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Abstract: Expansion of photovoltaic (PV) generation is increasing the challenge for network 

operators to keep voltages within operational limits. Voltage rise occurs in low voltage (LV) 

networks when distributed generators export, particularly at times of low demand. However, there 

is little work quantifying the scale of voltage issues and subsequently potential solutions across 

large numbers of real networks. In this paper, a method is presented to analyse a large quantity of 

geographically and topographically varying distribution networks. The impact of PV on voltages in 

9163 real LV distribution networks is then quantified. One potential mitigation measure is increased 

network demand to reduce voltages. In this work, location algorithms are used to identify where 

increased demand, through energy storage, has the greatest effect on overvoltage. The study 

explores the impact on overvoltage of two modes of storage installation reflecting differing routes 

to adoption: purchase of storage by homeowners and purchase by network operators. These 

scenarios are compared with traditional re-conductoring in the 9163 networks. It is shown that to 

avoid violation of absolute voltage limits, storage should be installed at strategically important 

locations. Storage in homes reduces overvoltage, offering clear benefits to the network operator, but 

very wide deployment is required to completely remove the need for reinforcement. 

Keywords: battery energy storage systems; planning; distributed generation; low voltage 

distribution network 

 

1. Introduction 

Photovoltaics (PV) are increasingly common in modern electrical power system around the 

world, with 74 GW of PV installations world-wide in 2016. For example, UK Government statistics 

show that at least 12.6 GW of PV has been installed by November 2017 [1]. Although PV helps 

contribute to a decarbonised energy supply, they change the operation of electricity networks, 

particularly for domestic installations since they are widely installed in random locations in the 

system [2]. One specific impact of reverse power flow from PV is overvoltage, which can lead to 

generation curtailment during times of low demand [3]. This means that existing grids may need to 

be upgraded to accommodate increasing amounts of PV [4]. This can be a particular issue in low 

voltage (LV) networks due to the expansion of residential PV systems and is a challenge for 

distribution network operators (DNOs). Energy storage is recognised as one technology which can 

prevent overvoltage by reducing PV export into the grid [5–7]. 

From a DNOs perspective, it is important to anticipate how widespread voltage problems will 

be and how expensive they will be to overcome. This can be achieved by assessing a large number of 
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LV networks under differing PV integration scenarios. LV models can be automatically generated 

using a statistical approach [8] or using cluster analysis to develop prototypical feeders [9]. This can 

develop a large number of network models, but there is no guarantee that these are entirely 

representative of a particular DNO area. Scottish and Southern Energy (SSE) trialled a computational 

procedure to extract representative network models from GIS (geographic information system) data. 

This was performed over a small section of network to investigate the impact of PV, electric vehicles 

and heat pumps [10]. Despite the availability of such techniques for network model extraction from 

GIS, there are few examples of using a large number of such models to assess PV or storage across a 

wide number of LV networks. Storage is becoming increasingly common due to the advent of new 

home storage products and has a number of benefits to homeowners such as bill reduction and 

increased PV self-consumption as part of a home energy management system [11,12]. Batteries can 

reduce grid consumption by more than 70% in some cases [13]. Energy storage offers benefits to 

DNOs and domestic storage has the potential to provide other roles in a “smart” electricity system 

[14]. These include network support, infrastructure upgrade deferral and ancillary services. 

Aggregating these provides the most benefits [15]. 

Although beneficial to homeowners, consideration of the benefits of storage for both homes with 

PV and the wider power system is important. If batteries are sized for home use, they may be fully 

charged by midday, and therefore not contributing to reduce reverse power flow into the grid and 

consequent voltage rise [12,16]. To address this, battery charging/discharging control needs to reflect 

both the needs of the customer and network and/or system operators. 

There are two distinct propositions for storage in LV networks investigated: (1) installation by 

homeowners and commercial customers for increased self-consumption and (2) installation directly 

onto the grid by electricity network operators to manage network power flow (Figure 1). These 

propositions have previously been studied by the authors and others on a small number of networks 

[17,18] and in this paper we show the propositions over a large number of networks and draw deeper 

insights by doing so. 

For network operators, there is a specific problem in modelling the cost impact of solar PV and 

energy storage across a wide number of their networks. This is because much work in the study of 

PV has focused on specific planning tools on a small number of “typical” networks. In this paper we 

assess whether a new planning framework can perform a techno–economic comparison of battery 

energy storage propositions across an entire fleet of LV networks in one study. Specifically, we apply 

the framework to 9163 LV networks derived from a UK DNO’s GIS network map. By doing so this 

paper addresses two challenges: 

1. Comparison of storage in homes to energy storage directly on the network (referred to here as 

“on the street”) as a means of regulating LV network voltages. 

2. Examination of a financial case for storage in LV networks. 

 

Figure 1. Locations for low voltage (LV) storage showing (a) storage in homes owned by customers 

and (b) storage located on the street. 
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2. Theory 

LV networks in the UK are made up of one or more secondary transformers and one or more LV 

feeders. The LV feeders can split into different branches. Loads are connected to the feeders along 

their length. In urban-residential LV networks, the feeders are usually three phase, four core cables 

and loads are usually single phase at 230 V nominal. In the UK, the voltage must not fall below 217 

V for 95% of the weekly 10 min rms values, and must be within the range 195.5–253 V at all times. 

Overvoltage, even for a short time, is specifically banned under British and European standards [19]. 

One of the impacts that PV has on networks is overvoltage. This is as a result of the PV injecting 

power into the network and creating voltage rise, ∆𝑉LV
+  The headroom for voltage rise in an LV 

network is the total allowable voltage deviation in a network minus the total voltage deviation at the 

secondary transformer, ∆𝑉T and the highest voltage drop across the LV network, ∆𝑉LV
− , as in: 

∆𝑉LV,𝑛
+ ≤ 0.16 − ∆𝑉T − ∆𝑉LV,𝑛

− − 𝑉S, (1) 

where n is the index of N networks and Vs is a safety margin.  

A network is considered to have overvoltage if equality (1) is exceeded. In this paper, it is 

assumed that the voltage at the secondary transformer has its highest and lowest values when the LV 

voltages are highest and lowest (to avoid needing MV network modelling). Consequently, a safety 

margin, VS, of 0.01 p.u. is applied in (1). The maximum voltage drop occurs when there is maximum 

demand and minimum generation. Similarly, voltage rise is highest when PV is exporting maximum 

power and demand is lowest. This approach means that two loading conditions (high and low 

voltage) need to be modelled to determine if a network always operates within voltage limits. 

Accordingly, it allows many networks to be assessed using reasonable computational effort. 

3. Method 

In this paper, we propose a new method for comparative analysis of energy storage integration 

across a wide number of networks. The results of applying this to a wide variety of networks presents 

a novel contribution to the scale of overvoltage issues and the present and future ability of energy 

storage to mitigate these issues. 

A number of tools have been combined to examine the following factors for LV networks. 

• The impact of output from randomly located residential PV on LV voltage, and quantification 

of the number of networks with overvoltage. 

• The reduction in overvoltage if storage is randomly located in homes with PV systems. 

• The minimum amount of storage needed on the street to prevent overvoltage. 

An algorithm is proposed to compare strategies, from the perspective of a network operator, for 

deploying energy storage in low voltage networks to mitigate the overvoltage issues associated with 

domestic solar PV installations. The algorithm performs simulation and evaluation to determine the 

strategy with the lowest reinforcement cost for the DNO across all of their networks, thus providing 

a view of their whole system. In the following section this method is explained in detail including the 

formulae used to establish and evaluate the alternative storage scenarios. 

3.1. Network Models 

The method outlined in Figure 2 is designed to assess a number, N, of LV networks in a loop. 

Firstly, a model is built of each network, n. Loads are set at their maximum value with no PV installed 

and the voltage drop, ∆𝑉LV
− , is determined using a load flow. 

In order to provide comparative analysis, the method first stochastically locates solar PV within 

the network. Critically, the location of the PV is kept constant whilst an assessment of DNO located 

storage is performed (box 1). The storage from this algorithm is removed from the model and then a 

second tool is used (box 2) to assess storage randomly installed in domestic properties. This means 

that both location methods are compared to the same underlying solar PV distribution. 
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Figure 2. Proposed method for assessing the impact of multiple photovoltaic (PV) dispersion levels, 

pn, on the voltage regulation in multiple LV networks and the subsequent effect of energy storage 

randomly installed in customer homes with dispersion qn or sited by DNOs, to manage overvoltage. 

3.2. Assessment of PV on Voltage 

To examine the impact of randomly located PV on residential LV networks, a stochastic 

procedure is used. This is similar to approaches used in [20,21] but applied specifically to assess 

overvoltage due to residential PV. Each home in n, has a fixed probability, pn, of installing PV of rating 

PPV. To determine the voltage rise, ∆𝑉LV,𝑛
+ , all loads are set to their minimum daytime value and all 

PV is set to export rated power. A load flow then calculates voltages. If overvoltage is found, then a 

storage assessment is performed. 

3.3. Energy Storage Assessments 

3.3.1. DNO Owned Energy Storage 

If DNOs are to use storage in networks to provide voltage support, the storage needs to be 

correctly located to provide the voltage support for the lowest cost [22]. Procedures for locating 

storage include genetic algorithms [23]. In this paper, a genetic algorithm is used as this has been 
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shown to be able to determine storage locations in LV networks in a short time [24]. This attempts to 

minimise the total installation cost of storage within the network, but with a fixed penalty if that 

network exceeds voltage limits. Each population member in the algorithm is a binary number which 

defines whether storage is installed at each of the nodes of the network and the algorithm returns the 

combination of storage locations in network, n, which eliminates overvoltage for the lowest cost. As 

opposed to the work in [24] the genetic algorithm is implemented using a genetic algorithm in the 

Matlab Global Optimisation Toolbox (see Figure 2, box 1) and the fitness function has been simplified 

to just contain the cost of energy storage. The genetic algorithm converges to a solution that prevents 

overvoltage with fewest storage units in the network. A fitness function is developed to attribute a 

cost to each set of storage locations. The fitness function, f is the number of storage units, NES, 

multiplied by the cost of each, CES, plus a penalty if it does not prevent overvoltage: 

𝑓 = 𝑁ES𝐶ES + {
0                  if voltage within limit

𝜌𝑉dev            if voltage outside limits
 (2) 

The penalty, ρ is multiplied by the total overvoltage Vdev. In [25], a ρ of 150,000 is found to be an 

appropriate penalty to allow the optimisation to converge to a minimal cost solution. Storage is 

assumed to be of the same rating, PES, is 3-phase and can be located at any network node. 

3.3.2. Energy Storage Owned by Customers 

Once the case for DNO storage is completed, an assessment is performed to determine if storage 

randomly purchased by homeowners can reduce the number of networks which experience 

overvoltage, and how much re-conductoring will be required by DNOs to prevent overvoltage in 

each case. To do so, for each network, a proportion qn of the homes with PV purchase and install an 

energy storage system. As shown in Figure 2, box 2, this is assessed using a loop. 

All storage is first taken out of the network and then reinstalled in each home with PV with 

probability qn. A load flow is then used to calculate the voltage rise, ∆𝑉LV,𝑛
+ . If there is over-voltage, 

this is recorded. This process is repeated for all storage dispersion levels qn. Storage is represented as 

a load charging to absorb excess PV with rating PES. 

3.4. Description of Case Study 

An outline of the case study is now given. It is implemented in Matlab using OpenDSS network 

models for load flows. 

3.4.1. Extracting LV Networks 

In this study, 9163 LV networks have been extracted from a DNOs GIS. The GIS details the 

location of all of the LV cables, secondary transformers and homes and is a mandatory requirement 

for network operators in Britain [26]. A customised procedure for extracting the LV networks has 

been developed for this paper as described in [24,25]. This is a similar approach to [10]. A DNO from 

the North West of England (ENWL) provided the GIS. They operate a distribution network serving 

around 5 million people. 

To ensure the reliability of the GIS extraction process, only networks that conform to the criteria 

in Table 1 are used. The criteria describe typical characteristics of networks serving predominantly 

residential loads. All are radial and comprise underground cables as is common on this ENWL 

system (and typical for many other urban locations in the UK). Table 2 summarises the network 

properties and gives the re-conductoring cost, based on the DNO’s figure of £80/m. 
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Table 1. Criteria to which all the networks adhere. 

Parameter Minimum Maximum 

Homes on most loaded feeder n/a 200 

Total number of loads 50 1200 

Length of feeder (m) 10 800 

Total cable length (m) 50 12,000 

Number of feeders 1 25 

Table 2. Summary of networks analysed. 

Parameter Value 

Number of networks produced 9163 

Number of feeders in networks 43,816 

Total length of feeder cable, km 26,916 

Number of homes 1,666,030 

Homes fit for PV (roofs ±50° of south) 910,366 

Cost to replace cables (£ millions) 2153.26 

3.4.2. PV Scenarios 

A forecast of how PV is expected to be installed has been provided by ENWL (Figure 3). This 

has been combined with GIS data showing the number of homes with roofs facing ±50° of due south 

(Table 2) to give projected PV dispersion levels, pn in each network n. Each PV installation is assumed 

to have a capacity of PPV = 3.6 kWp as this is the average size in the ENWL network.  

 

Figure 3. Forecast for residential PV by ENWL from 2014 (total dispersion in network). 

3.4.3. Energy Storage Scenarios 

Two energy storage scenarios are considered: 

1. Storage is located in homes by PV owners who want to maximise their self-consumption. These 

are purchased in a free market so, like PV, the DNO cannot determine where they will be located. 

It is assumed storage will absorb peak generation i.e., it has a rating of PES = 3.6 kW and is single 

phase. 

2. Storage is located in the street by the DNO to alleviate overvoltage. Three phase 25 kW units are 

selected based upon a survey of similar systems [27,28]. Locations are determined using the 

genetic algorithm described previously. 
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3.4.4. Loads 

To determine the voltage ranges on the network, we perform two load flows to determine the 

maximum and minimum voltage. This avoids the computational effort of a high resolution load flow 

analysis and allows the model to determine the performance limits of the networks. In accordance 

with ENWL design policy, the after diversity maximum demand (ADMD) of domestic customers is 

1.4 kW or 1 kW. To identify which is appropriate for each LV network, n, a maximum demand of 1.4 

kW is applied to each load in the network. If this causes under-voltage, a 1 kW ADMD is instead 

applied. The minimum daytime demand is assumed to be 0.142 kW [29]. The minimum and 

maximum demands are based on measurements of secondary transformers in real LV networks by 

the DNO. 

3.4.5. MV Network Voltage Deviation 

Since the GIS model has not been used to generate MV network models, assumed MV network 

voltage ranges, ∆𝑉T, need to be applied. Here, the MV voltage deviation is calculated using two 

voltage sensitivity factors from network nodes on a typical ENWL urban MV feeder. These are shown 

below (3) and (4). Each network is randomly assigned to one of these two factors to determine the 

voltage headroom. The parameter X is defined by (5) and varies depending on whether the scenario 

is without storage, with domestic storage, or with storage connected directly onto the network. 

∆𝑉T = 0.037 + 0.0216(𝑝𝑛 − 𝑋) (3) 

∆𝑉T = 0.028 + 0.0144(𝑝𝑛 − 𝑋) (4) 

𝑋 = 0 [𝑛𝑜 𝑠𝑡𝑜𝑟𝑎𝑔𝑒] 

𝑋 =  𝑞𝑛 [𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑠𝑡𝑜𝑟𝑎𝑔𝑒] 

𝑋 =
25 𝑁ESS

3.6
 [𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒] 

(5) 

3.4.6. Financial Model 

At the time of writing, lithium ion batteries represent the most widely deployed battery type in 

residential power networks. Lithium battery prices have fallen 45% in the period 2016–2017, so the 

costs used here must be understood as those valid at the time of writing and therefore are likely an 

underestimate as battery costs fall. Representative battery costs have been sourced through an 

industrial survey as well as literature search [30]. 

The model in [31] is adapted to calculate the storage cost. Here, the discounted storage cost, CES, 

is the sum of capital, CCAP, discounted maintenance, CM, losses, CL, and replacement, CRP, (7)–(10). 

𝐶ES = 𝐶CAP + 𝐶RP + 𝐶M + 𝐶L (6) 

𝐶CAP =  𝐶I + 𝐶P𝑃ES + 𝐶C (
𝑃ES𝑡√𝜂

𝐷
) (7) 

𝐶RP = 𝐶C (
𝑃ES𝑡√𝜂

𝐷
) (8) 

𝐶L = 𝐶LI ∙ 𝑡𝐷𝑁C(1 − 𝜂) (9) 

CP is the cost of power, and CC is the discounted cost of energy. Storage parameters and costs are 

shown in Table 3. 
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Table 3. Summary of energy storage cost parameters. 

Parameter Symbol Value 

Round trip efficiency (%) [32] η 80% 

Storage time (hrs) t 2.5 

Project life (yrs)  10 

Operating days (per year) NC 200 

Depth of discharge (%) D 80% 

Inflation rate i 4% 

Discount rate d 6% 

Electricity loss cost (£/kWh) [33] CLI 0.06 

Annual maintenance (£/kW) [32] CM 1.50 

Storage rating (storage in home) (kW) PES 3.6 

Storage in home install cost (£) CI 400 

Storage in home unit cost (£/system) CES 5558 

Storage rating (DNO storage) (kW) PES 25 

DNO storage install cost (£) CI 8000 

DNO storage unit cost (£/system) CES 43,825 

3.4.7. Reinforcement Costs 

For all LV feeders, the reinforcement cost is the product of the length of a feeder and the unit 

cost of reinforcement. The budgetary unit cost used by the DNO is £80/m as described in Section 3.4.1. 

4. Results 

4.1. Base Case 

The method is first used to study the effect of PV on the LV network. Figure 4 shows the number 

of feeders from the GIS data which are forecast to experience overvoltage. It can be seen that the 

number of problematic feeders follows the same trend as the PV growth scenarios. The number of 

problematic feeders is different between the scenarios however. Of the 43,816 feeders assessed, only 

a small fraction is found to experience voltage issues due to PV integration. This is important, as it 

shows that most of the LV networks will be able to withstand the projected PV growth. DNOs need 

to identify the specific problematic feeders in their networks and provide mitigation solutions. This 

cannot be achieved by studies on generic networks, the actual networks on the ground need to be 

assessed. 

By multiplying the length of each problematic feeder by a re-conductoring cost (£80/m), the 

method assesses the default cost to the DNO (Figure 5). Results show that the DNO will see increasing 

re-conductoring costs which closely mirror the shape of the underlying PV forecasts (Figure 5). 

Although the number of problematic feeders is relatively small, there is still a sizable financial cost 

for the DNO to maintain voltage limits. 

 

Figure 4. Number of problematic feeders under different PV growth scenarios. 
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Figure 5. Cost to re-conductor problematic feeders at a cost of £80/m and an entire feeder is 

reconductored if there is overvoltage. Cash flows are discounted. 

4.2. Comparison of Storage Scenarios on One Network 

The method for comparing storage is first applied to one network to illustrate the storage 

scenarios. Figure 6 shows the network voltages with PV on 100% of suitable homes and no storage 

(base case). It can be seen that feeder 2, between bus 48 and 98, has overvoltage. 

Storage is then assessed. In Figure 6a a random selection (25%) of homeowners with PV install 

storage at locations denoted by the bars on the x-axis. The 29 storage systems reduce the voltage rise 

as shown by the change to the voltage profiles in the figure. Not all overvoltage conditions are 

removed, and so the DNO would still need to reinforce the network. Figure 6b shows the same PV 

scenario, however in this case the DNO has installed two three-phase 25 kW storage units at locations 

determined by the genetic algorithm. The load flow shows that the network operation is within 

voltage limits in this scenario as expected by applying this algorithm. 

In this network, 50 kW of DNO owned storage is used to manage voltage, compared to 104.4 kW 

of customer owned storage: and the latter does not solve the overvoltage. In feeder 2, which is the 

section of the network experiencing overvoltage in the base case, there is a comparable amount of 

home or DNO storage, but the DNO owned assets are located in such a way to have the capability to 

manage the overvoltage. 

 

Figure 6. Application of the method to a single LV network. 100% of suitable roofs have PV. (a) shows 

the application of the tool with randomly located single phase storage of rating 3.6 kW and (b) shows 

three phase 25 kW storage which is strategically located by the DNO. 

(a) 

(b) 
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4.3. Assessment of LV Networks across DNO License Area 

The previous result is only applicable to one network, so a study of all 9163 networks (43,816 

feeders) was then undertaken to compare the impact of storage (under the two installation scenarios) 

across this large population of networks. 

The number of feeders in the entire set of 9163 networks which will experience overvoltage 

under a number of storage adoption scenarios and the medium PV integration scenario are shown in 

Figure 7. It can be seen that randomly located storage does reduce the number of feeders with 

overvoltage. However, even with storage in 15% of homes with PV, 78% of the problematic LV 

networks still need reinforcement. DNO sited storage is, by nature of the algorithm, able to solve 

overvoltage unconditionally. 

 

Figure 7. Number of problematic LV feeders in the entire network according to medium PV scenario 

with no storage, storage randomly located in different percentages of homes and storage located by 

the DNO. 

The amount of storage installed under all PV scenarios is shown in Figure 8. The volume of DNO 

sited storage is comparable to installing storage in approximately 5% of homes in the network. It can 

also be seen that the potential market for such storage is uncertain (10 MW for low PV scenario, up 

to 50 MW for high PV scenario, over 35 years). This uncertainty is important for manufacturers as 

well as DNOs. 

The total reinforcement cost that the DNO will experience under all storage scenarios is shown 

in Figure 9. Randomly located storage does reduce the reinforcement costs, but this reduction is only 

a small fraction of the base case “do nothing” cost. It is observed that such storage has an alternative 

revenue stream from providing benefits to customers through bill reduction and self-consumption. 

This is addressed in the discussion. 

 
(a) 
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(b) 

 
(c) 

Figure 8. The capacity of storage installed both with storage randomly located in homes, and DNO 

installed storage, for (a) low; (b) medium; and (c) high PV penetrations. 

 

Figure 9. Total reinforcement cost when the DNO has to re-conductor despite either storage in homes 

or located by the DNO to prevent overvoltage, high PV scenario. The cost of storage is only included 

in the ‘energy storage on the street’ case as only the costs to the DNO are considered. 

4.4. Sensitivity Analysis 

A sensitivity analysis with respect to the cost of a complete energy storage system was 

performed. The number of networks where the DNO choses to re-conductor or choses to install 

energy storage is found to be dependent on the unit cost of storage as is demonstrated in Figure 10. 
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In 94% of the problematic networks, energy storage is found to be economically favourable to 

traditional network reinforcement for managing overvoltage when the energy storage cost is 

£200/kWh. Note that the installation costs CI are kept constant and so only savings in energy storage 

are included in the energy storage price scenarios. 

With a low PV dispersion level across the entire DNO network, the economic case for energy 

storage is found to be favourable in comparison with re-conductoring. In the base case, storage is 

selected in 100% of the networks where the storage cost is less than £600/kWh. As the PV dispersion 

level increases, the severity of voltage problems increases. Consequently, the capacity of energy 

storage required to manage voltage problems increases. The incremental cost of adding energy 

storage systems in problematic networks is found to decrease such that storage is selected in less than 

50% of the problematic networks with a storage cost of £800/kWh. 

 

Figure 10. Number of networks where DNO choses storage over re-conductoring under different 

energy storage price scenarios. The percentage of networks where a DNO chooses energy storage is 

shown above each of the bars. 

4.5. Comparison with Existing UK Power System Storage 

The scale of the distributed storage, for one network area in the UK, can be compared with 

existing storage in the UK power system, which in this instance takes the form of pumped hydro. As 

shown in Table 4, LV energy storage located by a DNO is small compared to existing pumped storage 

plant capacity. Wide adoption of energy storage by customers may provide comparable power but 

this would not necessarily be as available as pumped storage. Should the DNO storage scenario be 

repeated across all UK mainland areas, the energy capacity would be of a similar order to Ffestiniog 

pumped hydro station. 

Table 4. Comparison between distributed storage to existing pumped hydro (PH) and battery systems 

in the UK. LV storage is rated for 5 h and shown only for homes in the ENWL license area. 

Name 
Capacity, 

GWh 

Power, 

MW 

Location in 

Network 

Dinorwig [PH] ~10 1728 
Transmission 

Ffestiniog [PH] ~1.3 360 

Storage in 5% of homes with PV, year 35, high 

PV forecast 
~0.140 ~45 

LV network Storage in 15% of homes with PV, year 35, 

high PV forecast 
~0.463 ~124 

DNO storage, year 35, high PV forecast ~0.125 ~50 
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5. Discussion 

The results of this work show that storage should be carefully located within an LV network 

using a heuristic method to minimise a DNO’s overall cost. Storage may still offer benefits to 

homeowners and that does have a benefit to DNOs in reducing reinforcement costs. However, it is 

found that storage in homes will not prevent all overvoltage, because the location of the storage in 

networks is not optimised for overvoltage reduction in this case. 

Social factors will also be important to consider, such as engagement with specific customers by 

DNOs to target installation of residential storage. For example, it could be suggested that storage is 

targeted by DNOs at homes with PV who are experiencing voltage problems. This would mean 

storage is installed in homes on problematic networks with the objective of reducing overall costs. In 

this case, there would be a benefit both for the DNO and to homeowners in reduced curtailment and 

lower network costs. The DNO might pass financial benefits of avoided re-conductoring to customers 

with storage as a local subsidy as presented in [25]. Battery and PV/battery hybrid inverters 

commonly contain the control logic required for export limitation or non-greedy self-consumption as 

would be required to maintain network voltage limits. The inverter might also call upon demand 

side loads such as storage heaters, electric vehicles or smart appliances—which would improve the 

chances of a load/store being available to maintain voltage limits. 

Storage located by the network operator could be built with control algorithms which are 

targeted towards a DNO objective of voltage control [34,35]. Street storage itself might be favourable 

for DNOs as it does not need to be located in customer homes. This avoids issues such as the need to 

fundamentally change the relationship between the DNO and homeowners. However, it may be 

difficult to install such storage where there is limited space on the street or concerns of theft or 

damage. 

Technical and financial parameters have been used for this study which have been accepted by 

DNOs for works previously published by the authors [24]. In the future, DNOs will need to 

recalculate results if parameters change. For example, DNOs might also model an increase in peak 

demand if there is widespread adoption of electric vehicles and heat pumps in the future. This is 

easily achieved in the tool through adjusting the parameters described in Section 3.4.4. As the 

economics of energy storage improve, such as through reduced battery costs, increased variable 

electricity prices or through smart tariffs then their dispersion level will be much higher. Further 

study should evaluate the dispersion level for storage in homes which achieves comparable economic 

results for the DNO. 

This work was completed as an electrical energy storage study. Other technologies such as 

electric vehicles, flexible heat pumps, thermal storage, occupancy patterns [36], or measured data can 

be included in the model by adjusting the maximum or minimum demand in the networks. 

Adaptation of the model in this paper would therefore allow assessment of integration of a number 

of network changes. Hot water storage is very common in the UK, for example, and the DNO might 

consider that adoption of thermal storage linked to PV will be more widespread than adoption of 

batteries in customers’ homes. 

Curtailment of PV is one of the primary practical implications of overvoltage in LV networks. 

The amount of curtailment could be calculated by extending the model to include annual demand 

and generation forecasts. Such modelling would allow the DNO to select networks with the worst 

voltage problems and those where the most curtailment will occur. This is important to allow the 

DNO to determine networks where curtailment is most extreme and where mitigating actions should 

be prioritised. Furthermore, if the overvoltage and curtailment is small, then there is an important 

case to be made to regulators to allow some PV curtailment in connection agreements if this reduces 

the overall reinforcement cost. For example, the connection agreement could ensure that the PV is 

not curtailed for more than a set number of hours in a year with the length of time of each curtailment 

also limited. 

It should be noted that calculation of problematic feeder is based on an assumption that 

minimum load and maximum output coincide, and that maximum output is at the rated power PPV. 

This is a common approach, taking a worst case scenario. In reality, for the UK the amount of time 



Energies 2018, 11, 41 14 of 16 

 

for which output power is at rated is very small, and therefore UK DNOs may wish to consider a 

probabilistic approach to the combination of low load and high PV output. 

6. Conclusions 

This paper has presented a method for assessing the impact of residential PV and energy storage 

on overvoltage in a large number of LV networks. This has been applied to 9163 LV networks, 

comprising 43,816 feeders, in the North West of the UK. It has shown that storage should be carefully 

located within an LV network using a heuristic method to reduce the cost of storage and the overall 

reinforcement cost to prevent overvoltage. Widespread adoption of stochastically located storage in 

homes is unlikely to prevent all overvoltage since the location is critical. Even so, storage in homes 

may have additional benefits where voltage problems are present. As shown in the economic 

sensitivity analysis, the need for storage increases with the PV dispersion levels but so does the 

requirement for reduced costs of storage. 
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