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Abstract: This paper presents a study to estimate individual condition parameters of the transformer
population based on Markov Model (MM). The condition parameters under study were hydrogen
(H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide (CO),
carbon dioxide (CO2), dielectric breakdown voltage, interfacial tension, colour, acidity, water content,
and 2-furfuraldehyde (2-FAL). First, the individual condition parameter of the transformer population
was ranked and sorted based on recommended limits as per IEEE Std. C57. 104-2008 and IEEE Std.
C57.106-2015. Next, the mean for each of the condition parameters was computed and the transition
probabilities for each condition parameters were obtained based on non-linear optimization technique.
Next, the future states probability distribution was computed based on the MM prediction model.
Chi-square test and percentage of absolute error analysis were carried out to find the goodness-of-fit
between predicted and computed condition parameters. It is found that estimation for majority
of the individual condition parameter of the transformer population can be carried out by MM.
The Chi-square test reveals that apart from CH4 and C2H4, the condition parameters are outside the
rejection region that indicates agreement between predicted and computed values. It is also observed
that the lowest and highest percentages of differences between predicted and computed values of all
the condition parameters are 81.46% and 98.52%, respectively.

Keywords: Markov Model (MM); Condition-Based Monitoring (CBM); condition parameters
estimation; non-linear optimization; Chi-square test; percentage of absolute error

1. Introduction

Transformer is an integral component to ensure the reliability of power delivery in any utilities.
Thus, monitoring its operational performance is very crucial to prevent failures. Although transformers
are proven as reliable equipment in normal in-service operation, its failure could cause interruption
in the power delivery that could result in direct or indirect repair costs to the utilities. Nowadays,
asset owners have adopted a mechanism known as Condition-Based Monitoring (CBM) to monitor the
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operational parameter characteristics and it can provide a comprehensive diagnosis on transformers
health to prevent the recurrence of failures. Condition parameter trends which point out the
deterioration of transformers condition can be detected early via operational parameter monitoring,
hence can be used for estimation of transformers condition [1–3].

Health Index (HI) is a common tool used for CBM purpose. It integrates all condition parameter
data using a single quantitative index to represent transformer overall health status. This approach
is useful to evaluate the long-term deterioration level based on the health condition that may not be
viable to be identified by routine inspections and individual CBM techniques [4,5]. Besides, it also
addresses the interaction between parameter characteristics and attributes of these techniques which
is not considered in the conventional method. The drawback of this approach has positioned the
asset owner in difficult situations to identify and point out the underlying root causes that lead to
the deterioration of transformers health. Hence, modelling the deterioration of transformers using
individual condition parameters could assist to provide a detail diagnosis on transformers population
by looking at specific condition parameter deterioration curve rather than just providing the overall
condition deterioration status.

There are many studies that have been carried out to analyse and provide comprehensive
diagnostic interpretations for individual condition parameter data such as hydrogen (H2), methane
(CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2),
dielectric breakdown voltage, interfacial tension, colour, acidity, water content and 2-furfuraldehyde.
The studies are mainly centred on 3 common categories, namely deterministic, statistical and Artificial
Intelligence (AI)-based models. Among the examples of deterministic models that have been used
to interpret condition parameter data are Key Gas Method, Doernenburg Ratio Method, Rogers
Ratio Method, IEC Ratio Method, IEC TC10 Database, IEC 60599, IEEE C57.104 and Duval Triangle
Method [6,7]. Statistical-based models such as time series correlation technique [8] and rough set
approach [9] are among the frequently used methods used to interpret the condition parameter
data. Fuzzy set theory [10], Artificial Neural Network (ANN) [11], support vector machine [12],
fuzzy-evidential reasoning [13], genetic algorithm [14,15], genetic programming [16,17] and particle
swarm optimization [18,19] techniques are among the AI-based techniques that have been used to
evaluate condition parameter data. Generally, these deterministic, statistical and AI techniques are
used to evaluate the current condition of transformers.

Several studies have attempted to model the reliability of a transformer. It is often quite
difficult to assess its reliability using conventional methods based on frequency of failures due to
inadequate failures data record. Nevertheless, transformers have operational characteristics of which
deterioration over the operating time can be correlated with its reliability. Thus, if the deterioration
phenomenon of transformers is carefully monitored and adequately modelled, it is possible to assess
its reliability. In addition, this approach allows the asset owner to estimate the remaining life,
hence to derive a comprehensive maintenance strategy and plan for the maintenance expenditures [20].
Presently, there are only a few studies on modelling the future deterioration of transformers as most
of the studies focus on modelling the reliability of power transformer based on failures data [21,22].
Markov chain is among the most well-known stochastic processes-based approach that are commonly
implemented to model the deterioration process of facilities and equipment.

Markov process is used in non-time variant statistical deterioration prediction modelling. Markov
chain is commonly used in civil engineering especially for structural deterioration assessment such
as buildings [23], bridge [24], bridge element [25], pavement [26] and storm water pipe [27]. Markov
chain also has been utilized to assess the oil degradation in oil-filled switchgear [28] and to determine
spare requirement for power transformers [29,30].

In this study, MM based on individual condition parameter data is proposed to model the future
deterioration of distribution transformer population. In total, 1322 oil samples from 373 distribution
transformers of 33/11 kV voltage level and 30 MVA power rating are used for the case study. The age
range for the transformer population is between 1 and 25 years. The first section of this study is
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on modelling of future condition of transformer population based on MM and individual condition
parameter of transformers. The second section is on application of Markov chain model on the
condition parameter data. The final section is on the analysis based on Chi-square test to find
the goodness-of-fit between predicted and computed values for consistency to the hypothesized
distribution and percentage of absolute error for results accuracy.

2. Modelling of Transformer Future Condition

MM was implemented to evaluate the future states of individual condition parameter data for
the transformer population. The overall framework for modelling transformer future condition based
on individual condition parameter can be seen in Figure 1. The individual condition parameter of
the transformer population was ranked and sorted based on recommended limits as per IEEE Std.
C57.104-2008 and IEEE Std. C57. 106-2015. Next, the average and transition probabilities for each of
the condition parameters were computed based on a non-linear optimization technique. The final
step was to determine the future condition states probability distribution based on the MM algorithm.
Analysis was carried out based on Chi-square test and percentage of absolute error.
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Future condition process of transformers was modelled based on discrete time stochastic processes
approach for random variables known as MM which can be seen in Figure 2.
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Figure 2. Five-states Markov process model for transformer future condition [24].

Future state was decided based on individual condition parameter data of employed CBM
techniques, namely H2, CH4, C2H6, C2H4, C2H2, CO, CO2, dielectric breakdown voltage, interfacial
tension, colour, acidity, water content and 2-furfuraldehyde. The measured concentrations of these
parameters were grouped into five discrete categories known as “very good”, “good”, “fair”, “poor”
and “very poor” based on recommended limits by IEEE Std. C57. 104-2008 and IEEE Std. C57.106-2015
as tabulated in Tables 1 and 2 [4,31,32]. State 1 and State 5 represent “very good” and “very poor”
conditions respectively. However, the final states for dissolved gases and oil quality would only end
up into “poor” state except for 2-FAL which could reach to “very poor” state.

Table 1. Recommended condition parameter data limit and condition for dissolved gases.

State Condition
H2 CH4 C2H2 C2H4 C2H6 CO CO2

ppm ppm ppm ppm ppm ppm ppm

1 Very good ≤100 ≤120 ≤1 ≤50 ≤65 ≤350 ≤2500
2 Good 101−700 121−400 2−9 51−100 66−100 351−570 2501−4000
3 Fair 701−1800 401−1000 10−35 101−200 101−150 571−1400 4001−10,000
4 Poor >1800 >1000 >35 >200 >150 >1400 >10,000

Table 2. Recommended condition parameter limit and condition for oil quality.

State Condition
Dielectric

Breakdown Voltage
Interfacial

Tension Colour Acidity Water
Content 2-FAL

kV mN/m g/cm3 mg KOH/g ppm ppb

1 Very good ≥45 ≥25 ≤1.5 ≤0.05 ≤30 0–100
2 Good 35−45 20−25 1.5−2.0 0.05−0.1 30−35 100−500
3 Fair 30−35 15−20 2.0−2.5 0.1−0.2 35−40 500−1000
4 Poor ≤30 ≤15 ≥2.5 ≥0.2 ≥40 1000−5000
5 Very poor - - - - - >5000

A typical MM for facilities deterioration based on [33] is shown in Equation (1). The transition
probability matrix T describes the probability of transitioning states within each time interval,

T =


T11 T12 T13 T14 T15

0 T22 T23 T24 T25

0 0 T33 T34 T35

0 0 0 T44 T45

0 0 0 0 T55

 (1)

where Tij is equal to the probability of a condition parameter to move from state i to state j in one
year. Note that Tij = 0 for terms where j is greater than i. This imposes that the individual condition
parameter cannot improve and transfer to its previous state. In total, 2 assumptions were considered
in this study for simplification of the model. First, the future condition model only considered normal
distribution and monotonic. Second, the summation of probabilities in each row of MM transition
matrix was made equal to one. Only five Tij terms were needed to define MM transition matrix used
in this study as shown in Equation (2).
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T =


T11 1− T11 0 0 0
0 T22 1− T22 0 0
0 0 T33 1− T33 0
0 0 0 T44 1− T44

0 0 0 0 1

 (2)

The last term T55 = 1, because the future condition was assumed to end up in the poorest
condition. Since MM is memoryless and given an initial distribution, q0, the distribution of the
condition in year n can be represented by Equation (3).

qn = q0Tn (3)

Based on Equation (3), the initial condition state vector was assumed as an initial condition
of a newly installed transformer where q0 =

[
1 0 0 0 0

]
. Finally, the condition state of the

transformer population at n year can be obtained by multiplying the probability distribution for that
year with transform matrix, RT as shown in Equation (4). The matrix was formed using the input from
the upper limit value of each recommended limit for each parameter in each of the analyses.

D = qnRT (4)

where D is the condition value for each parameter and RT is the transform matrix.

Transition Probability Derivation

According to [34,35], there are two non-linear functions based on regression technique that can be
used to compute the terms T11 − T44 in the transition matrix. The first technique is minimization of
summation of the squared difference between the relative frequency and discrete distribution and the
second technique is minimization of the mean-square error for each row in the transition matrix. In this
study, minimization of absolute difference between the predicted and computed average individual
condition parameter data was employed as a nonlinear optimization technique as seen in Equation (5).

min
25

∑
n=1
|C(n)− P(n, T)| subject to 0 ≤ T ≤ 1 (5)

where n is the number of years in each zone, T is the transition probabilities (T11, T22,T33,T44,), C(n) is
the average of computed single-parameter data at year n, and E(n, T) is the predicted values of
conditions single-parameter data by Markov chain at year n. The transition matrix for each zone was
then computed based on Equations (4) and (5).

3. Case Study

3.1. Application of Markov Chain Model to Transformer Condition Data

In total, 1322 oil samples from 373 distribution transformers with voltage and power ratings of
33 kV and 30 MVA were analysed. The range of age for the transformer population is between 1 to
25 years. In total, the oil samples were clustered into 5 zones of age as shown in Figure 3.

Next, the average of each of the individual condition parameter data for age 1 to 25 were computed.
Based on the computed values, the transition probabilities (T11, T22, T33, T44) were determined by
minimization of the summation of the squared difference between the relative frequency in each
year based on Equation (4). The example of the transition matrices obtained for hydrogen and
2-furfuraldehyde by each zone are tabulated in Table 3.
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Figure 3. Distribution of oil samples used in case study.

Table 3. Transition matrix for hydrogen and 2-furfuraldehyde according to zone.

Zone Hydrogen, H2 2-Furfuraldehyde, 2-FAL

1

0.9766 0.0234 0 0 0 0.9900 0.0100 0 0 0
0 0.8333 0.1667 0 0 0 0.9900 0.0100 0 0
0 0 0.0100 0.9900 0 0 0 0.8136 0.1864 0.0000
0 0 0 0.0100 0.9900 0 0 0 0.0252 0.9748
0 0 0 0 1 0 0 0 0 1

2

0.9900 0.0100 0 0 0 0.9899 0.0101 0 0 0
0 0.0100 0.9900 0 0 0 0.3947 0.6053 0 0
0 0 0.0100 0.9900 0 0 0 0.9460 0.0594 0
0 0 0 0.0100 0.9900 0 0 0 0.9360 0.0638
0 0 0 0 1 0 0 0 0 1

3

0.9900 0.0100 0 0 0 0.6301 0.3699 0 0 0
0 0.9900 0.0100 0 0 0 0.9899 0.0101 0 0
0 0 0.0100 0.9900 0 0 0 0.9456 0.0544 0
0 0 0 0.0100 0.9900 0 0 0 0.3139 0.6860
0 0 0 0 1 0 0 0 0 1

4

0.9157 0.0013 0 0 0 0.0343 0.9657 0 0 0
0 0.1164 0.8836 0 0 0 0.9899 0.0100 0 0
0 0 0.0100 0.9900 0 0 0 0.6246 0.3754 0
0 0 0 0.0100 0.9900 0 0 0 0.3377 0.6623
0 0 0 0 1 0 0 0 0 1

5

0.9900 0.0100 0 0 0 0.0100 0.9900 0 0 0
0 0.9900 0.0100 0 0 0 0.9664 0.0336 0 0
0 0 0.0100 0.9900 0 0 0 0.2921 0.7079 0
0 0 0 0.0100 0.9900 0 0 0 0.3099 0.6901
0 0 0 0 1 0 0 0 0 1

Next, the future condition of the transformer for hydrogen and 2-furfuraldehyde were determined
based on MM algorithm in Equation (3). The probability distribution for each year hydrogen and
2-furfuraldehyde can be seen in Equations (6) and (7), respectively.
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
q1

q2

q3

q4

q5

 =


q0 × T1

q1 × T2

q2 × T3

q3 × T4

q4 × T5

 =


0.9766 0.0234 0 0 0
0.9538 0.0423 0.0039 0 0
0.9315 0.0576 0.0071 0 0
0.9097 0.0698 0.0097 0.0071 0
0.8884 0.0794 0.0117 0.0096 0.0108

 (6)


q1

q2

q3

q4

q5

 =


q0 × T1

q1 × T2

q2 × T3

q3 × T4

q4 × T5

 =


0.9900 0.0100 0 0 0
0.9801 0.0198 0.0001 0 0
0.9703 0.0294 0.0003 0 0
0.9606 0.0388 0.0005 0.0001 0
0.9510 0.0480 0.0008 0.0001 0.0001

 (7)

Similar process was repeated to find the probability distribution for zone 2 to the last zone.
The initial state, q0 of the next zone was revised to the last distribution probability obtained in the
previous zone. The corresponding matrices for initial state vectors used to obtain the probability
distribution for hydrogen and 2-furfuraldehyde are shown in Equations (8) and (9), respectively.

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

 =


1.0000 0 0 0 0
0.8884 0.0794 0.0117 0.0096 0.0108
0.8449 0.0086 0.0087 0.0088 0.1290
0.8035 0.0488 0.0004 0.0003 0.1470
0.5172 0.0008 0.0008 0.0010 0.1983

 (8)


Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

 =


1.0000 0 0 0 0
0.9510 0.0480 0.0008 0.0001 0.0001
0.9041 0.0156 0.0686 0.0107 0.0010
0.0898 0.8061 0.0742 0.0055 0.0245

0 0.8529 0.0279 0.0191 0.1001

 (9)

The computed average for all condition parameters for zones 1 to 2 were used in the transition
matrix for training and testing purposes, meanwhile the computed data for zones 3, 4 and 5 were used
as validation to the predicted individual condition parameter data obtained from MM algorithm.

The comparison between predicted and computed individual condition parameter data
throughout the sampling period are plotted in Figures 4–6 respectively. The majority of the predicted
H2 are higher than computed H2 as shown in Figure 4. The predicted and computed H2 are in “good”
condition until 8 years and 15 years, respectively. Both predicted and computed H2 reinstate to “very
good” condition until 25 years. The predicted CH4 is higher than computed CH4 during the first
9 years. After 9 years, the predicted CH4 is close with computed CH4. The predicted CH4 is in “good”
condition during the first 5 years. Between 5 and 9 years, it ends up in “fair” condition. After 9 years,
it reinstates to “very good” condition. The computed CH4 maintains in “very good” condition for
25 years. The predicted C2H2 is in-line with computed C2H2 during the first 12 years. After 13 years,
the predicted C2H2 starts to fluctuate at values higher than computed C2H2. The predicted C2H2 is
in “good” condition during the first 9 years. Between 10 and 23 years, the predicted C2H2 is “fair”
condition. After 23 years, it reinstates to “good” condition. The computed C2H2 is in “very good”
condition during the first 13 years. The computed C2H2 is in “good” condition between 14 and
24 years. After 24 years, it reinstates to “very good” condition. The trend for predicted C2H4 is similar
to CH4 where it is higher than computed C2H4 during the first 5 years and remains close to each
other after 6 years. The predicted C2H4 is in “good” condition during the first 3 years. After 3 years,
the predicted C2H4 ends up in “very good” condition. The computed C2H4 maintains in “very good”
condition for 25 years. The predicted C2H6 shows an agreement with the computed C2H6 during the
first 17 years. The predicted C2H6 deviates from computed C2H6 after 17 years. The predicted C2H6 is
in “good” condition during the first 5 years. The predicted C2H6 enters “fair” condition between 6
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and 13 years. After 13 years, it reinstates to “very good” condition. The computed C2H6 is in “good”
condition during the first 4 years. Between 9 and 11 years, the computed C2H6 enters “fair” condition.
After 11 years, it reinstates to “very good” condition. The predicted CO is higher than computed CO
during the first 4 years. After 4 years, the majority of predicted CO shows reasonable agreements with
computed CO. The predicted CO maintains in “good” condition for 25 years. The computed CO is
in “very good” condition during the first 4 years. The computed CO is in “good” condition between
5 and 23 years. After 23 years, it ends up in “very good” condition. The predicted CO2 is higher
than computed CO2 during the first 3 years. After 3 years, the majority of both predicted CO2 shows
reasonable agreements with computed CO2. The predicted CO2 is in “good” condition during the first
5 years. The predicted CO2 is in “fair” condition between 6 and 23 years. After 23 years, the predicted
CO2 reinstates to “good” condition. The computed CO2 is in “very good” condition during the first
3 years. The computed CO2 is in “good” condition between 4 and 6 years. It enters “fair” condition
between 7 and 23 years. After 23 years, the computed CO2 reinstates to “good” condition.
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The predicted dielectric breakdown voltage is lower than computed dielectric breakdown voltage
during the first 12 years. After 12 years, the predicted dielectric breakdown voltage is close to the
computed dielectric breakdown voltage. The predicted and computed dielectric breakdown voltages
are in “very good” condition during the first 15 years. After 16 years, the predicted and computed
dielectric breakdown voltages end up in “good” condition. The predicted interfacial tension shows an
agreement with the computed interfacial tension during the first 21 years. The predicted interfacial
tension deviates from computed interfacial tension starting from 22 years. The predicted interfacial
tension is in “very good” condition in the first 3 years. It is in “good” condition between 3 and 16 years.
The predicted interfacial tension ends up in “fair” condition after 16 years. The computed interfacial
tension is in “very good” condition in the first 4 years. It is in “fair” condition between 5 and 16 years.
After 16 years, the computed interfacial tension enters “fair” condition. The predicted colour is higher
than computed colour during the first 7 years. The predicted colour is in-line with computed colour
until 16 years and deviates after 16 years. The predicted colour is in “good” condition during the
first 11 years. The predicted colour is in “fair” condition between 12 and 16 years. It enters “poor”
condition between 17 and 19 years. After 19 years, the predicted colour reinstates to “fair” condition.
The computed colour is in “very good” condition during the first 7 years. It is in “fair” condition
between 8 and 13 years. The computed enters “fair” condition between 14 and 16 years. After 16 years,
it ends up in “poor” condition. The predicted acidity is higher than computed acidity during the
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first 7 years. After 7 years, the predicted acidity is close with the computed acidity. The predicted
and computed acidity are in “very good” condition during the first 7 years. Between 8 and 16 years,
the predicted and computed acidity are in “good” condition. After 17 years, the predicted and
computed acidity end up in “fair” condition. The trend for predicted water content is the same as
acidity where it is higher than computed value during the first 7 years and remains close to each
other after 8 years. The predicted and computed water content maintain in “very good” condition for
25 years.

The trend for predicted 2-FAL is higher than computed 2-FAL during the first 8 years and remains
close to each other between 8 and 17 years. The predicted 2-FAL deviates from computed C2H6
starting from 18 years. The predicted 2-FAL is in “good” condition during the first 12 years. It is in
“fair” condition between 13 and 18 years. After 18 years, it ends up in “poor” condition. The computed
2-FAL is in “very good” condition during the first 7 years. It is in “good” condition between 8 and
13 years. The computed 2-FAL enters “fair” condition between 14 and 22 years. After 22 years, it ends
up in “poor” condition.
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3.2. Chi-Square Test and Percentage of Absolute Error

The Chi-square test shown in Equation (10) was applied for individual condition parameters
to find the goodness-of-fit between predicted and computed values for consistency to the
hypothesized distribution.

X2 =
25

∑
n=1

(Pn − Cn)
2

Cn
(10)

where n is the number of observations, Cn is the computed value at n year, Pn is the predicted value
at t year and X2 is a Chi-square distribution coefficient with degree of freedom, n− 1. In this study,
the degree of freedom was considered as 0.05, therefore the area of rejection, α fall after 13.85. The X2

results for H2, CH4, C2H2, C2H4, C2H6, CO, CO2, dielectric breakdown voltage, interfacial tension,
colour, acidity, water content, and 2-furfuraldehyde are tabulated in Tables 4 and 5, respectively.
The majority of the predicted values for H2, C2H2, C2H6, CO and CO2 fall close to the computed
values as shown in Table 4. The X2 for CH4 and C2H4 fall in the area of rejection due to mainly by
higher discrepancies between the predicted and computed values in Zone 1 for both gases.

Table 4. Chi-square distribution coefficient for dissolved gases.

H2 CH4 C2H2 C2H4 C2H6 CO CO2

X2 1.12 68.55 2.32 69.23 2.57 0.31 0.12
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The majority of predicted values for dielectric breakdown voltage, interfacial tension, colour,
acidity, water content and 2-FAL are observed to fall close to the computed values which indicate
consistency to the hypothesized distribution as shown in Table 5.

Table 5. Chi-square distribution coefficient for oil quality.

Dielectric Breakdown Voltage Interfacial Tension Colour Acidity Water Content 2-FAL

X2 0.76 0.71 2.78 0.71 1.03 0.59

The average percentage error between the predicted and computed of individual condition
parameter curves was carried out based on Equation (11).

Average percentage error (%) =
∑25

n=1

(
|Yn−Xn |
|Yn | × 100%

)
n

(11)

where Yn is the computed individual condition parameter, Xn is the predicted individual condition
parameter, and n is the age of the transformer. The computed average percentage error for individual
condition parameter and accuracy levels are tabulated in Tables 5 and 6, respectively. The highest
average percentage error in zone 1–5 is C2H4 and the lowest is H2 for a period of 25 years as shown in
Table 6. Zooming into zone 3–5, the highest average percentage error is C2H2 and the lowest is CO2.
In term of accuracy level, CH4 has the highest accuracy followed by H2, CO, CO2, C2H4, C2H6, C2H2.
The distribution of absolute percentage errors for H2, CH4, C2H2, C2H4, C2H6, CO and CO2 are shown
in Figure 7.

Table 6. Average percentage error and accuracy level for dissolved gases.

H2 CH4 C2H2 C2H4 C2H6 CO CO2

Average percentage error for zone 1–5 (%) 2.68 11.90 12.09 17.65 13.67 3.95 2.83
Average percentage error zone 3–5 (%) 2.91 1.48 18.66 11.84 13.10 3.44 2.81

Accuracy level (%) 97.09 98.52 81.34 88.16 86.90 96.56 97.19

Colour has the highest average percentage error in zone 1–5 followed by dielectric breakdown
voltage, interfacial tension, water content, acidity and 2-FAL for a period of 25 years as shown in
Table 7. In zone 3–5, the highest and lowest average percentage errors are colour and acidity. Acidity
has the highest accuracy while colour has the lowest accuracy. Figures 8 and 9 show the distribution of
absolute percentage errors for dielectric breakdown voltage, interfacial tension, colour, acidity, water
content and 2-FAL.

Table 7. Average percentage error and accuracy level for oil quality.

Dielectric
Breakdown Voltage

Interfacial
Tension Colour Acidity Water

Content 2-FAL

Average percentage
error for zone 1–5 (%) 14.79 13.22 17.44 3.96 6.83 2.71

Average percentage
error zone 3–5 (%) 6.62 14.51 16.24 1.66 2.12 3.58

Accuracy level (%) 93.38 84.49 83.76 98.34 97.88 96.42
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4. Conclusions

It is found that MM can be used to represent approximate majority of the condition parameters.
The prediction accuracy depends on the availability of the data at different zones. Overall, the trends
of the predicted are close to computed condition parameters. Analysis based on Chi-squared test
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for goodness-of-fit reveals that the X2 values of majority condition parameters data fall outside the
rejection area, α = 13.85 for 0.05 degree of freedom. However, the X2 for CH4 and C2H4 fall in the
area of rejection which are 68.55 and 69.23, where it is mainly contributed by higher discrepancies
between predicted and computed condition parameters in Zone 1. It is also observed that the lowest
and highest accuracy levels for all the predicted values of all the condition parameters are 81.46% and
98.52%. Overall, MM can be implemented by utilities that utilize CBM data in their asset management
approach for prediction of transformers future condition.
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Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Network
CBM Condition Based Monitoring
CH4 Methane
C2H2 Acetylene
C2H4 Ethylene
C2H6 Ethane
CO Carbon monoxide
CO2 Carbon dioxide
2-FAL 2-Furfuraldehyde
g/cm3 gram per cubic centimetre
H2 Hydrogen
HI Health Index
KOH/g mass of potassium hydroxide per grams
kV kilo-volt
mg milligrams
mN/m millinewton per metre
MM Markov Model
ppm parts-per-million
ppb parts-per-billion
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