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Abstract: Thermal stress of the rotor in a squirrel cage induction motor is generated due to the
temperature rise, it is also one of the factors causing the broken bar fault because the structure of
the rotor would be destroyed if the stress of the rotor bars exceed the strength limit. The coupled
fluid-thermal analysis for the induction motor with healthy and broken bar rotors is performed
in this paper. Much concern has been committed to establishment of the fluid model on the basis
of computational fluid dynamic (CFD) theory. The heat field of the prototypes is analysed so that
the effect of the asymmetrical rotor on the motor heat performance can be investigated in depth.
Eventually, the efficiency of the presented model and method, for the totally enclosed fan cooled
(TEFC) induction motor, can be verified through experimental results. In addition, this paper reports
a quantitative analysis of the heat flux distribution of the fault rotor, and the heat flux density of the
bars is investigated in detail. Then, the part most likely to break in the rotor as a result of the thermal
load is identified.

Keywords: induction motors; finite element method; computational fluid dynamic (CFD) method;
thermal field; fluid field; broken bars fault

1. Introduction

As a key performance parameter of electrical machines, the temperature rise has been of wide
concern in the industrial field. The temperature rise can limit the rated power and reduce the motor
efficiency, and it also imposes special demands on the material of the motor. Therefore, in the process
of the motor design, the temperature limits should be calculated and checked for satisfying the
requirements of functionality and safe. If the operating temperature exceeds the insulation material
working limit of the motor [1], it will cause an accelerated aging effect or even failure of insulation [2,3],
and then machine life expectance can be seriously affected [4]. Accordingly, it is vital to plot the
thermal map of the electric machine, working in the most severe condition.

As well known, the accuracy of thermal analysis greatly depends on the heat transfer coefficient
on heat transfer surfaces, so it is essential for designers to get an accurate analysis of the fluid
field. However, inner and outer environment of the motor is complex, in some conventional
methods [5–7], the fluid model is usually simplified, or the fluid velocity on heat transfer surfaces is
regarded as constant, so the corresponding heat transfer coefficient is also constant. These studies
provide good ways to fluid field analysis, but the continuity of the fluid field distribution is not
included. In view of this problem, reference [8] proposed a coupled calculation of fluid and
thermal field for high speed motor considering tooth slots effects, and [9] proposed analysis of the
electromagnetic-fluid-thermal field in a permanent magnet linear motor. The permanent magnet motor
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with high speed of 60,000 r/min is discussed in [10], according to computational fluid dynamic (CFD)
theory, the parameters of the equivalent thermal circuit can be obtained. For an air-cooled disc type
electrical machine, the measurement and simulation of stator heat transfer were performed in [11] and
the CFD analysis was introduced. The CFD (computational fluid dynamic) analysis and the thermal
equivalent circuit model have been established for a totally enclosed fan cooled (TEFC) induction motor,
and the simulation data are compared with experimental data measured by sensors [12]. Moreover,
many fluid analyses of the motor are based on local fluid field, very little research has addressed the
complete fluid space, especially for small and medium size induction motors.

In addition, apparent thermal stresses can be observed with the temperature rise of motors.
It frequently leads to cage fracture in the joint of the bars and the rings and accompanying asymmetric
rotor operation, which is a serious accident in the running state of the motor. The thermal field
distribution research on asymmetry rotor can provide some references for the prevention and diagnosis
of fault. With the increase of rotor bar failures, it has received some attention from researchers. In [13],
an innovative method of fault diagnosis for the induction motor with broken bars fault is proposed.
A new methodology was introduced in [14], which integrates vibration and current analysis by
associating signal spectrum analysis to improve the detectability for the motor, under the mechanically
loaded and unloaded running state respectively. Reference [15] evaluated the internal faults of the
induction motor with the squirrel cage by the finite element method as well as discrete wavelet
transform. Reference [16] presented an experimental research of the fault rotor motor, regarding time
frequency evolution effects, and the fault factor can be obtained. The detection methods for induction
motor with rotor bar fault are proposed in [17,18], and different diagnostic mediums are compared in
two studies. The purpose of [19] is to report the effect of partially fault rotor bar based on experimental
research in induction motor. The running characteristics of the motor under different operating
conditions are obtained by discrete wavelet transform analysis. The effect of saturation level due to
rotor bars fault in induction motor was introduced in [20], by means of fundamental electromagnetic
laws and finite element modelling. Obviously, the existing studies works relating to thermal analysis
of the motor with broken bar is still much less than those associated with other aspects.

Considering the aforementioned issues, in this paper, the coupled fluid-thermal analysis of the
prototype running under normal and faulty conditions is performed. To effectively simulate the fluid
field, the 3D model for the prototype motor and the fluid domains are built, and the coupled model
is solved by CFD simulation. The software “ANSYS” was used to analyze the induction motor with
healthy and faulty rotor. The 3D geometry model construction of the induction motor is studied
by commercial software ANSYS ICEM (15, ANSYS Inc., Canonsburg, PA, USA) programs, and the
calculation of the coupled fluid-thermal field, including meshing, solving and post-processing is
achieved by commercial software ANSYS FLUENT (15, ANSYS Inc., Canonsburg, PA, USA). In the
stage of pre-processing, the outer approximate infinite fluid field and 3D finite element construction
model are established, with the ventilation structure and characteristics of heat transfer taken into
account. In the light of Newton’s heat transfer law and Fourier’s theorem, the heat transfer coefficients
of the motor can be obtained, and the steady thermal field of the motor running at full capacity is
computed. The calculated results are close to the experimental data, and the analytical method in the
paper proved to be valuable can provide references for the other middle and small induction motors.

2. Basic Parameters of the Motor and Laboratory Testing Platform

The major data of the prototype motor are listed in Table 1. The air velocity of fluid field and
temperature of the motor are also tested in the laboratory under healthy and broken bar conditions.
The test flat has been shown in Figure 1, and the same rotors, including one healthy rotor and two faulty
rotor are prepared for the test purpose. The motor used for experimental study is a three-phase
induction motor, 50 Hz, 2 poles, 1.1 kW, and the healthy squired cage rotor is made of 16 bars.
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broken bar rotors. 

Table 1. Basic parameters of the prototype motor. 

Parameter Value Parameter Value 
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Number of rotor slots 16 Air-gap length 0.3 mm 

The air velocity along the axial direction on shell surface can be accessed by a hot wire 
anemometer during the experiment as shown in Figure 1. In order to evaluate the heat behaviour of 
the induction motor, a complete thermal evaluation of the prototype motor fitted with thermistor is 
carried out in the laboratory, so the temperature in all the spots of interest can be obtained. The 
temperature on the motor shell is measured by an infrared thermometry probe. 

3. Model and Fundamental Equations 

3.1. CFD Model and Temperature Measured Positions 

The 3D model of the prototype motor is employed in the paper, as shown in Figure 2. 
Meanwhile the presented model is intended to calculate the fluid and temperature field. The 
structured grids and unstructured grid are adopted in the paper. The motor is meshed by structured 
grid due to complex structures, and the external fluid space is meshed by the unstructured grids. 
There are 3,160,630 mesh cells in the simulations. 
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Figure 1. The laboratory test setup and the broken bar rotors: (a) The laboratory test setup; (b) the
broken bar rotors.

Table 1. Basic parameters of the prototype motor.

Parameter Value Parameter Value

Rated power 1.1 KW Stator outer radius 120 mm
Rated voltage 380 V Stator inner radius 67 mm

Number of stator slots 18 Rotor outer radius 66.4 mm
Number of rotor slots 16 Air-gap length 0.3 mm

The air velocity along the axial direction on shell surface can be accessed by a hot wire anemometer
during the experiment as shown in Figure 1. In order to evaluate the heat behaviour of the induction
motor, a complete thermal evaluation of the prototype motor fitted with thermistor is carried out in
the laboratory, so the temperature in all the spots of interest can be obtained. The temperature on the
motor shell is measured by an infrared thermometry probe.

3. Model and Fundamental Equations

3.1. CFD Model and Temperature Measured Positions

The 3D model of the prototype motor is employed in the paper, as shown in Figure 2. Meanwhile
the presented model is intended to calculate the fluid and temperature field. The structured grids and
unstructured grid are adopted in the paper. The motor is meshed by structured grid due to complex
structures, and the external fluid space is meshed by the unstructured grids. There are 3,160,630 mesh
cells in the simulations.
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Due to the irregular arrangement of the winding in the stator slots, the model must be simplified
based on the following hypotheses [21]:

1. The stator winding has a good dipping process.
2. Insulated lacquer on the stator winding surface is uniformly distributed.
3. The equivalent insulation layer in the stator slots is tightly connected with the stator core.
4. The thermal difference of all winding in a stator slot can be neglected.

Based on the above hypothesis, all copper wires can be equivalent treated as a copper bar placed
in the stator slot center. The insulating paper, impregnating varnish, varnish film of the copper and the
air between wires are dealt with an equivalent insulating layer. The equivalent method is shown in the
Figures 3 and 4. The equivalent heat conduction coefficient of the insulation layer can be calculated by
Equation (1) [21].

λeq =

n
∑

i=1
δi

n
∑

i=1
(δi/λi)

, (1)

where, λeq is equivalent heat conduction coefficient of the insulation layer in the stator slots, δi is
equivalent thickness of each insulating material (δ1 is thickness of the slot wedge, the value is 0.5 mm,
δ2 is thickness of the air gap between slot wedge and stator core, the value is 0.15 mm, δ3 is thickness
of the enameled wire insulation and impregnating varnish, the value is 0.96 mm), λi is average thermal
conductivity of each material.
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Furthermore, because of the low heat conduction coefficient of air, the thermal contact resistance
of the assembly space between the stator and the frame cannot negligible, and it has a great effect on
the thermal analysis of the motor. The thermal contact resistance is defined as follows [22]:

Rc =
δ

λAa
, (2)

where, Rc is the thermal contact resistance, δ is the gap length between the stator and motor frame,
the value is 0.5 × 10−4 m, λ is the heat conduction coefficient of the air, Aa is the contact area between
the stator and motor frame. The material properties are isotropic, and the list of material properties is
given in Table 2.
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Table 2. Properties of material.

Material Type Name Density
(kg/m3)

Specific Heat
(j/kg−k)

Thermal Conductivity
(w/m−k)

Viscosity
(kg/m−s)

Fluid Air 1.225 1006.43 0.0242 1.7894 × 10−5

Solid Slot wedge 2150 1200 0.5
Solid Steel 7650 502.48 48
Solid Iron core 7900 477.3 46
Solid Equivalent insulation 1850 1700 0.287
Solid Copper 8978 381 398
Solid Aluminum 2719 871 202.4

The test points of the temperature A to G given in Figure 2, which generally report the temperature
rise of the motor. The rotor temperature can be obtained from the sensor A planted in rotor bar. The aim
of sensor B is to get the air-gap temperature, but actually it can be only mounted on stator wedge to
obtain temperature of the air-gap near the stator. The sensors C and D are inserted inside two stator
slots center respectively, and one is near the junction box and the other is placed in the opposite side of
the junction box. E, F, G are three measured points of the motor frame. It should be noted that all test
positions are located in the middle of the motor along the axial direction.

3.2. Fundamental Equations of the Fluid and Thermal Field

The fundamental equations governing fluid flow are solved for calculating the fluid field in this
paper. As the range of the Reynolds number is greater than 2300, the turbulence equation is also
required to describe the fluid flow. According to the CFD theory, the standard k-ε equation can be
written as follows [23]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk − ρε, (3)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Gk − C2ερ

ε2

k
, (4)

where, Cµ, C1ε and C2ε are constants, µt = ρCµ(k2/ε) is turbulence viscous coefficient,
Gk = µt((∂ui/∂xj) + (∂uj/∂xi))(∂uj/∂xi) is turbulent generation ratio, and σk and σe are turbulence
Prandtl number (Pr number) of the k equation and the ε equation, respectively.

Besides, 3D heat transfer equations are required for the temperature calculation [24,25]:

∂

∂x
(λx

∂T
∂x

) +
∂

∂y
(λy

∂T
∂y

) +
∂

∂z
(λz

∂T
∂z

) = −q, (5)

∂T
∂n

∣∣∣∣
Sj

= 0, (6)

−λ
∂T
∂n

∣∣∣∣
SS

= α(T − Tf ), (7)

where T is the temperature, Tf is the fluid temperature, q is the heat generation per unit volume, α is the
surface heat transfer coefficient, λx, λy, λz are the coefficient of thermal conductivity in x, y, z direction
respectively, n is the unit normal vector of the solution domain boundary, Sj and SS are adiabatic
surface and heat-dissipating surface respectively. The initial data α is constant, and it is variable on the
heat transfer surface when numerical solutions are convergent.
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3.3. Fundamental Assumptions

To simplify calculation, some reasonable assumptions are proposed as follows [26]:

1. Thermal resistance of windings is neglected because of its good heat conducting properties.
2. The thermal contact resistances between the rotor core and rotor bars is negligible.
3. Stray loss is focused on the tooth tip of stator and rotor.

3.4. Boundary Conditions

The coupled fluid-thermal model are adopted in this paper, and the thermal boundary conditions
of heat transfer surfaces can be got by the fluid field calculation. Compared to traditional empirical
equations, the temperature results obtained through CFD simulation are more accurate.

In this section, the fluid domains of the motor were specially considered, so that they are closer
to the real fact, as shown in Figure 5, the motor is placed in an approximate infinite fluid space.
Considering the calculation time and accuracy, and the 20 times volume of the motor was chosen, it is
appropriate for the computational domain. The external fluid space consists of two parts: one is the
rotating fluid domain that is formed by a 360 degree sweep of the fan blade (see Figure 6) and the
other is the rest of the fluid space.
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Figure 6. Rotating fluid domain of fan.

Figure 7 is the section diagram of air-gap fluid field, and it is divided into two regions, including
the rotary and stationary fluid region. The rotary fluid region is close to the rotor, and the stationary
fluid region is close to the stator. On the basis of the reference coordinate system, the motive fluid
domain and the rotor rotate synchronously, and the speed is given as a relative speed. The detailed
boundary conditions of the fluid field are given in Table 3.



Energies 2018, 11, 2024 7 of 17

Energies 2018, 11, x FOR PEER REVIEW  7 of 17 

 

motive fluid domain and the rotor rotate synchronously, and the speed is given as a relative speed. 
The detailed boundary conditions of the fluid field are given in Table 3. 

 
Figure 7. The section diagram of air-gap fluid field. 

Table 3. Boundary conditions of computational fluid dynamic (CFD) simulation. 

Boundary/Cell Zone Condition 
in Pressure-inlet Ptotal = 0 Pa 

out Pressure-outlet Ptotal = 0 Pa 
wall Stationary wall No slip 

inner wall of stator Stationary wall No slip 
outer wall of rotor Moving wall No slip 

interface Interface - 
rotating fluid domain Angular velocity 2830 rad/min 

3.5. Losses 

As well known the losses, in an induction motor bring about the temperature rise, which can 
cause significant thermal stress, and the total losses of the motor can be given by the following 
Equation [26]: 

cu al Fe+P P P P P PΩ Δ= + + + , (8)

where, Pcu is winding loss, Pal is bar loss, PFe is core loss, P is mechanical loss, P is stray loss.Based 
on the results of electromagnetic field calculation, the losses can be obtained [27,28]. The rotor core 
loss is relatively small and hence it can be ignored in Equation (8). 

4. Results and Discussion 

According to the above analysis, the coupled fluid-thermal field of the motor is calculated and 
the simulation results are analysed in this section. The absolute steady pressure based solver is 
adopted in this paper, and the solving time is about six hours. 

4.1. Fluid Field Results 

As can be seen from the Figure 8, the 3D fluid distribution on the shell surface, from the figure, 
the fluid continuous distribution can be seen. The air velocity on the shell surface appears to show a 
significant variation along the axis, and the max value of air velocity located in the fan side, it is 
about 10 m/s. The average air velocity on the shell surface is 4~5 m/s. Besides, the fluid status inside 
and outside of the junction box is obviously different under rated load, all of these explain why the 
motor temperature distribution along the axial and radial direction is not symmetrical. The air 
velocity along the path l1 was measured during the experiment, and the 19 testing points was 
selected (see Figure 9), and the test data are compared with the calculated results in the Figure 10. 

Figure 7. The section diagram of air-gap fluid field.

Table 3. Boundary conditions of computational fluid dynamic (CFD) simulation.

Boundary/Cell Zone Condition

in Pressure-inlet Ptotal = 0 Pa
out Pressure-outlet Ptotal = 0 Pa
wall Stationary wall No slip

inner wall of stator Stationary wall No slip
outer wall of rotor Moving wall No slip

interface Interface -
rotating fluid domain Angular velocity 2830 rad/min

3.5. Losses

As well known the losses, in an induction motor bring about the temperature rise, which can cause
significant thermal stress, and the total losses of the motor can be given by the following Equation [26]:

P = Pcu + Pal + PFe + PΩ + P∆, (8)

where, Pcu is winding loss, Pal is bar loss, PFe is core loss, PΩ is mechanical loss, P∆ is stray loss.
Based on the results of electromagnetic field calculation, the losses can be obtained [27,28]. The rotor
core loss is relatively small and hence it can be ignored in Equation (8).

4. Results and Discussion

According to the above analysis, the coupled fluid-thermal field of the motor is calculated and the
simulation results are analysed in this section. The absolute steady pressure based solver is adopted in
this paper, and the solving time is about six hours.

4.1. Fluid Field Results

As can be seen from the Figure 8, the 3D fluid distribution on the shell surface, from the figure,
the fluid continuous distribution can be seen. The air velocity on the shell surface appears to show
a significant variation along the axis, and the max value of air velocity located in the fan side, it is about
10 m/s. The average air velocity on the shell surface is 4~5 m/s. Besides, the fluid status inside and
outside of the junction box is obviously different under rated load, all of these explain why the motor
temperature distribution along the axial and radial direction is not symmetrical. The air velocity along
the path l1 was measured during the experiment, and the 19 testing points was selected (see Figure 9),
and the test data are compared with the calculated results in the Figure 10.
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Figure 11 shows 2D streamlines of outer fluid field of the motor, from the figure, the air gets
into fan cover and it will be affected by the rotating of the fan, then the air flows out along the heat
radiation fins at high velocity, which leads to the forced heat exchange on shell surface of the motor.
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When fluid come to the load side of the motor, the velocity reduces rapidly due to the kinetic
energy decrease, caused by open environment. Meanwhile, the obvious vortex phenomenon appears
at region V1 and V2, which will lead to the energy loss of fluid medium and is one of the main reasons
for vibration noise. Except for outer fluid field, the inner fluid field also is key to the temperature rise
calculation. The TEFC induction motor is adopted in this paper, so the inner and outer fluid field
are relatively separate, and the fluid flow inside the motor is completely caused by the rotor rotation.
Figure 12 gives the 3D fluid distribution in the air-gap. The result shows that air velocity adjacent
to rotor surface can reach about 10 m/s, and it is close to tangential speed of the rotor. Moreover,
since stator is a stationary, and it has a strong effect on fluid movement in the air-gap. Therefore, the air
velocity changes greatly, that is, it shows an obvious decline trend along the radial direction.
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As shown in Figure 13, l2 is an axial path on the rotor surface, including the rotor core and the
end-ring. The variation of air velocity along the path l2 is shown in Figure 14. From it, it is clear that
the fluid field is generally symmetrical in the axial direction. The air speed on the rotor core surface
has almost no change, and a substantial fluctuation can be found in the end-ring segment, which is
attributed to violent turbulence in the confluence of the air gap and the end cavity.
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The accuracy of thermal analysis depends on the model. As a consequence, it also depends on
the obtained coefficient of heat transfer related to internal and external heat exchange of the motor,
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including natural and forced convection. In this paper, a numerical algorithm of heat transfer coefficient
is proposed, according to Newton’s law of cooling and Fourier’s law of heat conduction.

After getting the initial fluid field, the initial heat transfer coefficient can be obtain, from which
the heat field of the motor can be determined by the Equations (5)–(7). On account of the temperature
of all nodes, a new heat transfer coefficient can be determined according to Equation (9), and the
temperature of all nodes will be calculated again based on it:

αi =
λ(T − Tw)

∆X
(

Tw − Tf

) , (9)

where i is the number of iterations, αi is coefficient of heat transfer for the ith iteration, λ is the thermal
conductivity of cooling medium, Tw is the surface temperature of solid located on the fluid-solid interface,
Tf is the average temperature of fluid, ∆X is the distance of two elements center, and it depends on the
mesh generation strategies, T is temperature at position with distance of ∆X from the body surface.

Equations (10) and (11) are used to identify whether the heat transfer coefficient and temperature
are acceptable. The iteration is stopped if the heat transfer coefficients and temperatures meet the
two convergence conditions of (10) and (11), otherwise the iteration continues, and the chart of the
iterative method is shown in Figure 15.
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∣∣∣∣∣∣
(

T(k+1) − Tk
)

T(k+1)

∣∣∣∣∣∣ < ε2 (11)

where Tk is the temperature obtained at the k times, ε1 and ε2 are residual error. To get a more
precision heat transfer coefficient, the environmental temperature was chosen as the initial temperature
of fluid field. The heat transfer coefficient distribution of the motor is displayed in Figure 16a,b.
The calculated results of fluid field can provide accurate boundary conditions for the thermal field
calculation. From the results, it is revealed that the fluid field distribution has little change before and
after the broken bar fault, so only the results of fluid field about healthy motor were reported.
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4.2. Thermal Field Results

In this section, 3D steady thermal field of the motor operating at the full load is studied.
Figure 17a–c shows the temperature distribution of the motor with healthy cage, one and two broken
bars respectively. From the figures, the thermal field of the motor can be divided into two regions,
the rotor part and the stator part, and the rotor temperature is much higher than the stator temperature.
Because of the existence of the fan and the junction box, the temperature distribution of the motor
shows obvious asymmetry along the axial and circumferential direction. Due to the good cooling
conditions, the temperature of motor frame is the lowest, relative to the other parts.
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The rotary magnetic field is created by the stator current, which brings a power loss at the same
time, and stator winding temperature rise caused by the loss is always concerned. Figure 18 gives the
temperature of the stator winding in different cases. The highest temperature of the stator winding
with healthy cage is about 76 ◦C and it increases obviously in case of faulty condition which will
result in insulation aging. Besides, because of the asymmetric cooling condition on the shell surface,
the temperature of the stator winding close to the junction box is higher than other windings.
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The temperature distributions of the rotor with healthy bars and broken bars are given in Figure 19.
Compared with other parts of the motor, the rotor temperature is the highest. Due to the good thermal
conductivities of the bars and rotor core, there is minimal temperature changes of the entire rotor can
be observed.
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It can be seen from the whole rotor solving region that the lowest temperatures are located at
broken bars, as shown in Figure 19b,c. Despite there is no currents pass through the broken bars,
as well as no aluminium losses are produced. Based on the magnetic field calculation results [27–29],
it is revealed that the current and the aluminium losses in the rotor bar adjacent to the faulty bars
increase obviously. The current distribution of rotor bars for different cases is shown in Figure 20a.
But in fact, there are little temperature differences between the healthy bars and broken bars, even the
whole rotor, due to the good thermal conductivity properties of the rotor materials.
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The temperature of some representative measured points is listed in Table 4, and the test values
and calculated values are compared. Because it took a long time to do the temperature experiments,
the change of ambient temperature must to be considered. In this paper, the ambient temperature at
above three cases are 20.5 ◦C, 16.5 ◦C, 17 ◦C respectively. From the data in Table 4, it is cleared that the
temperature rise is closely related to the broken bar number, that is, it increases rapidly with increase
of broken bar number. In addition, the calculated values of temperature rise are similar to the test
values at measurement point, and the accuracy of the simulation results is proved.

Table 4. Comparison of the temperature value of the measured points (◦C).

Motor Condition Measured
Positions Test Value Calculated

Value
Test

Temperature-Rise
Calculated

Temperature-Rise

Healthy rotor (the ambient
Temperature 20.5 ◦C)

A 91.1 93.1 70.6 72.6
B 68.1 69.4 47.6 48.9
C 76.6 76.0 56.1 55.5
D 73.9 73.6 53.4 53.1
F 51.2 49.2 30.7 28.7

One broken bar (the ambient
Temperature 16.5 ◦C)

A 89.2 91.1 72.7 74.6
B 68.0 70.1 51.5 53.6
C 77.3 74.9 60.8 58.4
D 74.3 72.5 57.8 56.0
F 50.3 48.3 33.8 31.8

Two broken bars (the ambient
Temperature 17 ◦C)

A 99.3 100.2 82.3 83.2
B 74.4 76.7 57.4 59.7
C 83.9 79.8 66.9 62.8
D 79.5 77.3 62.5 60.3
F 53.4 51.1 36.4 34.1

Figure 21 shows the temperature rise distributions of the motor along the radial direction for the
three cases described above. It is indicates that the change of the temperature rise is visible. Except for
the temperature increase due to the fault, there is subtle difference in radial temperature distribution
tendencies of the motor for the three different cases. There is a large temperature difference between
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the rotor and stator owing to the poor thermal conductivity of air, and the same situation also exists
between the stator and motor shell because of the contact thermal resistance.
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Figure 22 displays the heat flux distribution of the rotor ring and bar, from which, the heat flux
distribution of the rotor appears to be uneven, and heat flux value of the ring is slightly larger than that
of rotor bars. There is fairly high heat flux in the junction of the bars and the rings, where the broken
bar fault frequently occurs. Meanwhile, when broken bar fault happens, the heat flux value of the joint
adjacent to fault bars goes up greatly, which will probably result in aggravation of the broken bar fault.
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5. Conclusions

In this paper, the research developed a CFD model for coupled fluid-thermal calculation of the
medium small induction motor with healthy and broken bar fault rotors. The fluid field and the
thermal field have been analyzed around the squirrel cage with or without the broken bar fault.
Compared with the healthy case, the growth of these quantities is not obvious in the one broken-bar
case but they increase greatly in two adjacent broken bars, and the thermal field distributions are
asymmertrical in the condition of fault cases. The calculated results of temperature regarding the fluid
field are compared with the test results, shows the accuracy and rationality of the model. Furthermore,
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the number of broken bar has great influence on the motor temperature rise, and it quickly increases
with the number of broken bars increasing. There is fairly high heat flux in the joint of the rings and
the bars, where is the most likely part of broken bar fault. The heat flux of the joint adjacent to broken
bar increases greatly when broken bar fault happens, and it explains why adjacent fractured bars are
always found in the faulty motor.
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Abbreviations

λeq equivalent heat conductivity of the insulation layer in the stator slots, W/m·k
δi equivalent thickness of each insulating material, m
λi average thermal conductivity of each material, W/m·k
Rc thermal contact resistance, Ω
δ gap length between the stator and motor frame, m
λ heat conductivity, W/m·k
Aa contact area between the stator and motor frame, m2

Gk turbulent generation ratio
µt turbulence viscous coefficient, Pa·s
Cµ, C1ε, C2ε constants
σk turbulence Prandtl number (Pr number) of the k equation
σε turbulence Prandtl number (Pr number) of the ε equation
T temperature, K
Tf fluid temperature, K
q heat generation per unit volume, J/m2·s
α surface heat transfer coefficient, W/m2·k
λx, λy, λz thermal conductivity in x, y, z direction respectively, W/m·k
n unit normal vector of the boundary
Sj adiabatic surface
SS heat transfer surface
Pcu winding loss, W
Pal bar loss, W
PFe core loss, W
PΩ mechanical loss, W
P∆ stray loss, W
i number of iterations
αi coefficient of heat transfer for the th times iteration, W/m2·k
TW surface temperature of solid located on the fluid-solid interface, K
∆X distance of two elements center, m
Tk temperature obtained at the k times, K
ε1, ε2 residual error
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