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Abstract: Finite-control-set model predictive current control (FCS-MPCC) has been widely 

investigated in the field of motor control. When the discrete motor prediction model is not obtained 

accurately, prediction error often occurs, which can result in improper determinations of optimal 

voltage vectors and can further affect the control performance of motor systems. However, papers 

evaluating the motor control performance employing FCS-MPCC rarely consider prediction error 

and its utilization to weaken the influence of inaccurate prediction model. This paper investigates 

in depth the prediction error caused by three influencing factors from the perspective of model 

accuracy—discretization method, prediction stepsize, and parameter mismatch. Firstly, the 

evaluation index, prediction error, is defined and its formulas considering the above three factors 

are derived based on interior permanent magnet synchronous motor (IPMSM). Then, the 

theoretical analysis of prediction error is provided. Finally, experimental results of an IPMSM drive 

system are presented to verify and complement the theoretical analysis. Both the theoretical 

analysis and experimental results fully elaborate the prediction error, which can offer practical 

guidelines for the evaluation and improvement of motor control performance, especially for 

FCS-MPCC in IPMSM applications. 

Keywords: finite-control-set model predictive current control (FCS-MPCC); prediction error; 

discretization method; prediction stepsize; parameter mismatch; interior permanent magnet 

synchronous motor (IPMSM) 

 

1. Introduction 

The interior permanent magnet synchronous motor (IPMSM) is widely applied in many 

industry applications due to its high power intensity, high efficiency, high toque density, and wide 

speed range [1]. As an important control objective, the current of IPMSM is usually adjusted by 

utilizing vector control (VC) schemes based on proportional-integral (PI) controllers and 

pulse-width-modulation (PWM) strategies [2]. It shows good control performance but suffers from 

the problems of PI-parameters tuning and constraints handling. With the improvement of digital 

microprocessors, model predictive control (MPC), which has been successfully applied in process 

industry control, is becoming a potential alternative due to its obvious advantages, such as intuitive 

control process, fast dynamic responses, and easy inclusion of multiple control objectives and 

nonlinear constraints [3]. 

MPC is usually divided into continuous-control-set MPC (CCS-MPC) and finite-control-set 

MPC (FCS-MPC). In CCS-MPC, an optimization problem is solved online to get the desired voltage 

vector, which is then synthesized through a modulator [4]. FCS-MPC can take advantage of the 
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discrete nature of power converters without any modulator [5]. Available voltage vectors that 

represent all switching states are enumerated to complete the prediction process, and the optimal 

one is finally selected for the next control period based on a designed cost function. Therefore, 

FCS-MPC is quite simple and intuitive compared with CCS-MPC. 

For MPC strategies in the field of motor control, the prediction process mainly utilizes discrete 

motor prediction model to calculate the future states of motor systems and to select one optimal 

voltage vector according to the prediction results. Therefore, the control performance of motor 

systems is significantly affected by the prediction accuracy of motor prediction model. Generally 

speaking, there are three main factors that can influence the model prediction accuracy. 

The first factor is the discretization method to obtain motor prediction model from motor 

continuous equations. It is well known that there are several approximation methods for differential 

equations [6]. In the field of motor control, forward Euler approximation method is widely used to 

obtain the discrete motor prediction model due to its simplicity and low computational burden for 

single-step prediction applications [7–9]. In Reference [10], a modified Euler integration method was 

adopted to achieve higher model accuracy, which actually transformed the implicit Tustin 

approximation to an explicit one by combining with forward Euler approximation. In Reference [11], 

two-order Taylor series expansion was utilized to achieve faster signal propagation from input 

changes to all controlled states, especially the mechanical speed, and relative degree one could be 

obtained [12]. In References [13,14], a discretization method was proposed considering the PWM 

pulse patterns within each sampling period for deadbeat predictive control to obtain an accurate 

discrete model. 

The second factor is the prediction stepsize, which is usually equal to the control interval and 

sampling time for single-step MPC. It is well known that the prediction stepsize is closely related to 

the final control performance. In general, the shorter the prediction stepsize, the better is the 

steady-state performance; this has been empirically shown by experimental results in literature 

[15,16]. In particular, when system variables and inputs change rapidly, a long prediction stepsize 

cannot respond immediately and may yield large tracking errors [11]. However, the prediction 

stepsize cannot be reduced indefinitely due to the hardware limitations and the power level of 

applications [17]. 

The third factor is the parameter mismatch between prediction model and actual motor. Due to 

the inaccuracy of measurements or settings, the parameters in prediction model may not be the same 

as the actual values. Besides, the motor parameters also change according to the magnetic saturation 

and temperature [18]. Such parameter mismatches can bring different degrees of prediction error, 

which may further lead to wrong selection of optimal voltage vector and deteriorate system control 

performance. Many published papers have proposed methods to solve this problem, including 

designing model-free prediction algorithm [19,20], identifying parameters online [9,21,22], and 

constructing observers to estimate the influence of parameter deviations [23–25]. However, the 

model-free predictive control poses relatively high requirements for hardware implementation of 

the drive system, while the latter two categories are prone to making control algorithms complex, 

which may be not suitable for the real-time implementation and may even result in instability of the 

system. 

Although there are above-state-of-the-art published works about MPC methods in terms of 

discretization method, prediction stepsize, and model parameter mismatch, little direct attention has 

been given to the prediction error and its relationship with the three influencing factors mentioned 

above. However, for MPC strategies including FCS-MPC, the prediction error is an inherent and 

essential feature, which should be considered to evaluate control performance. In Reference [26], the 

prediction error between the models with accurate parameters and with parametric mismatches was 

studied by simulation based on a generalized voltage-source converter. In Reference [27], the 

weighted prediction errors between predicted and measured current values in previous control 

interval were utilized to compensate for the prediction error in present prediction process; this can 

improve the robustness of the surface permanent magnet synchronous motor (SPMSM) system and 

has quite a simple structure. The study showed the feasibility and potentiality of utilizing prediction 
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error to improve the control performance when employing finite-control-set model predictive 

current control (FCS-MPCC) algorithm. However, the analysis of prediction error is still limited in 

both References [26,27], especially in terms of IPMSM, which is not good for further utilization of 

prediction error. 

Due to the above reasons, this paper aims to fill the gap of prediction error analysis based on the 

framework of FCS-MPCC strategy and IPMSM. Firstly, the prediction error is defined as the 

difference between prediction value and actual value from the perspective of practical 

implementation. Then, it takes IPMSM as control object and utilizes FCS-MPCC as control strategy 

to derive formulas of prediction error considering different discretization orders, prediction 

stepsizes, and parameter mismatch degrees. Finally, comprehensive theoretical and experimental 

analyses of prediction error and its variation trends are conducted. The investigations can offer a 

new perspective to evaluate motor control performance when employing FCS-MPCC strategy in 

IPMSM applications. Besides, it can also lay the foundation for new methods to compensate for 

prediction error and improve motor control performance. 

The rest of the paper is organized as follows: Section 2 introduces the basic FCS-MPCC 

algorithm. In Section 3, the prediction error is clearly defined and its detailed analytical studies for 

three influencing factors are presented separately. Experimental results are presented to verify the 

theoretical analysis in Section 4. Finally, the paper is concluded in Section 5. 

2. Basic FCS-MPCC Algorithm 

2.1. IPMSM Model 

The continuous state equation of an IPMSM in d-q reference frame is expressed as [9]: 
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where 

ud, uq d- and q-axis voltage components 

id, iq d- and q-axis current components 

Rs stator resistance 

Ld, Lq d- and q-axis inductance components 

ψf flux linkage of permanent magnet 

ωe electrical angular speed 

p differential operator 

Due to its implementation in microprocessors, such as digital signal processor (DSP), the 

continuous state Equation (1) has to be discretized for FCS-MPCC algorithm. The forward Euler 

approximation method is commonly utilized to obtain the discrete motor prediction model as [9]: 
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where the superscript P represents the prediction quantity, Ts is the control period, and X(k) (k = 1, 2, 

3, …) is the value of X in kth control period kTs. 

2.2. Control Delay Compensation 
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When the FCS-MPCC algorithm is executed on DSP, there is a control delay caused by 

computational burden, which can deteriorate the control performance. In Reference [28], the control 

delay is explained clearly, and a two-step prediction method, shown in Equation (3), is proposed to 

realize control delay compensation. 
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2.3. Cost Function 

The cost function is designed to evaluate the prediction results and select the optimal voltage 

vector. It is generally expressed by including the errors between prediction values of controlled 

variables and their reference values. There are several ways to calculate the errors, such as the 

absolute error, square of error, or integration of error [29]. Taking into account the tradeoff between 

simplicity and evaluation performance, the squared form is often utilized for FCS-MPCC, which is 

written as follow: 

= + − + + + − +2 2| ( 2) ( 2)| | ( 2) ( 2)|ref p ref p

d d q q
g i k i k i k i k  (4) 

where the superscript ref represents the reference quantity. It should be noted that the controlled 

variables are d- and q-axis currents, which have the same unit, magnitude order, and significance. 

Therefore, there is no need to add weighting factors in the cost function. 

For a two-level, three-phase voltage-source inverter (VSI) driven motor system, there are eight 

possible switching states, which can produce eight voltage vectors—six active voltage vectors and 

two null voltage vectors. The future states of motor systems under these eight voltage vectors are 

predicted according to Equations (2) and (3), and the prediction results are then evaluated using the 

cost function given in Equation (4). The one that can minimize g is chosen as the optimal voltage 

vector, and the corresponding switching signals will drive the inverter in the next control interval. 

The basic FCS-MPCC control scheme for IPMSM is shown in Figure 1. 

 

Figure 1. Block diagram of finite-control-set model predictive current control (FCS-MPCC) scheme. 

3. Prediction Error Analysis 

The prediction error (PE) is an important index to be considered in MPC algorithms. It can 

reflect the accuracy of prediction model and further influence the control performance of motor 

systems. For FCS-MPCC, the prediction error can be defined as the difference between prediction 

values of d- and q-axis currents and their corresponding actual values, which is expressed as: 
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= + − +PE ( 1) ( 1)p

dq dq
i k i k  (5) 

As mentioned in the Introduction, there are three main factors which influence the prediction 

error—discretization method, prediction stepsize, and parameter mismatch. In the following parts, 

these factors are separately analyzed for single-step prediction applications. 

3.1. Discretization Method 

There are various discretization methods to approximate the motor. In essence, the objective of 

these discretization methods is the same—to obtain higher similarity to the actual motor as well as to 

consider the implementation in practical applications. Among these methods, the Taylor series 

expansion can be regarded as a representative discretization method due to its flexible expansion 

orders. There can be a wide window for the observation of relationship between prediction error and 

discretization methods, varying from the simplest discretization to accurate discretization just by 

adjusting the discretization order. 

The continuous state space equation in Equation (1) can be rewritten as: 

= +( ) ( ) ( )+p t t tx Ax Bu D  (6) 

where x = [id   iq]T, u = [ud   uq]T and the coefficient matrices are: 
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Then, the Taylor series expansion is applied to the differential terms of variables id and iq: 
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and zero-order-hold inputs are considered during the control interval Ts, so the discrete model of 

Equation (6) can be obtained as: 

−+ = + − +( 1) ( ) ( ) [ ( ) ]k k k1

D D
x A x A I A Bu D  (11) 

where the state transition matrix AD is given as: 
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and the input matrix is (AD − I)A−1B. Equation (11) can be regarded as the actual motor as well as an 

ideal prediction model. Taking account of implementation requirements, it can be simplified by 

truncating Taylor series expansion by N shown as: 

−+ = + − +1( 1) ( ) ( ) [ ( ) ]P k k k
D_N D_N

x A x A I A Bu D  (13) 
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It should be noted that Equation (13) becomes Equation (2) when N = 1, which means that the 

forward Euler approximation is a specific case of Taylor series expansion approximation. Assuming 

that there are no deviations of motor parameters, the prediction error can be derived from Equations 

(11) and (13) as: 

1 1 1 1

( 1) ( 1) ( ) ( )
( 1)! ( 1)! ( 1)!

N N N N N N
P s s s

T T T
k k k k

N N N

+ + + +

= + − +  − − −
+ + +

A A B A D
PE x x x u  (15) 

It can be found from Equation (15) that the prediction errors of stator currents are related to 

ωe(k), ud(k), uq(k), id(k), and iq(k), which may vary in different control periods. However, for every 

specific control period when these variables are determined, it can be clearly seen that the three 

terms in Equation (15) are proportional to N + 1 power of control interval Ts, which is much less than 

1. Therefore, the prediction error will decrease when the Taylor series expansion is truncated by high 

orders. However, it is noticeable that the complexity of prediction model in Equation (13) will 

increase with an increase in N. Therefore, it is necessary to select a proper discretization order to 

balance the prediction error and calculation burden for specific applications. 

3.2. Prediction Stepsize 

In general, the prediction stepsize of most single-step MPC methods is fixed as the control 

period and sampling time Ts. It can be seen from Equation (15) that the prediction error is closely 

related to Ts. If the prediction stepsize is short enough, the prediction error can be reduced to a very 

small value, and the increased prediction error caused by low discretization order can even be 

compensated. Therefore, the actual motor can be simulated using a model obtained by forward 

Euler approximation with infinitely small stepsize. 

From the perspective of MPC algorithm, one remarkable feature, as well as an advantage, is its 

receding horizon optimization. Specifically, FCS-MPCC determines the optimal voltage vector based 

on the current values at present sampling instant, and the objective of this optimal voltage vector is 

aimed at finally eliminating the tracking error in the same control period. Therefore, the MPC 

algorithm seeks an optimal solution in single-step horizon or a multi-step prediction horizon. If the 

prediction stepsize is too large, the prediction error will increase, and the optimization for multi-step 

prediction horizon may be hard to guarantee. 

However, considering practical applications, the length of prediction stepsize is limited by 

several factors, such as the power level of applications, hardware limitations, switching frequency, 

control performance requirements, stability boundary, execution time of MPC algorithm, and so on. 

Therefore, the prediction stepsize—control period and sampling time—cannot be too long or too 

short, which is a critical factor to choose properly. 

3.3. Parameter Mismatch 

It can be seen from Equation (13) that the motor prediction model involves several parameters 

including Rs, ψf, Ld, and Lq. However, the parameters in the prediction model may not be the same as 

the practical motor parameters because they may not be measured accurately and the practical 

parameters also change during the operation. Such parameter mismatch can lead to prediction 

errors and further bring torque ripples and even instability for the motor system. 

Among the parameters in prediction model, Ld and Lq are the two most commonly considered 

parameters that affect the model accuracy. There are two reasons for the above result. Firstly, the 

stator resistance and permanent magnet flux linkage are mainly influenced by the temperature 

within motor, while d- and q-axis inductances change due to magnetic saturation that is related to d- 

and q-axis currents. The temperature within motor changes much slower than the stator current, so 
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the stator inductances are easier to change and their changing periods are shorter than that of stator 

resistance and permanent magnet flux linkage. Secondly, the mismatch of stator inductances can 

yield greater influence on prediction accuracy and motor control performance compared with other 

parameters, which has been presented in several works [27,30,31]. Therefore, this paper mainly 

focuses on the prediction error analysis caused by stator inductances mismatch. 

In order to facilitate the theoretical analysis of prediction error caused by parametric mismatch, 

the prediction model obtained through forward Euler approximation shown in Equation (2) is 

employed, and the practical motor is also simplified as Equation (2) to conduct the following 

mathematical analysis. The stator inductances in prediction model are defined as Ldp and Lqp, while 

the stator inductances of practical motor are defined as Ldn and Lqn. The relationship between the 

above two sets of stator inductances can be expressed as Ldp = Nd·Ldn, Lqp = Nq·Lqn, where Nd and Nq are 

coefficients. The prediction values and actual values of stator currents can then be expressed as: 
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s e qpP s s s
d d d q d

dp dp dp
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From Equations (16)–(19), the prediction errors of d- and q-axis currents, namely PE_id and 

PE_iq, can be calculated as: 
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The analysis of ωe, ud(k), uq(k), id(k), and iq(k) in Equations (20) and (21) is the same as that in 

Section 3.1. The prediction errors are affected only by stator inductance mismatches. Based on 

Equations (20) and (21), the prediction error caused by the inaccuracy of d- and q-axis stator 

inductances can be further investigated separately. Assuming that the parameter deviation only 

exists on Ld, i.e., Ldp = Nd·Ldn and Lqp = Lqn, Equations (20) and (21) can be rewritten as: 

 = − − −
 

1
PE_ (1 ) ( ( ) ( )) ( )s

d s d e qn q d

dn d

T
i R i k L i k u k

L N
 (22) 

PE_ (1 ) ( )s e dn
q d d
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T L
i N i k

L


= −  (23) 

As mentioned before, the speed, current, and voltage components may vary during operation, 

so the signs of related terms in Equations (22) and (23) are hard to be determined. Therefore, the 

absolute value of prediction error is evaluated instead. It can be seen from Equation (22) that if 
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there is no mismatch of Ld, the prediction error of id is zero. If Nd changes from 1 to a greater or 

smaller value, the absolute value of PE_id will increase from 0. It is worth noting that the same 

variation of Ld for both directions can lead to a different influence on PE_id. Ignoring the stability 

issue, if Nd→+∞, 1-1/Nd→1; if Nd→0, 1-1/Nd→-∞, which means that negative deviation of Ld leads 

to greater prediction error of id than the positive deviation. As for the prediction error of iq in 

Equation (23), it is proportional to the parameter deviation of Ld. 

Considering the mismatch of Lq, i.e., Lqp = Nq·Lqn and Ldp = Ldn, the prediction errors can be 

obtained from Equations (20) and (21) as: 


= −PE_ ( 1) ( )

s e qn

d q q

dn

T L
i N i k

L
 (24) 

1
PE_ (1 ) ( ( ) ( ) ) ( )s
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i R i k L i k u k
L N

  = − + + −
   (25) 

It can be found that similar conclusions can be obtained from Equations (24) and (25) due to their 

similar formulas to Equations (22) and (23). 

When both mismatches of Ld and Lq are taken into account, the variation of prediction error 

becomes more complicated. However, considering the dominant role of d- and q-axis voltage values 

for prediction error Equations (20) and (21), it can still be seen that the prediction error of id tends to 

be affected by the mismatch of Ld, especially by negative deviations, and the same relationship also 

applies to the prediction error of iq and mismatch of Lq. 

4. Experimental Results 

In this section, experimental results are presented to verify the theoretical analysis about the 

three influencing factors to prediction error of FCS-MPCC algorithm. Figure 2 shows the 

experimental setup utilized in this work. The plant is a 2-kW IPMSM system (Weiheng Technology, 

Hangzhou, China) whose key parameters are listed in Table 1. The load is an induction motor (IM), 

which can be controlled in both speed mode and torque mode. The power circuit includes a 

two-level, three-phase VSI with a DC-link voltage of 300 V. A dSPACE1005 platform (dSPACE 

GmbH, Paderborn, Germany) is employed for the execution of FCS-MPCC algorithm. 

 

Figure 2. Experimental setup. 

In experiments, it is not practical to evaluate the prediction error in only one or several control 

periods. In order to quantitatively examine the prediction error under different steady-state 

operating conditions, the root mean square (RMS) value of prediction error is calculated as [32]: 
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where N is the number of control periods during 30 s. Based on this, the relative prediction error 

ΔPE is further defined as follows to facilitate the quantitative analysis and comparison: 

= −
RMS base base

ΔPE (PE PE ) / PE  (27) 

where PEbase is the RMS prediction error under basic reference setting of three influencing 

factors—prediction model obtained by one-order Taylor series expansion, prediction stepsize of 100 

μs, and actual values of Ld and Lq shown in Table 1. All experiments conducted in the following three 

sections are based on the control scheme shown in Figure 1, and the reference values of id and iq are 0 

A and 4 A, respectively. It should be noted that the values of d- and q-axis inductances in Table 1 are 

measured for the operating condition with id = 0 A and iq = 4 A [33], which can be regarded as actual 

inductance values, i.e., Ldn and Lqn. 

Table 1. Parameters of the interior permanent magnet synchronous motor (IPMSM). 

Parameters Value 

Rated power 2 kW 

Rated phase voltage (peak) 170 V 

Rated phase current (peak) 10 A 

Rated speed 800 rpm 

Stator resistance 4.1 Ω 

d-axis inductance 0.056 H 

q-axis inductance 0.119 H 

Permanent magnet flux linkage 0.936 Wb 

Pole pairs 2 

4.1. Discretization Order 

According to Equations (13) and (14), the Taylor series expansion is truncated by different 

discretization orders to obtain prediction models, i.e., N = 1, 3, 5, 7, 9, 11. The sampling time is 100 μs 

and the inductance values in prediction model are the same as that in Table 1. Different speed 

conditions—200, 400, and 600 rpm—are tested. As defined above, the corresponding RMS prediction 

errors under one-order discretization are chosen as PEbase, which are listed in Table 2 and are also the 

same as the ones in Sections 4.2 and 4.3. The relative prediction errors of id and iq for different 

prediction models are shown in Figure 3. It is noticeable that both prediction errors of id and iq 

decrease with an increase in discretization orders, which holds true for different speeds. The results 

follow the theoretical analysis in Section 3.1. Under different speeds, the differences between RMS 

prediction errors of id or iq under one-order case and eleven-order case are less than 0.02 A, and the 

corresponding differences of relative prediction errors are less than 15%, which reveals the weak 

influence of discretization order on current prediction errors for this low-power setup. However, an 

increase in discretization order will make the algorithm more complex and lead to higher 

computation burden. 

Table 2. PEbase under different speeds. 

Speed (rpm) PEbase of id (A) PEbase of iq (A) 

200 0.136 0.139 

400 0.149 0.127 

600 0.161 0.119 



Energies 2018, 11, 2051 10 of 16 

 

  
(a) (b) 

Figure 3. Relative prediction error under different discretization orders. (a) Relative prediction error 

of id; (b) Relative prediction error of iq. 

4.2. Prediction Stepsize 

In this section, the prediction model is obtained by one-order Taylor series expansion, and the 

inductance values in prediction model are the same as that in Table 1. Different speed 

conditions—200, 400, and 600 rpm—are tested. Figure 4 shows the relative prediction errors of id and 

iq when different prediction stepsizes—control periods and sampling time—are adopted in 

FCS-MPCC algorithm, i.e., from 50 μs to 500 μs by the step of 50 μs. The RMS prediction errors 

under prediction stepsize of 100 μs are chosen as PEbase for different speeds, as shown in Table 2. As 

expected, longer prediction stepsize yields greater prediction errors for both id and iq. A quite large 

prediction stepsize can seriously deteriorate the control performance of motor system and even lead 

to instability, which has also been tested in experiments. By comparing the prediction errors in 

Figures 3 and 4, it can be seen that the variation of prediction stepsize has a more obvious effect on 

the prediction error compared with that caused by varying discretization order; therefore, it is 

necessary to choose a suitable prediction stepsize. 

  
(a) (b) 

Figure 4. Relative prediction error under different prediction stepsizes. (a) Relative prediction error 

of id; (b) Relative prediction error of iq. 

4.3. Stator Inductances Mismatch 

In this section, the prediction model is obtained by one-order Taylor series expansion, and the 

prediction stepsize is 100 μs. Neglecting the influence of stator resistance and permanent magnet 

flux linkage, the influences of d- and q-axis inductances mismatches on prediction error are 

investigated separately. Firstly, the influence of d-axis inductance mismatches on prediction error is 

studied. The coefficient Nd defined in Section 3.3 is changed from 0.2 to 3 by the step of 0.1, and the 
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q-axis inductance Lqp in prediction model is kept as the nominal value Lqn. It should be noted that the 

variation range of Ld is determined by just considering the practical stable operation according to 

experimental results. 

The relative prediction errors for Ld mismatch under different speeds—200, 400, and 600 

rpm—are shown in Figure 5. The RMS prediction errors at Nd = 1 and Nd = 1 for different speeds are 

chosen as PEbase, which are shown in Table 2. For the prediction error of id in Figure 5a, it can be seen 

that the curves are concave and asymmetric for different speeds, and the minimum error values are 

obtained when Nd is about 1. When Nd is smaller than 1, the effect on prediction error is greater than 

that when Nd is greater than 1, referring to the same variation of Nd. These experimental variation 

trends are consistent with the theoretical analysis. For the q-axis current, the prediction error varies 

in a quite narrow range. The differences between maximum and minimum RMS prediction errors 

are 0.01, 0.008, and 0.007 A for 200, 400, and 600 rpm, respectively. This result can be explained by 

Equation (23) due to the fact that id is close to zero. 

Similar experiments for the case of Lq mismatch are also conducted, and the relative prediction 

errors are presented in Figure 6. The same PEbase values as those in Figure 5 are chosen. The curves 

are all concave but the locations of minimum prediction errors of id and iq are different. For id, the 

minimum prediction errors are obtained when Nq is 1.1, 0.9, and 0.8 for 200, 400, and 600 rpm, 

respectively, and the corresponding values are −0.4%, −1%, and −2.4%. The minimum prediction 

errors of iq are obtained when Nq is 0.8, 0.8, and 1.1 for 200, 400, and 600 rpm, respectively, and the 

corresponding values are −0.8%, −1.8%, and −0.3%. From the perspective of minimum prediction 

error points, the prediction error curves of id are roughly symmetric, while those of iq are obviously 

asymmetric, which essentially follows the theoretical analysis and shows the stronger influence of 

negative deviation of Lq on prediction error of iq. From Figures 5 and 6, the separate deviations of Ld 

and Lq can yield different effects on the prediction errors of id and iq with respect to the magnitude 

and its change rate. 

  
(a) (b) 

Figure 5. Relative prediction error under Ld mismatch. (a) Relative prediction error of id; (b) Relative 

prediction error of iq. 
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(a) (b) 

Figure 6. Relative prediction error under Lq mismatch. (a) Relative prediction error of id; (b) Relative 

prediction error of iq. 

It should be noted that for the analysis of Equations (20)–(25), if there are no mismatches of Ld 

and Lq, i.e., Nd = 1 and Nq = 1, the prediction errors of id and iq are the minimum ones, which is actually 

an ideal condition. The prediction errors under this condition may not be the minimum ones in 

practical experiments, mainly due to two aspects. Firstly, for specific operating condition, it is 

challenging to obtain the accurate stator inductances necessarily set in prediction model due to 

several factors, such as nonlinearity of inverter and measurement errors of practical currents, speed, 

and DC voltage. Besides, even if the stator inductances are accurately measured, prediction errors 

still exist due to the influence of discretization order and prediction stepsize, and they may be 

compensated by the ones resulting from inductance mismatches. Although the minimum prediction 

errors may not be obtained at Nd = 1 and Nq = 1, they are located near this point as mentioned above. 

At the same time, although corresponding relative prediction errors are negative, they are very close 

to zero, which shows that the compensation effect is not obvious. From the whole range of 

inductance variation, the experimental results shown in figures essentially follow the theoretical 

analysis results. Therefore, the influence of above aspects can be regarded in an acceptable degree. 

Additionally, the cases in which both Nd and Nq change are further tested under the speed of 

400 rpm, and the corresponding PEbase values can be seen in Table 2. The relative prediction errors of 

id and iq are exhibited in Figures 7 and 8. The variation trends of PE_id and PE_iq are similar to that 

shown in Figures 5 and 6. It can be seen that the deviations of Ld, especially negative ones, can 

influence the prediction error of id more obviously and that such relationship also exists between the 

deviation of Lq and the prediction error of iq, which also follows the theoretical analysis. 

  
(a) (b) 

Figure 7. Relative prediction error under Nd step changes for three Nq settings. (a) Relative prediction 

error of id; (b) Relative prediction error of iq. 
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(a) (b) 

Figure 8. Relative prediction error under Nq step changes for three Nd settings. (a) Relative prediction 

error of id; (b) Relative prediction error of iq. 

According to the above experimental results and the theoretical analysis in Section 3, two points 

need further explanation. Firstly, it should be noted that when the prediction stepsize utilized in 

experiments is smaller than 100 μs, such as 50 μs, the variation trends of prediction error are 

essentially the same as the above experimental results, except that the magnitudes are smaller. 

Considering that this paper mainly focuses on the prediction error observation instead of control 

performance improvement, the prediction stepsize is selected as 100 μs to show the prediction error 

variations. Besides, it also considers the computation burden when the conditions utilizing high 

discretization orders are tested. 

Secondly, although the theoretical analysis of prediction error in Section 3 is conducted with 

respect to each control interval, while the experimental results of prediction error are obtained for a 

relatively long interval; in fact, the prediction errors can appear roughly in a periodical manner 

under steady-state operation. Therefore, an observation of a long steady-state operating interval is 

reasonable in experiments and the results are essentially consistent with the theoretical analysis. 

5. Conclusions 

In this paper, the prediction error of FCS-MPCC algorithm in IPMSM system is defined and 

then analytically investigated by separately considering three influencing factors—discretization 

method, prediction stepsize, and parameter mismatch. Specifically, the investigation of the first 

factor is focused on the discretization order of Taylor series expansion, and the investigation of the 

third factor mainly considers the direct and quadrature axis inductances mismatches. Experimental 

results of an IPMSM drive system have verified and complemented the theoretical analysis. The 

main conclusions are summarized below. 

When the Taylor series expansion approximation method is utilized to obtain the discrete 

motor prediction model, higher discretization order can reduce the prediction errors of id and iq. 

However, referring to the discretization order in a limited range, the effect of reduction is a little 

slight, though higher discretization order can yield much more computation burden. Then, the 

prediction error is seriously influenced by the prediction stepsize, which is also equal to the control 

period and sampling time. Shorter prediction stepsize can obviously reduce prediction errors, but it 

poses high requirements for hardware performance at the same time because the control scheme has 

to be finished in a shorter period. The influence of stator inductance mismatch on the prediction 

errors of id and iq is relatively more complex. When there is only Ld mismatch in the prediction model, 

the influence on the prediction error of id is asymmetric, which means that a decrease in Ld in the 

prediction model can affect the prediction error of id more seriously. Such asymmetric influence also 

exists in the prediction error of iq when just considering Lq mismatch. The above conclusions for cases 

with only Ld or Lq mismatch also hold true for more general cases with both mismatches. Specifically, 
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the prediction errors of id and iq tend to be affected by the deviations of Ld and Lq employed in 

prediction model, respectively, especially with smaller inductance values. 

The derived prediction error formulas, theoretical analysis, and experimental results in this 

paper can be directly utilized for the evaluation and correction of prediction error for MPC strategies 

used in motor drive applications. Basically, the elimination of prediction error can be simply 

achieved by adding prediction error in the previous control period to the present period as shown in 

Reference [27]. The improvement of control performance can be seen but is still limited due to the 

fixed weighting coefficient [27]. The weighting coefficient should be automatically adjusted 

according to the operating conditions, adopted discretization method and prediction stepsize, and 

degree of parametric mismatch. In other words, the relationship between prediction error and 

influencing factors should be applied in some form for the future improvement of motor control 

performance. 
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Nomenclature 

Abbreviations 

CCS-MPC Continuous-control-set model predictive control 

FCS-MPC Finite-control-set model predictive control 

FCS-MPCC Finite-control-set model predictive current control 

MPC Model predictive control 

IM Induction motor 

IPMSM Interior permanent magnet synchronous motor 

PE Prediction error 

PI Proportional integral 

PWM Pulse width modulation 

RMS Root mean square 

SPMSM Surface permanent magnet synchronous motor 

VC Vector control 

VSI Voltage-source inverter 

Variables and parameters 

ud, uq d- and q-axis voltage components 

id, iq d- and q-axis current components 

Rs Stator resistance 

Ld, Lq d- and q-axis inductance components 

ψf Flux linkage of permanent magnet 

ωe Electrical angular speed 

p Differential operator 

Ts Prediction stepsize/control period/sampling time 

N Discretization order 

Ldn, Lqn Stator inductances of practical motor 

Ldp, Lqp Stator inductances in prediction model 

Nd, Nq Coefficients between stator inductances in prediction model and of practical motor 

PE_id, PE_iq Prediction errors of d- and q-axis currents 

PERMS RMS value of prediction error 
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PEbase RMS prediction error under basic reference setting of three influencing factors 

ΔPE Relative prediction error 

Superscripts 

P Prediction quantity 

ref Reference quantity 
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