thermocouples, the circular-padding method is used to detect faults of gas turbine hot components in
this paper, as shown in Figure 12. In circular-padding, the last EGT thermocouple readings are added
to the front of the first EGT thermocouple readings, and the first EGT thermocouple readings are
added to the back of the last EGT thermocouple readings. For example, of the 27 EGT thermocouples,
25th, 26th, and 27th thermocouple readings are added to the front of the first thermocouple reading.
The circular-padding operation makes sure that the information between the first EGT thermocouple
readings and the last EGT thermocouple readings is fully extracted.

oJoJoJlolololo]o
ojlo|ololololo]o
0] 0 0] 0
0] o 0o

36
0] 0 3232 0] 0
0] o 0o
olo|oJololo|o]o
0o]lo|olololo|o]o

Figure 11. Zero-padding.

thermocouple
e 8 7

thermocouple

:> 2526271 2 3 2627
5
o 27 SN
26

e filter

Figure 12. Circular-padding.

4. Experiments

4.1. Data Description and Model Parameters Setup

The real operating data sampled once per minute come from the gas turbine running for three
months. The gas turbine is used to generate electricity. The gas turbine has 27 combustors and
27 thermocouples to measure the EGT. The data come from the real operating gas turbine, and the
measurement equipment are the 27 thermocouples distributed equally in the gas turbine exhaust
section. Filtering out those data points corresponding to part operation condition (speed < 95%) results
in 16,825 samples, of which 16,636 samples are normal and 189 samples are abnormal. The EGT profiles
are shown after mean normalization.



Energies 2018, 11, 2149 10 of 18

The CNN architecture is shown as Figure 13. Referring to some well-known CNN architectures [29,30]
and cross-validation results, four convolution layers, one max-pooling layer, one global average pooling
layer, and one fully-connected layer are used in this paper. The activation function for the convolution
layers is the ReLu function, and the activation function for the fully connected layer is the softmax
function. The filter size reflects the number of thermocouples affected by one combustor. Based on
experience, the filter size is set to 1 x 5. Based on the cross-validation results, the filter number is
16 in the first two layers. After max pooling, the size of the feature map is half that of the original.
Thus, the filter number is set to 32 in the last two layers. For the CNN design, this paper sets the
parameters based on many empirical suggestions [30,31]. The learning rate is set to 0.1. The number of
epochs for learning is 200. Momentum is used as a weight-updating strategy to accelerate the training
process [32]. Usually, the momentum coefficient is recommended to be 0.9. L2 regularization is used as
a strategy to overcome the overfitting problem [32]. The regularizer decay parameter is set to 0.0001.

Input
J,  Circular-padding

Conyv 15,16

\\/ ReLU, Circular-padding

Conv 1x5, 16

\L ReLU, Circular-padding
Max pooling
N
Conv 1x5, 32

J/ ReLU, Circular-padding

Conv 1x5, 32

l ReL.U

Global average pooling

L

Fully connected
output layer

Figure 13. CNN architecture.

4.2. CNN Detection Performance

ANN and ELM were the two most commonly used methods for building EGT model in
previous works [13-15]. To evaluate the effectiveness of the CNN for hot component fault detection,
the detection performance was compared between the ANN, ELM, and CNN. The model parameters
were determined via cross-validation and empirical suggestions. For the ANN design, a three-layer
ANN was used. The neural node number in the hidden layer was 20. The activation function for the
hidden layer was the sigmoid function, and the activation function for the output layer was the purelin
function. The learning rate was 0.1. The number of epochs for learning was 500. The ELM has one
design parameter, the number of hidden neurons. Referring to [15], the number of hidden neurons
was set to 1000.

The five-fold cross-validation was employed for model training and validation. The samples were
randomly partitioned into five equal sizes subsamples. Of the five subsamples, a single subsample
was retained as the validation data, and the remaining four subsamples were used as the training data.
The training data was used to obtain the ANN, ELM, and CNN models. The validation data was used
to evaluate the effectiveness of the three methods. The cross-validation process was then repeated five
times, with each of the five subsamples used exactly once as the validation data. The detection result
was the average of the five results. To obtain a more robust comparison, the five-fold cross-validation
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was run 10 times, each time with different random splitting of five folds of the data. The CNN,
ANN and ELM were implemented in Python 3.6.

In this paper, accuracy (ACC), receiver operating characteristic (ROC) curves, and Matthews
correlation coefficient (MCC) were used as the detection performance measure for comparison. MCC is
defined as Equation (7) [33]:

TPx TN —FP x FN

MCC = ()
V(TN + FN) x (TN + EP) x (TP + FN) x (TP + FP)

Figure 14 shows one five-fold cross-validation comparison of ROCs for the three models. The
CNN model performs better than the ANN and ELM models. To perform a quantitative comparison
of the ROCs, the area under ROC curve (AUC) for each of the ROCs was calculated. The ACC and
MCC for different models were also calculated. The means and the standard deviations of the ACCs,
AUCs, and MCCs of 10 random runs for the three models are shown in Table 1. As described in
Section 4.1, the dataset is seriously imbalanced, so the ACC does not clearly show the advantage
of the CNN. However, from the means and standard deviations of MCC and AUC, it can be seen
that the CNN model’s detection performance is significantly better than the ANN model and ELM
model. The next section discusses why the CNN is better at detecting early faults in gas turbine hot
components in detail.

True positive rate (Sensitivity)

0 1 1 1 H
1] 0.2 0.4 0.6 0.8 1
False positive rate (1-specificity)

Figure 14. ROC comparison.

Table 1. Detection results for different models.

Measures
ACC MCC AUC
Models
ANN 0.994 + 0.0016 0.709 4 0.0866 0.808 £ 0.0920
ELM 0.992 + 0.0009 0.564 4+ 0.0736 0.686 £+ 0.0616
CNN 0.998 + 0.0007 0.927 4+ 0.0347 0.999 £ 0.0014

4.3. Detection Visualization

A CNN is a black box model, and visualization can help us better understand how the CNN
works well in the fault detection of gas turbine hot components.

The EGT profile swirls with different operating and ambient conditions. The swirl angle will
vary with the operating and ambient conditions. This phenomenon is clearly shown in Figure 15.
The different colors indicate different EGT values. The higher the temperature, the brighter the
color. Figure 15 shows the shift trend of the EGT profile is the same as that of power. For example,
the generated power rises at about 550 min. At the same time, the location of the highest EGT value
shifts from the 16th thermocouple to the 14th thermocouple. When the generated power drops to
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the original level, the location of the highest EGT value also comes back. The location of other EGT

values shows a similar phenomenon. It should be noted that the speed and IGV angle remain basically
constant during this time.

i, =L BN | {50
A | (I R g S )

_“.‘Illi-l\‘-lllllll- L\I ] IIII \Il‘lh | 1‘ IIHI”- ‘l I\II II

“:W’.'HH*M iw:.'ﬁll:"i_lﬁ 'H‘:HI-JMHH § 0

-50

Exhaust thermocouple

500 1000 1500 2000 2500 3000
time/min

Power/MW

0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
time/min

Figure 15. EGT profile swirl under different power.

Figures 4 and 16 show the specific example of the EGT profiles swirl under operating and ambient
conditions. EGT profile a is measured under 121.56 MW, EGT profile b is measured under 148.92 MW,
and EGT profile c is measured under 181.87 MW. The EGT profile swirls about one thermocouple when
power is increased from 121.56 MW to 148.92 MW, and the EGT profile swirls about two thermocouples
when power is increased from 121.56 MW to 181.87 MW. The EGT profiles a, b, and c are all measured
under normal conditions. EGT profiles a, b, and c are examples to illustrate the CNN detection,

and they are unfolded in Figure 17. The CNN architecture and model parameters are the same as
in Section 4.1.

EGT profile ¢

EGT profile a

(@) (b)

Figure 16. EGT profiles swirl: (a) EGT profiles under different power; and (b) EGT profile ¢ is manually
rotated counter-clockwise for two thermocouples.
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Figure 17. Unfolded EGT profiles.

Figure 18 shows the 16 filters in the first convolution layer. The CNN extracts the features which
can be used to distinguish between normal and abnormal classes. After the first convolution layer,
the feature maps of EGT profiles a, b, and c can be seen in Figure 19. Different filters can be used to
perceive different features. The feature extracted by the second filter is shown as an example. In the
first EGT profile a, the feature mainly appears at the 22nd thermocouple. However, due to the swirl,
the feature mainly appears at the 21st thermocouple in the second EGT profile b, and the feature mainly
appears at the 20th thermocouple in the third EGT profile c. The other features also demonstrate
similar phenomena. The results show that the effect of EGT profile swirl makes the key feature appear
in different locations, and the convolution operation successfully perceives the key features.
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Figure 18. Filters in the first convolution layer.
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Figure 19. Feature map after the first convolution layer.
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After the pooling layer, the location information of the key feature is eliminated. As long as the

feature exists, it will be reflected in the final feature map. Figure 20 shows the feature map after the
global average pooling layer. In the normal EGT profile, some key features can be perceived. However,
no features have been detected in the abnormal EGT profile d (Figure 21), so CNN successfully judge
EGT profile d as an anomaly. Therefore, the CNN can detect a specific feature wherever it appears in
the EGT profile. The specific feature refers to the key feature used to distinguish between normal and
abnormal classes. This is the reason why a CNN can solve the EGT profile swirl problem and improve
the sensitivity of fault detection of gas turbine hot components.
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Figure 21. An abnormal EGT profile.

4.4. Improvement in Circular-Padding

In this section, the detection results of three different padding methods were compared. The three
padding methods are: no-padding, zero-padding, and circular-padding. The CNN architecture
and model parameters are the same as in Section 4.1. The only difference is the padding method.
A padding operation was used before every convolution operation. ACC, MCC, and AUC were
used as the detection performance measure. As can be seen in Figure 22, padding in feature maps
is useful for improving the detection performance. Zero-padding is not suitable for gas turbine
hot component fault detection because it would introduce the wrong information on the border.
The circular-padding method detects better than the other methods owing to the reasonable addition
of the border information.

1 0.97 1.002
0.95 1

0.999 0.93 0.998
0.998 0.91 0.996
0.997 0.89 0.994
0.87 0.992

0.996 0.85 0.99

Ono-padding @zero-padding ®circle padding

Figure 22. Comparison of different padding methods.

5. Conclusions

In this paper, a method used for fault detection of gas turbine hot components based on a CNN
is developed. The hot component fault is not the unique factor that causes the discrepancy between
varying EGT values. Different operating and ambient conditions can also cause the EGT discrepancy.
To detect hot component faults as early as possible, and improve the detection performance, the key
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problem is how to eliminate the influence of various factors on the EGT profile. In this paper, the effect
of the EGT profile swirl under different operating and ambient conditions is studied in detail.

It is found that the abnormal information is contained in several adjacent EGT values rather than
the global EGT profile, and the EGT profile swirl reflects the shift of some key features. CNN which has
the properties of local perception and shared weights could effectively extract the abnormal information
from the EGT profile. Moreover, pooling operation eliminates the location information of the key
features. Therefore, CNN is robust to the feature scale, shift, and distortion. These characteristics
make CNN suitable for solving the problem caused by EGT profile swirl in the fault detection of
gas turbine hot components. To fully extract the information in the EGT profile, according to the
EGT thermocouples with circular distribution, this paper develops the circular-padding method in a
CNN. In circular-padding, the last EGT thermocouple readings are added to the front of the first EGT
thermocouple readings, and the first EGT thermocouple readings are added to the back of the last EGT
thermocouple readings.

The experiment results on the real-world gas turbine data indicate that the fault detection for
gas turbine hot components based on CNN is more accurate than the typical methods. The CNN
visualization results explain the reason why CNN is suitable for hot components fault detection.
It is proved that the effect of the EGT profile swirl is the key feature which can distinguish between
normal and abnormal classes appear in different locations, and the convolution operation successfully
perceives the key features. Then by the pooling operation, the position information of the key features
is eliminated. Some key features can be perceived in the normal EGT profile, whereas no features
can be detected in the abnormal EGT profile. CNN extracts the information between adjacent EGT
values and eliminates the impact of EGT profile swirl. The experiment results also show that the
circular-padding method is better than other typical padding methods.
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Abbreviations

EGT Exhaust gas temperature

CNN Convolutional neural network

PHM Prognostics and health management
Co Static blade inlet velocity

G Static blade outlet velocity

C Moving blade outlet velocity

u Turbine speed

oy Static blade outlet airflow angle

B1 Static blade outlet relative velocity angle
%) Moving blade outlet airflow angle
B2 Moving blade outlet relative velocity angle
FAR False alarm rate

MAR Missing alarm rate

y Output feature map

b/ Bias

w'l Convolutional kernel

xl Input feature map

T3 Combustor outlet temperature

Ty Exhaust gas temperature

7Tt Expansion ratio

1t Turbine efficiency

k Isentropic exponent
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