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Abstract: High-frequency transformers are the core components of power electronic transformers
(PET), whose insulation is deeply threatened by high voltage (HV) and high frequency (HF).
The partial discharge (PD) test is an effective method to assess an electrical insulation system. A PD
measurement platform applying different frequencies was set up in this manuscript. PD signals
were acquired with a high-frequency current transducer (HFCT). For improving the signal-to-noise
(SNR) ratio of PD pulses, empirical mode decomposition (EMD) was used to increase the SNR by
4 dB. PD characteristic parameters such as partial discharge inception voltage (PDIV) and PD phase,
number, and magnitude were all analyzed as frequency dependent. High frequency led to high PDIV
and a smaller discharge phase region. PD number and magnitude were first up and then down as the
frequency increased. As a result, a suitable frequency for evaluating the insulation of high-frequency
transformers is proposed at 8 kHz according to this work.

Keywords: partial discharge (PD); high-frequency transformers; power electronic transformers (PET);
partial discharge inception voltage (PDIV)

1. Introduction

To establish a smart grid, it is necessary to accomplish electronic power conditioning and control
of electric power production and distribution [1]. In this trend, electronic-based power devices are
migrating from the on/off control to a modern control, such as the direct control (DC) microgrid
(DCMG) [2] and railway traction systems [3], etc. Power electronic transformers (PET), functioning as
energy routers in the power grids at various voltage levels have gained widespread concern. Since PET
is a combination of power electronics and high frequency (HF) transformers, it has a great capacity
to convert electrical energy with different electrical characteristics and to make reactive power
compensation for the system. To reduce the space share of PET, the operating frequency of PET
is designed mainly to a few thousand hertz [4–6], much higher than the conventional power frequency
of 50/60 Hz. The more severe working conditions of high power, high voltage, and high frequency
threaten the insulation of PET [7]. As a core component of PET, HF transformers play a role in isolating
and transmitting power, the insulation of which is particularly important. Damaged insulation of HF
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transformers not only has low energy conversion efficiency but also leads to power failures of the
power and electronic equipment [8], further causing the whole crash of PET.

Partial discharge (PD) in high-voltage (HV) equipment is deemed as one of the most significant
phenomena to be investigated for determining defects and degradation in electrical insulation and an
apparatus’s lifetime. Similar to the conventional HV power apparatus, scholars have paid attention
to PD in high-frequency transformers to determine whether there is a fault and to evaluate the
health status.

The frequency dependence of PD sources has been taken into account and a model developed in
order to study the effect of applying higher frequency (50 to 600 Hz) on the behavior of PD activity [9].
Experimental research has been carried out [10] in the range of 50 to 1000 Hz. However, according to
field experiences of oscillating waves ranging from 20 Hz to several hundred hertz, the frequency
of the power source makes little difference to PD activities [11–13]. More research has been done at
higher frequencies. A semi-square voltage of 2 kHz has been used in [14]; even tens of kilohertz (kHz)
repetitive pulse-width modulation (PWM), such as HV pulses stressed on power electronic devices,
is considered important for the reduction of the insulation reliability and its life cycle [10,15]. As to
the high- frequency transformer in PET, the non-sinusoidal waveform is not suitable for the voltage
step-up/step-down [7]. As a result, the sinusoidal waveform with more than 1000 Hz should attract
more attention.

As is well known, PD detection and the diagnosis of low-frequency power transformers depend on
various techniques on which there have been extensive studies [16–20]. Several PD detection methods
have been developed according to the physical properties of the insulation system, which accompany
PD activity, such as current pulse method [21], ultrasonic detection, ultra-high-frequency (UHF)
detection, and the optical method [22,23]. However, the lower frequency limit of conventional
pulse current methods is close to that in the high-frequency transformer, the ultrasonic detection
is not sensitive enough because of the complex acoustic impedance, the UHF signals are affected by
communication signals, and there is still no known experience with optical measurements in this kind
of electrical equipment. In this sense, the wide-band current method is proposed to be a good choice
for PD detection in high-frequency transformers [24]. This paper is structured as follows. In Section 2,
the measurement setup is described. The denoising process of empirical mode decomposition is
depicted in Section 3; the signal-to-noise (SNR) ratio of the PD signal is increased by 4 dB. In Section 4,
PD results and discussions are described, covering which parameters were frequency-dependent and
how the parameters (PD phase region, PD number, PD magnitude, etc.) varied at different frequencies.
The conclusions about appropriate conditions for testing HF transformers are presented in Section 5.

2. Partial Discharge Measurement Setup

Insulation defects of HF transformers are caused by many factors, of which free metal particles
often cause suspension potential or even suspension discharge. Suspension discharge is the greatest
number of partial discharges [14,25]. A schematic diagram of a typical HF transformer is shown in
Figure 1.
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The structure of HF transformers are similar to conventional transformers.
HF transformers consist of a magnetic core, copper windings, and insulation parts. However,

the special operating conditions place more demand on the core material, winding distribution,
and insulation performance. To achieve high efficiency in energy conversion and high power density,
a high frequency through the magnetic core has been selected and a compact winding design was
considered [7,26]. A large number of coils in a restrictive volume makes the inter-turn insulation
gain strong electrical stress, and additional insulation failures should be taken into consideration
in HF transformers. Insulating cardboard coordination has been adopted as the insulation for
transformers [27], and the hot spots (the most likely point of suspension discharge) were in the
winding of HF transformers [28]. Therefore, a suspension discharge model under insulating cardboard
was designed to imitate the suspended discharge of a high-frequency transformer winding [29],
as shown in Figure 2.
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Figure 2. Partial discharge test platform for a high-frequency transformer.

In the test platform, voltage output was provided to suspend the discharge model in series with
a resistance of 10 MΩ by the power supply (CTP2000, Suman, Nanjing, China). A high-precision
high-frequency current transformer (HFCT), type iHFCT-54 (Innovit, Xi’an, China), connected to the
oscilloscope (DLM2034 with a high sample rate of 2.5 GS/s and high bandwidth of 350 kHz, Yokagawa,
Tokyo, Japan) collected the whole signals.

One of the core devices in the test platform is the PD model. The large potential difference between
the two parallel brass plates with a 35 mm gap provided a strong electric field in the air medium.
Thus, the metal suspended in the strong electric field by the insulating paperboard and support
carried a floating potential. Suspension discharges were generated due to the large potential difference
between the suspended metal and HV side brass plate, but with a small gap of 2 mm. The other core
device was HFCT, shown in Figure 1. It is a magnetic core surrounded by a multi-turn conductive
coil. After a discharge, a large amount of charge moves rapidly toward the defect until it discharges
again. This process is cyclic and generates a high-frequency current in the circuit. The magnetic field
generated by the rapid current change passes through the magnetic core, resulting in an induction
voltage of the coil, which is the signal output of the HFCT. The iHFCT-54 sensor has high accuracy,
and the detection frequency range can reach 0.3~100 MHz. There is no electrical connection between
the measurement circuit and the measured current. With a front fastening, the iHFCT-54 used in the
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non-intrusive detection method can realize online monitoring of PD. The output characteristic of this
HFCT is shown in Figure 3.Energies 2018, 11, x FOR PEER REVIEW  4 of 13 
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3. Denoise Processing of PD Signal

A typical PD current signal is shown in Figure 4 when the power supply exerted a peak-to-peak
amplitude of 20 kV and frequency of 4 kHz sinusoidal voltage. The output amplitude of HFCT
is UHFCT.

PD activity was detected on both positive and negative axes in a period, according to Figure 4.
UHFCT attained a peak-to-peak value of 1.61 V with noise of 0.232 V, which reduced the PD
magnitude accuracy. An improved signal-to-noise ratio (SNR) of PD signal is required. Consequently,
empirical mode decomposition (EMD) was used to improve the SNR in this manuscript because of its
merits on processing nonlinear and non-stationary signal.
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Figure 4. Typical partial discharge (PD) current and voltage signal under f = 4 kHz and Up-p = 20 kV.

3.1. Process of Empirical Mode Decomposition

EMD has an advantage in dealing with nonlinear non-stationary signals because it has great
self-adaptability. EMD is based on the Hilbert–Huang transform. The Hilbert–Huang transform
assumes that all data contain different simple internal oscillation modes called intrinsic mode functions
(IMFs) [29]. In this way, complex data are superimposed by many different IMFs whose amplitude
and frequency vary as a function of time. Based on such an assumption, the process of EMD to process
signals is shown in Figure 5.
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A variance S is set associated with the expected noise reduction. Then, the upper and lower
envelope of the original signal is obtained by calculating the local maximum/minimum. The upper
envelope is denoted as ai while the lower is bi. m is the arithmetic mean of ai and bi. The residual signal
extracted from some information is represented by h. If the variance of all h obtained before SDi is less
than S, then the first IMF will equal hi, and the hi+1 is the new pending signal S.

The total sum of IMFs can match the original signal perfectly. The IMF is especially effective on
the local nonlinear distortion of the waveform, showing potential signaling processes and revealing
the instantaneous change of the process as a whole.

3.2. Analysis of Noise Reduction on PD Signal

After PD current signal was carried out by EMD, the denoising results (Figure 6) were obtained.
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As shown in Figure 6, the denoised signal has been corrected to some extent, in terms of
Equation (1), for SNR.

SNR = 20 log10
USp−pmax

UNp−pmax
(1)
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At t = 40 µs, the peak-to-peak amplitude of the original signal was 1.61 V. At t = 170 µs,
the peak-to-peak amplitude of the original signal was 0.79 V. At t = 40 µs, the amplitude of the
denoised signal was 1.32 V. At t = 170 µs, the amplitude of the denoised signal was 0.65 V. Therefore,
noise reduction does not change the linear relationship between the current signal and PD magnitude.
SNR of the original signal is shown in Equation (2):

SNR = 20 log10
1.61
0.23

= 17 dB (2)

SNR of the denoised signal is shown in Equation (3):

SNR = 20 log10
1.32
0.12

= 21 dB (3)

Comparing Equation (2) and Equation (3), SNR increased by 4 dB for PD current signals after the
EMD noise reduction. After denoising, the relationship between PD current output by the HFCT and
PD magnitude was obtained (Figure 7).
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Figure 7. The response of the high-frequency current transformer (HFCT) at a PD magnitude of 20 pC.

The peak-to-peak UHFCT was 40 mV when applied at 20 pC charge to PD model. A linear
relationship between PD magnitude (Q) and the response of HFCT (UHFCT) can be obtained.

4. Results and Discussion

This section describes how the applied frequency influences the PD characteristics. The statistics
of the PD results for 100 periods applying variable frequencies of 4 kHz, 6 kHz, 8 kHz, 10 kHz,
and 12 kHz are shown in this section.

4.1. Partial Discharge Inception Voltage at Different Frequencies

The partial discharge inception voltage (PDIV) at different frequencies was detected multiple
times at each frequency. The amplitude of PDIV is Uinc, as shown in Figure 8.
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The measurement results in Figure 8 show that Uinc was in a range at a fixed frequency.
An increasing tendency of the range was evident while increasing the frequency. At 8 kHz,
the distribution range of Uinc was minimal with a high measurement accuracy.

4.2. Results of PD Spectrum at Different Frequencies

The basic parameters for characterizing PD patterns are phase angle (Φ) in degrees,
discharge magnitude (Q) in pC, and number of discharges (N). A 3-D pattern is shown in Figure 9a
and phase-resolved partial discharge (PRPD) is presented in Figure 9b.
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4.2.1. PD Q-Φ Scatter Plot at Different Frequencies

The main detection parameter of PD is PD magnitude (Q), which is the basis of other detection
parameters. The PD U-Φ scatter plot in Figure 10 is the distribution statistic diagram of discharge
magnitude in each phase.
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Figure 10. PD l Q-Φ Scatter Plot at different frequencies

As shown in Figure 10, the scattered pattern of PD current in the semi-axes was an ‘hourglass’
shape. As the frequency increased, the ‘hourglass’ waist became thinner. This means that the PD
magnitude in the low frequencies was more polarized.

4.2.2. PD N-Φ Spectrogram at Different Frequencies

The PD N-Φ spectrogram illustrates the PD proper phase displaying the occurrence time of PD.
Figure 11 shows that almost no PD occurred near the power zero crossing point. PD current

N-Φ spectra appeared as an ‘M’ shape, often called a “rabbit ear” shape. A transformation of the
spectrogram in the semi-period from a right triangle to an acute triangle occurred with increasing
frequency. From Figure 11, PD phase distribution information as a phase region and phase center is
shown in Table 1.
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Table 1. The partial discharge (PD) phase region and displacement phase center at different frequencies.

Frequency
Positive Negative

Phase Region (◦) Phase Center (◦) Phase Region (◦) Phase Center (◦)

4 kHz (30, 150) 60 (200, 340) 230
6 kHz (30, 150) 55 (200, 330) 220
8 kHz (50, 150) 75 (200, 340) 250
10 kHz (50, 150) 80 (200, 300) 230
12 kHz (60, 150) 110 (200, 280) 230

PD phase distribution was closely related to the polarity of power and frequency. The frequency
increase led to three phenomena on the PD phase distribution:

• Initial PD discharge phase in the positive semi-period gradually shifted to the right, the end PD
phase fluctuated at 150◦, and the PD phase region decreased;

• Initial PD phase in the negative semi-period fluctuated at 200◦ and the end PD phase gradually
shifted to the left, giving rise to the decreasing PD phase region;

• Positive discharge center phase shifted to the right with increasing frequency; the negative
discharge center phase was maintained around 230◦.

4.2.3. PD Statistical Data at Different Frequencies

The average magnitude of each discharge (Qave) and N at two polarities of power were detected
through statistics. The sum of PD magnitude in 100 periods was marked as Qall. The PD parameters
are shown in Table 2.

Table 2. Partial discharge characteristic parameters.

Polarity Frequency 4 kHz 6 kHz 8 kHz 10 kHz 12 kHz

Positive
N 2042 1924 3703 2839 1717

Qave (pC) 1235 1019 1216 914 867

Negative N 2261 2634 3450 2262 1241
Qave (pC) 1235 1006 1241 917 886

Positive and Negative N 4303 4559 6523 5101 2958
Qall (µC) 5.3 4.6 8.0 4.7 2.6

According to Table 2, Qave and N values at two polarities of power were approximated at each
frequency. The polarity of power had little effect on PD number and magnitude. N and Qall in
100 periods are shown in Figure 12.
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The wave of PD numbers and magnitudes exist in an ascent stage at lower frequencies and tend
to decline at higher frequencies, resulting in a frequency-induced inflection point.

4.3. Frequency-Dependant PD Number and Magnitude

PD number and magnitude are the main parameters describing PD. Therefore, an analysis on
changing the PD number and magnitude is described in this part.

Space charge distribution directly determines the characteristics of the partial discharge.
The frequency mainly affects PD by affecting the polarization degree and the diffusion process of the
space charge. Under AC voltage, the movement of charged particles occurs in the air medium between
the electrodes in the discharge model, causing the air to polarize. The degree of polarization can be
represented by g [20]:

g = γ +
εw2τ

1 + w2τ2 (4)

where g is an equivalent parameter of space-charge polarization in air (fS/m); γ is the conductivity of
air (fS/m) where γ = 0.0231 fS/m at 25 ◦C, 110 kPa; ε is the relative dielectric constant (F/m) where
ε = 8.86 × 10−12 F/m at 25 ◦C, 110 kPa; w is the applied electric field angular frequency.

g is a frequency-dependent parameter. It tends to increase because of the increase in frequency.
A high g means a strengthened air polarization, intensifying the unevenness of the electric field.
PD occurs easily when the electric field is non-uniform. Therefore, high frequency results in a high PD
number and magnitude. However, because the polarization process of space charge takes a certain
amount of time. Once the period at high frequency less than polarization time, the polarization effect
of space charge no longer occupies the dominant position in affecting the partial discharge at an
over-high frequency.

Discharge is a neutralization process of charged particles. When PD occurs, most of the charged
particles are neutralized and release energy. A handful of charged particles are retained on insulated
surfaces, called the retention effect [21]. Space charge diffuses along the cutoff surface under the action
of an electric field between the electrodes. The dissipation process of space charges is described by
Equation (5):

Nq(t + ∆t) = Nq(t)e
− ∆t

τd (5)

where Nq is the number of space charge; ∆t is the discharge interval of PD (s); τd is the time between
the occurrence of the power voltage amplitude larger than PDIV and the first discharge [22]:

τd =

(
VvoiCdφd

(
ρ

p

)
p

(
1 −

(
U

Uinc

)−β
))−1

(6)
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where U is the amplitude of the source (V); Vvoi is the equivalent gas volume exposed to electric field
(m3); Cd is the radiation ionization coefficient; Φd is the radiation quantum flux density (Wb); ρ is
the gas density (kg/m3); p is the intensity of air pressure (Pa); Uinc is the value of PDIV (V). β is a
positive constant.

The value of Cd × Φd is 2 × 106 kg−1·s−1 in air and p = 110 kPa. The value of ρ/p is
10−5 kg·m−3·Pa−1 at 25 ◦C. τd is a monotonic decreasing function of U

Uinc
. Frequency increase causes

Uinc and increases according to Figure 8; thus, U
Uinc

decreases. Therefore, τd increases with an increasing
frequency. Meanwhile, a rapid change of voltage results in a decrease in ∆t. Nq is a monotone
decreasing function of ∆t over τd. Nq gradually increases due to the decrease of ∆t and the increase of
τd, meaning that space charges are intrinsically insulated. The polarity of the voltage changes after
a half-cycle but space charge remains on the insulating surface, resulting in an electric field that is
opposite to the power source and suppresses the partial discharge.

To sum up, as shown in Figure 13, a theoretical frequency (f 0) exists. The impact of the polarization
effect and retention effect on PD magnitude are approximately equivalent but opposite. Therefore,
the maximum PD magnitude was reached at f 0.
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The theoretical results of frequency-dependent PD are consistent with the test results.
When f < f0, the polarization process is greater than the retention effect, so that the number and
magnitude of PD increase with an increase in frequency. When f > f0, the polarization process was
not accomplished in the semi-period. Therefore, the retention effect caused only the PD number and
magnitude to increase with increasing frequency.

5. Conclusions

In this manuscript, a broadband HFCT was used to detect partial discharges at different
frequencies from 4 kHz to 12 kHz. EMD was used for denoising pulses. As a result, the SNR of
the data was increased by 4 dB. After further statistical analysis, the phenomena of PD Q-Φ scatter
plot and PD N-Φ spectrogram in phase, number, and magnitude were analyzed. The PD phase region
was monotone, decreasing to a frequency range of 4 kHz to 12 kHz. The PD number and magnitude
first increased and then decreased in the specific frequency range. Air medium polarization process
and retention effect determined PD number (N) and magnitude (Q) at different frequency values.
Finally, a frequency of 8 kHz was selected in this special case, being a suitable working frequency for
detecting insulation defects with high precision of the acquisition of the PDIV values and obtaining
the best amplification effect for insulation defects. Regarding the suspension PD model at various
working frequencies, the PDIV value was lower and the PD magnitude and number were larger at the
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same voltage level. Thus, 8 kHz can be used to assess insulation status of HF transformers with the
consideration of frequency-dependent effects.
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