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Abstract: Finite-control-set model predictive current control (FCS-MPCC) has been widely
investigated in the field of motor control. When the discrete motor prediction model is not
obtained accurately, prediction error often occurs, which can result in improper determinations
of optimal voltage vectors and can further affect the control performance of motor systems.
However, papers evaluating the motor control performance employing FCS-MPCC rarely consider
prediction error and its utilization to weaken the influence of inaccurate prediction model.
This paper investigates in depth the prediction error caused by three influencing factors from
the perspective of model accuracy—discretization method, prediction stepsize, and parameter
mismatch. Firstly, the evaluation index, prediction error, is defined and its formulas considering the
above three factors are derived based on interior permanent magnet synchronous motor (IPMSM).
Then, the theoretical analysis of prediction error is provided. Finally, experimental results of an
IPMSM drive system are presented to verify and complement the theoretical analysis. Both the
theoretical analysis and experimental results fully elaborate the prediction error, which can offer
practical guidelines for the evaluation and improvement of motor control performance, especially for
FCS-MPCC in IPMSM applications.

Keywords: finite-control-set model predictive current control (FCS-MPCC); prediction error;
discretization method; prediction stepsize; parameter mismatch; interior permanent magnet
synchronous motor (IPMSM)

1. Introduction

The interior permanent magnet synchronous motor (IPMSM) is widely applied in many
industry applications due to its high power intensity, high efficiency, high toque density, and wide
speed range [1]. As an important control objective, the current of IPMSM is usually adjusted
by utilizing vector control (VC) schemes based on proportional-integral (PI) controllers and
pulse-width-modulation (PWM) strategies [2]. It shows good control performance but suffers from
the problems of PI-parameters tuning and constraints handling. With the improvement of digital
microprocessors, model predictive control (MPC), which has been successfully applied in process
industry control, is becoming a potential alternative due to its obvious advantages, such as intuitive
control process, fast dynamic responses, and easy inclusion of multiple control objectives and nonlinear
constraints [3].

MPC is usually divided into continuous-control-set MPC (CCS-MPC) and finite-control-set MPC
(FCS-MPC). In CCS-MPC, an optimization problem is solved online to get the desired voltage vector,
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which is then synthesized through a modulator [4]. FCS-MPC can take advantage of the discrete nature
of power converters without any modulator [5]. Available voltage vectors that represent all switching
states are enumerated to complete the prediction process, and the optimal one is finally selected for
the next control period based on a designed cost function. Therefore, FCS-MPC is quite simple and
intuitive compared with CCS-MPC.

For MPC strategies in the field of motor control, the prediction process mainly utilizes discrete
motor prediction model to calculate the future states of motor systems and to select one optimal
voltage vector according to the prediction results. Therefore, the control performance of motor systems
is significantly affected by the prediction accuracy of motor prediction model. Generally speaking,
there are three main factors that can influence the model prediction accuracy.

The first factor is the discretization method to obtain motor prediction model from motor
continuous equations. It is well known that there are several approximation methods for differential
equations [6]. In the field of motor control, forward Euler approximation method is widely used to
obtain the discrete motor prediction model due to its simplicity and low computational burden for
single-step prediction applications [7–9]. In Reference [10], a modified Euler integration method
was adopted to achieve higher model accuracy, which actually transformed the implicit Tustin
approximation to an explicit one by combining with forward Euler approximation. In Reference [11],
two-order Taylor series expansion was utilized to achieve faster signal propagation from input changes
to all controlled states, especially the mechanical speed, and relative degree one could be obtained [12].
In References [13,14], a discretization method was proposed considering the PWM pulse patterns
within each sampling period for deadbeat predictive control to obtain an accurate discrete model.

The second factor is the prediction stepsize, which is usually equal to the control interval and
sampling time for single-step MPC. It is well known that the prediction stepsize is closely related
to the final control performance. In general, the shorter the prediction stepsize, the better is the
steady-state performance; this has been empirically shown by experimental results in literature [15,16].
In particular, when system variables and inputs change rapidly, a long prediction stepsize cannot
respond immediately and may yield large tracking errors [11]. However, the prediction stepsize cannot
be reduced indefinitely due to the hardware limitations and the power level of applications [17].

The third factor is the parameter mismatch between prediction model and actual motor. Due to
the inaccuracy of measurements or settings, the parameters in prediction model may not be the
same as the actual values. Besides, the motor parameters also change according to the magnetic
saturation and temperature [18]. Such parameter mismatches can bring different degrees of prediction
error, which may further lead to wrong selection of optimal voltage vector and deteriorate system
control performance. Many published papers have proposed methods to solve this problem,
including designing model-free prediction algorithm [19,20], identifying parameters online [9,21,22],
and constructing observers to estimate the influence of parameter deviations [23–25]. However,
the model-free predictive control poses relatively high requirements for hardware implementation
of the drive system, while the latter two categories are prone to making control algorithms complex,
which may be not suitable for the real-time implementation and may even result in instability of
the system.

Although there are above-state-of-the-art published works about MPC methods in terms of
discretization method, prediction stepsize, and model parameter mismatch, little direct attention has
been given to the prediction error and its relationship with the three influencing factors mentioned
above. However, for MPC strategies including FCS-MPC, the prediction error is an inherent and
essential feature, which should be considered to evaluate control performance. In Reference [26],
the prediction error between the models with accurate parameters and with parametric mismatches
was studied by simulation based on a generalized voltage-source converter. In Reference [27],
the weighted prediction errors between predicted and measured current values in previous control
interval were utilized to compensate for the prediction error in present prediction process; this can
improve the robustness of the surface permanent magnet synchronous motor (SPMSM) system and
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has quite a simple structure. The study showed the feasibility and potentiality of utilizing prediction
error to improve the control performance when employing finite-control-set model predictive
current control (FCS-MPCC) algorithm. However, the analysis of prediction error is still limited
in both References [26,27], especially in terms of IPMSM, which is not good for further utilization of
prediction error.

Due to the above reasons, this paper aims to fill the gap of prediction error analysis based on
the framework of FCS-MPCC strategy and IPMSM. Firstly, the prediction error is defined as the
difference between prediction value and actual value from the perspective of practical implementation.
Then, it takes IPMSM as control object and utilizes FCS-MPCC as control strategy to derive formulas
of prediction error considering different discretization orders, prediction stepsizes, and parameter
mismatch degrees. Finally, comprehensive theoretical and experimental analyses of prediction error
and its variation trends are conducted. The investigations can offer a new perspective to evaluate
motor control performance when employing FCS-MPCC strategy in IPMSM applications. Besides,
it can also lay the foundation for new methods to compensate for prediction error and improve motor
control performance.

The rest of the paper is organized as follows: Section 2 introduces the basic FCS-MPCC algorithm.
In Section 3, the prediction error is clearly defined and its detailed analytical studies for three
influencing factors are presented separately. Experimental results are presented to verify the theoretical
analysis in Section 4. Finally, the paper is concluded in Section 5.

2. Basic FCS-MPCC Algorithm

2.1. IPMSM Model

The continuous state equation of an IPMSM in d-q reference frame is expressed as [9]:[
pid
piq

]
=

[
− Rs

Ld

ωe Lq
Ld

−ωe Ld
Lq

− Rs
Lq

][
id
iq

]
+

[
1

Ld
0

0 1
Lq

][
ud
uq

]
+

[
0

−ωeψ f
Lq

]
(1)

where
ud, uq d- and q-axis voltage components
id, iq d- and q-axis current components
Rs stator resistance
Ld, Lq d- and q-axis inductance components
ψf flux linkage of permanent magnet
ωe electrical angular speed
p differential operator

Due to its implementation in microprocessors, such as digital signal processor (DSP),
the continuous state Equation (1) has to be discretized for FCS-MPCC algorithm. The forward Euler
approximation method is commonly utilized to obtain the discrete motor prediction model as [9]:[

iP
d (k + 1)

iP
q (k + 1)

]
=

[
1− TsRs

Ld

Tsωe Lq
Ld

− Tsωe Ld
Lq

1− TsRs
Lq

][
id(k)
iq(k)

]
+

[ Ts
Ld

0
0 Ts

Lq

][
ud(k)
uq(k)

]
+

[
0

− Tsωeψ f
Lq

]
(2)

where the superscript P represents the prediction quantity, Ts is the control period, and X(k) (k = 1, 2,
3, . . . ) is the value of X in kth control period kTs.

2.2. Control Delay Compensation

When the FCS-MPCC algorithm is executed on DSP, there is a control delay caused by
computational burden, which can deteriorate the control performance. In Reference [28], the control
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delay is explained clearly, and a two-step prediction method, shown in Equation (3), is proposed to
realize control delay compensation.[

ip
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ip
q (k + 2)

]
=

[
1− TsRs

Ld

Tsωe Lq
Ld

− Tsωe Ld
Lq

1− TsRs
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d(k + 1)

ip
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]
+
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Ld

0
0 Ts

Lq

][
ud(k + 1)
uq(k + 1)

]
+
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0

− Tsωeψ f
Lq

]
(3)

2.3. Cost Function

The cost function is designed to evaluate the prediction results and select the optimal voltage
vector. It is generally expressed by including the errors between prediction values of controlled
variables and their reference values. There are several ways to calculate the errors, such as the absolute
error, square of error, or integration of error [29]. Taking into account the tradeoff between simplicity
and evaluation performance, the squared form is often utilized for FCS-MPCC, which is written
as follow:

g = |ire f
d (k + 2)− ip

d (k + 2)|2 + |ire f
q (k + 2)− ip

q (k + 2)|2 (4)

where the superscript ref represents the reference quantity. It should be noted that the controlled
variables are d- and q-axis currents, which have the same unit, magnitude order, and significance.
Therefore, there is no need to add weighting factors in the cost function.

For a two-level, three-phase voltage-source inverter (VSI) driven motor system, there are eight
possible switching states, which can produce eight voltage vectors—six active voltage vectors and
two null voltage vectors. The future states of motor systems under these eight voltage vectors are
predicted according to Equations (2) and (3), and the prediction results are then evaluated using the
cost function given in Equation (4). The one that can minimize g is chosen as the optimal voltage vector,
and the corresponding switching signals will drive the inverter in the next control interval. The basic
FCS-MPCC control scheme for IPMSM is shown in Figure 1.
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Figure 1. Block diagram of finite-control-set model predictive current control (FCS-MPCC) scheme.

3. Prediction Error Analysis

The prediction error (PE) is an important index to be considered in MPC algorithms. It can reflect
the accuracy of prediction model and further influence the control performance of motor systems.
For FCS-MPCC, the prediction error can be defined as the difference between prediction values of d-
and q-axis currents and their corresponding actual values, which is expressed as:

PE = ip
dq(k + 1)− idq(k + 1) (5)
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As mentioned in the Introduction, there are three main factors which influence the prediction
error—discretization method, prediction stepsize, and parameter mismatch. In the following parts,
these factors are separately analyzed for single-step prediction applications.

3.1. Discretization Method

There are various discretization methods to approximate the motor. In essence, the objective of
these discretization methods is the same—to obtain higher similarity to the actual motor as well as
to consider the implementation in practical applications. Among these methods, the Taylor series
expansion can be regarded as a representative discretization method due to its flexible expansion
orders. There can be a wide window for the observation of relationship between prediction error
and discretization methods, varying from the simplest discretization to accurate discretization just by
adjusting the discretization order.

The continuous state space equation in Equation (1) can be rewritten as:

px(t) = Ax(t) + Bu(t) + D (6)

where x = [id iq]T, u = [ud uq]T and the coefficient matrices are:

A =

[
− Rs

Ld

ωe Lq
Ld

−ωe Ld
Lq

− Rs
Lq

]
(7)

B =

[
1

Ld
0

0 1
Lq

]
(8)

D =
[

0 −ωeψ f
Lq

]T
(9)

Then, the Taylor series expansion is applied to the differential terms of variables id and iq:

idq(k + 1) = idq(k) + Ts
didq

dt

∣∣∣∣∣
t=k

+
T2

s
2!

d2idq

dt2

∣∣∣∣∣
t=k

+ · · · = idq(k) +
∞

∑
i=1

Ti
s

i!

diidq

dti

∣∣∣∣∣
t=k

(10)

and zero-order-hold inputs are considered during the control interval Ts, so the discrete model of
Equation (6) can be obtained as:

x(k + 1) = ADx(k) + (AD − I)A−1[Bu(k) + D] (11)

where the state transition matrix AD is given as:

AD = I + TsA + · · ·+ TN
s AN

N!
+ · · · =

∞

∑
i=0

Ti
sAi

i!
(12)

and the input matrix is (AD − I)A−1B. Equation (11) can be regarded as the actual motor as well as
an ideal prediction model. Taking account of implementation requirements, it can be simplified by
truncating Taylor series expansion by N shown as:

xP(k + 1) = AD_Nx(k) + (AD_N − I)A−1[Bu(k) + D] (13)

where

AD_N = I + TsA + · · ·+ TN
s AN

N!
=

N

∑
i=0

Ti
sAi

i!
(14)
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It should be noted that Equation (13) becomes Equation (2) when N = 1, which means that
the forward Euler approximation is a specific case of Taylor series expansion approximation.
Assuming that there are no deviations of motor parameters, the prediction error can be derived
from Equations (11) and (13) as:

PE = xP(k + 1)− x(k + 1) ≈ −TN+1
s AN+1

(N + 1)!
x(k)− TN+1

s ANB
(N + 1)!

u(k)− TN+1
s AND
(N + 1)!

(15)

It can be found from Equation (15) that the prediction errors of stator currents are related to
ωe(k), ud(k), uq(k), id(k), and iq(k), which may vary in different control periods. However, for every
specific control period when these variables are determined, it can be clearly seen that the three terms
in Equation (15) are proportional to N + 1 power of control interval Ts, which is much less than 1.
Therefore, the prediction error will decrease when the Taylor series expansion is truncated by high
orders. However, it is noticeable that the complexity of prediction model in Equation (13) will increase
with an increase in N. Therefore, it is necessary to select a proper discretization order to balance the
prediction error and calculation burden for specific applications.

3.2. Prediction Stepsize

In general, the prediction stepsize of most single-step MPC methods is fixed as the control period
and sampling time Ts. It can be seen from Equation (15) that the prediction error is closely related
to Ts. If the prediction stepsize is short enough, the prediction error can be reduced to a very small
value, and the increased prediction error caused by low discretization order can even be compensated.
Therefore, the actual motor can be simulated using a model obtained by forward Euler approximation
with infinitely small stepsize.

From the perspective of MPC algorithm, one remarkable feature, as well as an advantage, is its
receding horizon optimization. Specifically, FCS-MPCC determines the optimal voltage vector based
on the current values at present sampling instant, and the objective of this optimal voltage vector
is aimed at finally eliminating the tracking error in the same control period. Therefore, the MPC
algorithm seeks an optimal solution in single-step horizon or a multi-step prediction horizon. If the
prediction stepsize is too large, the prediction error will increase, and the optimization for multi-step
prediction horizon may be hard to guarantee.

However, considering practical applications, the length of prediction stepsize is limited by
several factors, such as the power level of applications, hardware limitations, switching frequency,
control performance requirements, stability boundary, execution time of MPC algorithm, and so on.
Therefore, the prediction stepsize—control period and sampling time—cannot be too long or too short,
which is a critical factor to choose properly.

3.3. Parameter Mismatch

It can be seen from Equation (13) that the motor prediction model involves several parameters
including Rs, ψf, Ld, and Lq. However, the parameters in the prediction model may not be the same
as the practical motor parameters because they may not be measured accurately and the practical
parameters also change during the operation. Such parameter mismatch can lead to prediction errors
and further bring torque ripples and even instability for the motor system.

Among the parameters in prediction model, Ld and Lq are the two most commonly considered
parameters that affect the model accuracy. There are two reasons for the above result. Firstly, the stator
resistance and permanent magnet flux linkage are mainly influenced by the temperature within motor,
while d- and q-axis inductances change due to magnetic saturation that is related to d- and q-axis
currents. The temperature within motor changes much slower than the stator current, so the stator
inductances are easier to change and their changing periods are shorter than that of stator resistance
and permanent magnet flux linkage. Secondly, the mismatch of stator inductances can yield greater
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influence on prediction accuracy and motor control performance compared with other parameters,
which has been presented in several works [27,30,31]. Therefore, this paper mainly focuses on the
prediction error analysis caused by stator inductances mismatch.

In order to facilitate the theoretical analysis of prediction error caused by parametric mismatch,
the prediction model obtained through forward Euler approximation shown in Equation (2) is
employed, and the practical motor is also simplified as Equation (2) to conduct the following
mathematical analysis. The stator inductances in prediction model are defined as Ldp and Lqp, while the
stator inductances of practical motor are defined as Ldn and Lqn. The relationship between the above
two sets of stator inductances can be expressed as Ldp = Nd·Ldn, Lqp = Nq·Lqn, where Nd and Nq are
coefficients. The prediction values and actual values of stator currents can then be expressed as:

iP
d (k + 1) = id(k)−

TsRs

Ldp
id(k) +

TsωeLqp

Ldp
iq(k) +

Ts

Ldp
ud(k) (16)

iP
q (k + 1) = iq(k)−

TsRs

Lqp
iq(k)−

TsωeLdp

Lqp
id(k) +

Ts

Lqp
uq(k)−

Tsωeψ f

Lqp
(17)

and

id(k + 1) = id(k)−
TsRs

Ldn
id(k) +

TsωeLqn

Ldn
iq(k) +

Ts

Ldn
ud(k) (18)

iq(k + 1) = iq(k)−
TsRs

Lqn
iq(k)−

TsωeLdn
Lqn

id(k) +
Ts

Lqn
uq(k)

Tsωeψ f

Lqn
(19)

From Equations (16)–(19), the prediction errors of d- and q-axis currents, namely PE_id and PE_iq,
can be calculated as:

PE_id = iP
d (k + 1)− id(k + 1)

= Ts
Ldn

(1− 1
Nd

)
[
(Rsid(k)−ωeLqniq(k))− ud(k)

]
+ Ts

Ldn

Nq−1
Nd

ωeLqniq(k)
(20)

PE_iq = iP
q (k + 1)− iq(k + 1)

= Ts
Lqn

(1− 1
Nq
)
[
(Rsiq(k) + ωeLdnid(k) + ωeψ f ) −uq(k)

]
+ Ts

Lqn

1−Nd
Nq

ωeLdnid(k)
(21)

The analysis of ωe, ud(k), uq(k), id(k), and iq(k) in Equations (20) and (21) is the same as that
in Section 3.1. The prediction errors are affected only by stator inductance mismatches. Based on
Equations (20) and (21), the prediction error caused by the inaccuracy of d- and q-axis stator inductances
can be further investigated separately. Assuming that the parameter deviation only exists on Ld, i.e.,
Ldp = Nd·Ldn and Lqp = Lqn, Equations (20) and (21) can be rewritten as:

PE_id =
Ts

Ldn
(1− 1

Nd
)
[
(Rsid(k)−ωeLqniq(k))− ud(k)

]
(22)

PE_iq = (1− Nd)
TsωeLdn

Lqn
id(k) (23)

As mentioned before, the speed, current, and voltage components may vary during operation,
so the signs of related terms in Equations (22) and (23) are hard to be determined. Therefore,
the absolute value of prediction error is evaluated instead. It can be seen from Equation (22) that if
there is no mismatch of Ld, the prediction error of id is zero. If Nd changes from 1 to a greater or smaller
value, the absolute value of PE_id will increase from 0. It is worth noting that the same variation of Ld
for both directions can lead to a different influence on PE_id. Ignoring the stability issue, if Nd → +∞ ,
1-1/Nd → 1 ; if Nd → 0 , 1-1/Nd → −∞, which means that negative deviation of Ld leads to greater
prediction error of id than the positive deviation. As for the prediction error of iq in Equation (23), it is
proportional to the parameter deviation of Ld.
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Considering the mismatch of Lq, i.e., Lqp = Nq·Lqn and Ldp = Ldn, the prediction errors can be
obtained from Equations (20) and (21) as:

PE_id = (Nq − 1)
TsωeLqn

Ldn
iq(k) (24)

PE_iq =
Ts

Lqn
(1− 1

Nq
)
[
(Rsiq(k) + ωeLdnid(k) + ωeψ f ) −uq(k)

]
(25)

It can be found that similar conclusions can be obtained from Equations (24) and (25) due to their
similar formulas to Equations (22) and (23).

When both mismatches of Ld and Lq are taken into account, the variation of prediction error
becomes more complicated. However, considering the dominant role of d- and q-axis voltage values
for prediction error Equations (20) and (21), it can still be seen that the prediction error of id tends to
be affected by the mismatch of Ld, especially by negative deviations, and the same relationship also
applies to the prediction error of iq and mismatch of Lq.

4. Experimental Results

In this section, experimental results are presented to verify the theoretical analysis about the
three influencing factors to prediction error of FCS-MPCC algorithm. Figure 2 shows the experimental
setup utilized in this work. The plant is a 2-kW IPMSM system (Weiheng Technology, Hangzhou,
China) whose key parameters are listed in Table 1. The load is an induction motor (IM), which can be
controlled in both speed mode and torque mode. The power circuit includes a two-level, three-phase
VSI with a DC-link voltage of 300 V. A dSPACE1005 platform (dSPACE GmbH, Paderborn, Germany)
is employed for the execution of FCS-MPCC algorithm.
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In experiments, it is not practical to evaluate the prediction error in only one or several control
periods. In order to quantitatively examine the prediction error under different steady-state operating
conditions, the root mean square (RMS) value of prediction error is calculated as [32]:

PERMS =

√√√√ 1
N

N

∑
k=1

(iP
x (k)− ix(k))

2, x ∈ {d, q} (26)
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where N is the number of control periods during 30 s. Based on this, the relative prediction error ∆PE
is further defined as follows to facilitate the quantitative analysis and comparison:

∆PE = (PERMS − PEbase)/PEbase (27)

where PEbase is the RMS prediction error under basic reference setting of three influencing
factors—prediction model obtained by one-order Taylor series expansion, prediction stepsize of
100 µs, and actual values of Ld and Lq shown in Table 1. All experiments conducted in the following
three sections are based on the control scheme shown in Figure 1, and the reference values of id and iq
are 0 A and 4 A, respectively. It should be noted that the values of d- and q-axis inductances in Table 1
are measured for the operating condition with id = 0 A and iq = 4 A [33], which can be regarded as
actual inductance values, i.e., Ldn and Lqn.

Table 1. Parameters of the interior permanent magnet synchronous motor (IPMSM).

Parameters Value

Rated power 2 kW
Rated phase voltage (peak) 170 V
Rated phase current (peak) 10 A
Rated speed 800 rpm
Stator resistance 4.1 Ω
d-axis inductance 0.056 H
q-axis inductance 0.119 H
Permanent magnet flux linkage 0.936 Wb
Pole pairs 2

4.1. Discretization Order

According to Equations (13) and (14), the Taylor series expansion is truncated by different
discretization orders to obtain prediction models, i.e., N = 1, 3, 5, 7, 9, 11. The sampling time is
100 µs and the inductance values in prediction model are the same as that in Table 1. Different speed
conditions—200, 400, and 600 rpm—are tested. As defined above, the corresponding RMS prediction
errors under one-order discretization are chosen as PEbase, which are listed in Table 2 and are also the
same as the ones in Sections 4.2 and 4.3. The relative prediction errors of id and iq for different prediction
models are shown in Figure 3. It is noticeable that both prediction errors of id and iq decrease with an
increase in discretization orders, which holds true for different speeds. The results follow the theoretical
analysis in Section 3.1. Under different speeds, the differences between RMS prediction errors of id or
iq under one-order case and eleven-order case are less than 0.02 A, and the corresponding differences
of relative prediction errors are less than 15%, which reveals the weak influence of discretization order
on current prediction errors for this low-power setup. However, an increase in discretization order
will make the algorithm more complex and lead to higher computation burden.

Table 2. PEbase under different speeds.

Speed (rpm) PEbase of id (A) PEbase of iq (A)

200 0.136 0.139
400 0.149 0.127
600 0.161 0.119
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4.2. Prediction Stepsize

In this section, the prediction model is obtained by one-order Taylor series expansion, and the
inductance values in prediction model are the same as that in Table 1. Different speed conditions—200,
400, and 600 rpm—are tested. Figure 4 shows the relative prediction errors of id and iq when different
prediction stepsizes—control periods and sampling time—are adopted in FCS-MPCC algorithm, i.e.,
from 50 µs to 500 µs by the step of 50 µs. The RMS prediction errors under prediction stepsize of 100 µs
are chosen as PEbase for different speeds, as shown in Table 2. As expected, longer prediction stepsize
yields greater prediction errors for both id and iq. A quite large prediction stepsize can seriously
deteriorate the control performance of motor system and even lead to instability, which has also been
tested in experiments. By comparing the prediction errors in Figures 3 and 4, it can be seen that the
variation of prediction stepsize has a more obvious effect on the prediction error compared with that
caused by varying discretization order; therefore, it is necessary to choose a suitable prediction stepsize.
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4.3. Stator Inductances Mismatch

In this section, the prediction model is obtained by one-order Taylor series expansion, and the
prediction stepsize is 100 µs. Neglecting the influence of stator resistance and permanent magnet flux
linkage, the influences of d- and q-axis inductances mismatches on prediction error are investigated
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separately. Firstly, the influence of d-axis inductance mismatches on prediction error is studied.
The coefficient Nd defined in Section 3.3 is changed from 0.2 to 3 by the step of 0.1, and the q-axis
inductance Lqp in prediction model is kept as the nominal value Lqn. It should be noted that the
variation range of Ld is determined by just considering the practical stable operation according to
experimental results.

The relative prediction errors for Ld mismatch under different speeds—200, 400, and 600 rpm—are
shown in Figure 5. The RMS prediction errors at Nd = 1 and Nd = 1 for different speeds are chosen as
PEbase, which are shown in Table 2. For the prediction error of id in Figure 5a, it can be seen that the
curves are concave and asymmetric for different speeds, and the minimum error values are obtained
when Nd is about 1. When Nd is smaller than 1, the effect on prediction error is greater than that when
Nd is greater than 1, referring to the same variation of Nd. These experimental variation trends are
consistent with the theoretical analysis. For the q-axis current, the prediction error varies in a quite
narrow range. The differences between maximum and minimum RMS prediction errors are 0.01, 0.008,
and 0.007 A for 200, 400, and 600 rpm, respectively. This result can be explained by Equation (23) due
to the fact that id is close to zero.

Similar experiments for the case of Lq mismatch are also conducted, and the relative prediction
errors are presented in Figure 6. The same PEbase values as those in Figure 5 are chosen. The curves
are all concave but the locations of minimum prediction errors of id and iq are different. For id,
the minimum prediction errors are obtained when Nq is 1.1, 0.9, and 0.8 for 200, 400, and 600 rpm,
respectively, and the corresponding values are −0.4%, −1%, and −2.4%. The minimum prediction
errors of iq are obtained when Nq is 0.8, 0.8, and 1.1 for 200, 400, and 600 rpm, respectively, and the
corresponding values are −0.8%, −1.8%, and −0.3%. From the perspective of minimum prediction
error points, the prediction error curves of id are roughly symmetric, while those of iq are obviously
asymmetric, which essentially follows the theoretical analysis and shows the stronger influence of
negative deviation of Lq on prediction error of iq. From Figures 5 and 6, the separate deviations of Ld
and Lq can yield different effects on the prediction errors of id and iq with respect to the magnitude and
its change rate.
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Figure 5. Relative prediction error under Ld mismatch. (a) Relative prediction error of id; (b) Relative
prediction error of iq.

It should be noted that for the analysis of Equations (20)–(25), if there are no mismatches of Ld
and Lq, i.e., Nd = 1 and Nq = 1, the prediction errors of id and iq are the minimum ones, which is
actually an ideal condition. The prediction errors under this condition may not be the minimum ones
in practical experiments, mainly due to two aspects. Firstly, for specific operating condition, it is
challenging to obtain the accurate stator inductances necessarily set in prediction model due to several
factors, such as nonlinearity of inverter and measurement errors of practical currents, speed, and DC
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voltage. Besides, even if the stator inductances are accurately measured, prediction errors still exist
due to the influence of discretization order and prediction stepsize, and they may be compensated
by the ones resulting from inductance mismatches. Although the minimum prediction errors may
not be obtained at Nd = 1 and Nq = 1, they are located near this point as mentioned above. At the
same time, although corresponding relative prediction errors are negative, they are very close to
zero, which shows that the compensation effect is not obvious. From the whole range of inductance
variation, the experimental results shown in figures essentially follow the theoretical analysis results.
Therefore, the influence of above aspects can be regarded in an acceptable degree.Energies 2018, 11, 2051 12 of 16 
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Additionally, the cases in which both Nd and Nq change are further tested under the speed of
400 rpm, and the corresponding PEbase values can be seen in Table 2. The relative prediction errors of id
and iq are exhibited in Figures 7 and 8. The variation trends of PE_id and PE_iq are similar to that shown
in Figures 5 and 6. It can be seen that the deviations of Ld, especially negative ones, can influence the
prediction error of id more obviously and that such relationship also exists between the deviation of Lq

and the prediction error of iq, which also follows the theoretical analysis.
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According to the above experimental results and the theoretical analysis in Section 3, two points
need further explanation. Firstly, it should be noted that when the prediction stepsize utilized
in experiments is smaller than 100 µs, such as 50 µs, the variation trends of prediction error are
essentially the same as the above experimental results, except that the magnitudes are smaller.
Considering that this paper mainly focuses on the prediction error observation instead of control
performance improvement, the prediction stepsize is selected as 100 µs to show the prediction error
variations. Besides, it also considers the computation burden when the conditions utilizing high
discretization orders are tested.

Secondly, although the theoretical analysis of prediction error in Section 3 is conducted with
respect to each control interval, while the experimental results of prediction error are obtained for a
relatively long interval; in fact, the prediction errors can appear roughly in a periodical manner under
steady-state operation. Therefore, an observation of a long steady-state operating interval is reasonable
in experiments and the results are essentially consistent with the theoretical analysis.

5. Conclusions

In this paper, the prediction error of FCS-MPCC algorithm in IPMSM system is defined and then
analytically investigated by separately considering three influencing factors—discretization method,
prediction stepsize, and parameter mismatch. Specifically, the investigation of the first factor is focused
on the discretization order of Taylor series expansion, and the investigation of the third factor mainly
considers the direct and quadrature axis inductances mismatches. Experimental results of an IPMSM
drive system have verified and complemented the theoretical analysis. The main conclusions are
summarized below.

When the Taylor series expansion approximation method is utilized to obtain the discrete
motor prediction model, higher discretization order can reduce the prediction errors of id and iq.
However, referring to the discretization order in a limited range, the effect of reduction is a little slight,
though higher discretization order can yield much more computation burden. Then, the prediction
error is seriously influenced by the prediction stepsize, which is also equal to the control period and
sampling time. Shorter prediction stepsize can obviously reduce prediction errors, but it poses high
requirements for hardware performance at the same time because the control scheme has to be finished
in a shorter period. The influence of stator inductance mismatch on the prediction errors of id and iq is
relatively more complex. When there is only Ld mismatch in the prediction model, the influence on the
prediction error of id is asymmetric, which means that a decrease in Ld in the prediction model can
affect the prediction error of id more seriously. Such asymmetric influence also exists in the prediction
error of iq when just considering Lq mismatch. The above conclusions for cases with only Ld or Lq
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mismatch also hold true for more general cases with both mismatches. Specifically, the prediction
errors of id and iq tend to be affected by the deviations of Ld and Lq employed in prediction model,
respectively, especially with smaller inductance values.

The derived prediction error formulas, theoretical analysis, and experimental results in this paper
can be directly utilized for the evaluation and correction of prediction error for MPC strategies used
in motor drive applications. Basically, the elimination of prediction error can be simply achieved by
adding prediction error in the previous control period to the present period as shown in Reference [27].
The improvement of control performance can be seen but is still limited due to the fixed weighting
coefficient [27]. The weighting coefficient should be automatically adjusted according to the operating
conditions, adopted discretization method and prediction stepsize, and degree of parametric mismatch.
In other words, the relationship between prediction error and influencing factors should be applied in
some form for the future improvement of motor control performance.
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Nomenclature

Abbreviations
CCS-MPC Continuous-control-set model predictive control
FCS-MPC Finite-control-set model predictive control
FCS-MPCC Finite-control-set model predictive current control
MPC Model predictive control
IM Induction motor
IPMSM Interior permanent magnet synchronous motor
PE Prediction error
PI Proportional integral
PWM Pulse width modulation
RMS Root mean square
SPMSM Surface permanent magnet synchronous motor
VC Vector control
VSI Voltage-source inverter
Variables and parameters
ud, uq d- and q-axis voltage components
id, iq d- and q-axis current components
Rs Stator resistance
Ld, Lq d- and q-axis inductance components
ψf Flux linkage of permanent magnet
ωe Electrical angular speed
p Differential operator
Ts Prediction stepsize/control period/sampling time
N Discretization order
Ldn, Lqn Stator inductances of practical motor
Ldp, Lqp Stator inductances in prediction model
Nd, Nq Coefficients between stator inductances in prediction model and of practical motor
PE_id, PE_iq Prediction errors of d- and q-axis currents
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PERMS RMS value of prediction error
PEbase RMS prediction error under basic reference setting of three influencing factors
∆PE Relative prediction error
Superscripts
P Prediction quantity
ref Reference quantity
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