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Abstract: The cooperative, reliable and responsive characteristics make smart grid more popular
than traditional power grid. However, with the extensive employment of smart grid concepts,
the traditional centralized control methods expose a lot of shortcomings, such as communication
congestion, computing complexity in central management systems, and so on. The distributed
control method with flexible characteristics can meet the timeliness and effectiveness of information
management in smart grid and ensure the information collection timely and the power dispatch
economically. This article presents a decentralized approach based on multi agent system (MAS)
for solving data collection and economic dispatch problem of smart grid. First, considering the
generators and loads are distributed on many nodes in the space, a flooding-based consensus
algorithm is proposed to achieve generator and load information for each agent. Then, a suitable
distributed algorithm called λ-consensus is used for solving the economic dispatch problem, eventually,
all generators can automatically minimize the total cost in a collective sense. Simulation results in
standard test cases are presented to demonstrate the effectiveness of the proposed control strategy.

Keywords: optimal resource management; consensus algorithm; distributed control; Sensor data
collection; economic dispatch problem

1. Introduction

1.1. Motivation

In traditional power grid, power is carried from a few central generators (e.g., thermal power
plant, hydroelectric station, etc.) to a large number of users, and traditional power grid concentrates
on the electricity generation, transmission, distribution and control [1,2]. Recently, new renewable
energy generators (e.g., photovoltaic systems, wind turbines, etc.) have been used to provide an
alternate way for electricity production. In addition, the demand for electricity is diversified, and the
traditional power grid is inadequate to overcome modern day challenges. An intelligent electrical
network, known as smart grid (SG) [3–5], is used for improving reliability of the power system by
enabling the system to be controllable and automated [6–8]. The deployment of sensor technology and
smart meters has been accelerating the development of smart grid [9,10]. The data communication
network infrastructures [3] include wide area measurement systems (WAMSs), sensor and actuator
networks (SANETs), home area networks (HANs), neighborhood area network (NANs), and wide
area networks (WANs). Different communications media, i.e., wired and wireless, can be used for data
transmission between smart meters and electric utilities. SANETs can be grouped under a hierarchical
structure on the basis of HANs, NANs, and WANs, as shown in Figure 1. For a detailed introduction
to HAN and WAN, refer to Reference [1].
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Figure 1. Smart grid communication network architecture for data sensing and collection.

As an alternative to traditional power grid, SG can relieve the burden caused by various energy
demands. However, the increasing electricity demand, together with the complex and nonlinear
nature of the electric power distribution network, have caused many challenges for the future grid,
for example, serious network communication issues [11,12], and it is expensive and unreliable to solve
economic dispatch problem (EDP) using traditional centralized methods. SG, with distributed energy
sources accessing, require distributed approaches to deal with its energy management problems.

1.2. Literature Review

The conventional methods used to deal with EDP in power system require global information
about total load demand and parameters about power cost, then compute optimal power output
via a centralized controller, and receive minimum cost [13]. In addition, the centralized approaches,
such as Lambda iteration method [14,15] and interior point method [16,17], require the cost function
to be convex. Conventional approaches also include heuristic methods such as genetic algorithm
(GA) [18,19], particle swarm optimization (PSO) [20–22], differential evolution [23,24], and other
heuristic algorithms [25–27] that handle non-convex solution spaces and more stringent constraints.
A computationally intelligent load forecasting system in smart energy management grid is discuss
in [28], in which the single and the hybrid computational intelligence is mentioned. Despite excellent
performance, majority of existing approaches for solving EDP are performed centrally [29], which require
a high-bandwidth communication infrastructure. Furthermore, once the controller fails, the whole system
will be in a state of collapse. It is difficult to ensure the reliability in centralized control [30]. Moreover,
due to the widespread access of distributed power generation, both transmission grid and distribution
network (including communication network) are likely to have a variable topology, which further
undermines the efficacy of centralized mechanisms.

With the access of distributed power sources, the approach of control for smart grid is also
transformed from centralized to distributed [31]. Distributed algorithm can provide better service
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for SG; it is immune to topological variations and accommodate desired plug-and play features; and
it enables real-time modeling and simulation of complex power systems. Furthermore, distributed
decision-making can also create solution based on partial information from participating agents [29,30].
There exists plenty of studies on EDP of SG in terms of distributed algorithm. In [32], an approach
based on a consensus term and innovations framework is presented, in which each agent only requires
local information of cost, predicted load and neighborhood communication to solve EDP. Literature [33]
elaborated on a mathematical formulation for the incremental cost consensus variable and gives some
case studies to show the influence of difference network topologies on the convergence rate. In [34],
a peer-to-peer communication architecture and a new analysis on loss penalty factors are proposed
for solving EDP in distributed approach. In [35], a multi-agent system (MAS) based distributed
control approach for optimal resource management in an islanded microgrid is proposed. In [36],
an optimization model for minimizing total daily energy cost is proposed. The electricity costs and
CO2 emissions are considered in this model. A new decentralized approach for solving the EDP is
proposed in [37], which offers the ability to share information among agents using a flooding-based
consensus algorithm. An algorithm based on NSGA-II is presented in [38], in which the renewable
energy sources and distributed generations are considered. Furthermore, a fluctuation model is
discussed with different input load demands and renewable energy sources.In [39], an event-triggered
communication-based distributed optimization is proposed for economic dispatch problem to reduce
information exchange requirements in smart grids. In [40], a distributed solution to DC optimal
power flow (DCOPF) considering dispatchable generations, responsive loads and line congestion cost
is proposed.

Previous work on energy management, especially on EDP, take the predicted total power demand
of load (PD, a parameter on global information) and the number of generators (M, an essential
parameter to construct communication matrix) as known information, and lack the specific process of
data collection for load demand. In essence, it cannot be regarded as a real sense of distribution.

1.3. Contribution

In the article, a fully decentralized solution is provided to collect data from each agent and solve
the EDP considering generation limits. The distributed approach contains two stages, both based
on consensus algorithms. In the first stage, the flooding based consensus (FBC) algorithm is used to
share information among agents, and a ring communication graph is proposed as agent can receive
(or send) information from (to) its two neighbors. In the second stage, a, algorithm called λ-consensus
is presented, which is based on a consensus procedure. The parameter λ works as a correction term to
satisfy the generation-demand equality constraint. Our contributions in this paper can be summarized
as follows: Firstly, the algorithm in this paper is fully distributed. All agents (or nodes) in our algorithm
have the same status, this is, no agent is different form other agents in their information and behavior.
There is no leader agents, thus the algorithm in this paper not only achieves plug and play, but also
has strong robustness. Secondly, in the first stage of the proposed algorithm, we give a method that
can be used to collect global information by sharing information with neighbors, which can effectively
alleviate communication congestion.

Briefly, the remainder of this paper is outlined as follows. Section 2 provides an overview of
graph theory and consensus protocols. Section 3 discusses the EDP, including FBC algorithm for data
information collection, and λ-consensus algorithm. Several case studies are presented in Section 4.
Section 5 concludes the paper.

2. Preliminary

In this paper, the interconnection topologies of smart grids are represented schematically by
graphs called interaction graphs. The aim is to control a group of generators connected through a
sensor or communication network to meet the load demands cooperatively with the global objective
of minimum cost and certain constraint conditions about generators and loads. In this Section,
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the basic graph terminologies and consensus algorithm are introduced. We concentrate on the deeper
connections between nonnegative matrices and undirected graphs. The main purpose of this section is
to provide a mathematical foundation, based on the theory of graphs.

2.1. Graph Theory

In graph theory, graphs are composed of vertices (also called nodes or points) and edges
(also called arcs or lines), denoting objects and some kind of relationship, respectively. Graph theory
has been widely applied in many fields, such as computer science, operations research, practical
engineering, and so on. According to the direction of edges, graphs can be divided into directed graphs
and undirected graphs.

A directed graph [41] (or just digraph) G is an ordered triple: G = {V(G), E(G), ψG} where V(G)

is a set of nodes, and V(G) is nonempty. E(G) is a set of lines, the two terminals of the line are in set
V(G). ψG is an function of line, an ordered pair of (not necessarily distinct) vertices of G. This is the
symbol, ψG(e) = (u, v), where e is said to join u to v; u is the tail of e, and v is the head. An undirected
graph [42], G, can be treated as a bidirectional diagraph by replacing each line or edge (u, v) of G with
the pair of arcs (u, v) and (v, u).

Let A(G) be the adjacency matrix that associates with the directed or undirected graph G, and
V(G) also be the index set representing the nodes. In digraphs corresponding to smart grid networks,
a single node may be a pure power generation node, a pure load node or the node including power
generation and load. A directed edge or arc (i, j) ∈ E means that node i can send message to node j
and j can receive message from i. For the node i ∈ V(G), its in-neighbor set is denoted by:

Nin
i = {j ∈ V(G)|(j, i) ∈ E(G)}

Similarly, its out-neighbor set is denoted by:

Nout
i = {j ∈ V(G)|(i, j) ∈ E(G)}

Physically, a node can receive message from its in-neighbors, and send message to its
out-neighbors. We define the in-degree and out-degree of node i as:

din
i = |Nin

i |; dout
i = |Nout

i |

where | · | denotes the cardinality of a set, i.e., the numbers of nodes in in-neighbor set and out-neighbor
set. Since it is possible to suppose that each node can get messages from its in-neighbors or
out-neighbors. Let (i, j) denotes a path from node i to j; if i and j can represent any two nodes
of G and the path, (i, j), exists, and G is said to be strongly connected. Evidently, a graph associates
with a connected smart grid is a strongly connected graph, and din

i + dout
i 6= 0 for each node i

in a strongly connected graph. Obviously, in an undirected graph, din
i = dout

i = |Nneib
i |, where

Nneib
i = {j ∈ V(G)|(i, j) ∈ E(G), and dneib

i = |Nneib
i | denotes the number of nodes that adjacent to

node i.

2.2. Consensus Algorithm

Let us define a matrix Q ∈ RN×N associated with a strongly connected graph G as follows:

Q = {qij} =
{

1/(dneib
i + 1) if j ∈ Nneib

i or j = i
0 otherwise

∀i, j ∈ V (1)

From the definition of Q, qij > 0 if j ∈ Nneib
i , otherwise, qij = 0, which means that Q is a

nonnegative matrix, and it is not difficult to verify that Q is row stochastic, i.e., ∑N
j=1 qij = 1. Nodes

(including generating units and loads) in SG can be considered as a group of M participants or agents,
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each of them can define his own subjective probability distribution, and they work together as a team
to reach an target values under some constraint conditions. To solve such problems, DeGroot [43]
proposed a model. Agents can reach consensus in this model and form a common subjective probability
distribution for a certain parameter, θ, by pooling their opinions. The value of θ is supposed to
locate in an abstract parameter space, Ω. Let φi(i = 1, 2, ..., M) denote the subjective probability
distribution that individual i assigns to the parameter θ, and each individual maintains a distributions
φ = [φ1, φ2, ..., φM]T on space, Ω. Each agent have its own background and perspective to deal with
problem, thus different individuals have different subjective distributions, φ. Let Qi = [qi1, qi2, ..., qiM]

denote the subjective distributions on φ and ∑M
j=1 qij = 1, where qij ≥ 0. Let Q denote the M×M

matrix comprising the elements qij. It is reasonable to suppose individual i updates the subjective
distribution from φ(t) to φ(t + 1) after learning other members states. This process can be described by:

φ(t + 1) = Qφ(t) = Q(Qφ(t− 1)) = Q2φ(t− 1) = ... = Qtφ(1) = Qt(Qφ(0)) = Qt+1φ(0) (2)

where t denotes the number of iterations; it represents the number that individual, i, revises its
subjective distributions after learning others’ distributions. When the distributions of the M members
converge to the same limit as t→ ∞, that is,

lim
t→∞

φ(t) = φ∗ = [φ∗1 , φ∗2 , ..., φ∗M]T

and now, a consensus is reached. Then, it follows from Equation (2) that a consensus is reached if and
only if there exists a vector, Π∗ = [π∗1 , π∗2 , ..., π∗M], where π∗j = [π1j, π2j, ..., πMj]

T = [π∗j , π∗j , ..., π∗j ]
T

such that,
lim
t→∞

qij(t) = π∗j (3)

In the following text, we take an example to describe the intuitive appeal exhibited in the iteration
process. Consider the graph shown in Figure 2.

Figure 2. An undirected graph which includes four nodes.

According to Equation (1), we get the matrix, P, associating with the undirected graph.

Q = {qij} =


1/3 1/3 1/3 0
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

0 1/3 1/3 1/3


When positive integer, t ≥ 8, and t is the number of iterations:

Qt = Qt+1 =


0.2143 0.2857 0.2143 0.2857
0.2143 0.2857 0.2143 0.2857
0.2143 0.2857 0.2143 0.2857
0.2143 0.2857 0.2143 0.2857

 =
[
π∗1 π∗2 π∗3 π∗4

]
= Π∗
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where π∗1 = [0.2143 0.2143 0.2143 0.2143]T , π∗2 = [0.2875 0.2875 0.2875 0.2875]T , π∗3 =

[0.2143 0.2143 0.2143 0.2143]T , π∗4 = [0.2875 0.2875 0.2875 0.2875]T . The symbol AT denotes the
transposition of the matrix (or vector)A in this paper.

Let t and Q = {qij} denote the number of iterations and matrix associated with undirected graph
G respectively. From Equations (2) and (3), we can get the following linear iterative formula,

φi(t + 1) = qiiφi(t) + ∑
j∈Nneib

i

qijφj(t) (4)

where φi(t) is the ith element in the column stack vectors, φ(t). Equation (4) can be rewritten as follow,

φ(t + 1) = Qφ(t) (5)

To investigate the asymptotic behavior of Equation (5), the following theorems are needed.

Theorem 1. Let Q = {qij} denote subjective distributions matrix, if there exists a positive integer number t,
make every element in qt

j positive, where qt
j is a column of Qt; then, we can say a consensus can be reached for

this MAS [43].

Theorem 2. If Q ∈ RN×N is nonnegative and primitive, and if x and y are, respectively, the right and left
Perron vectors of Q, then limt→∞(ρ(Q)(−1)Q)t = xyT , which is a positive rank-one matrix [44].

From Theorem 1, it is easy to determine whether a group can reach consensus, and it provides a
simple condition.

From Theorem 2, there is a unique positive real vector x = {xi}, y = {yi}, such that Ax = ρ(A)x,
yT A = ρ(A)yT , and xTy = x1y1 + ... + xtyt = 1, where ρ(A) is an algebraically simple eigenvalue of
A and ρ(A) > 0, x1 + x2 + ... + xt = 1, y1 + y2 + ... + yt = 1.

Based on the definition (as shown in Equation (1)), Q is nonnegative and stochastic, and spectral
radius ρ(Q) = 1. Since Q is associated with a strongly connected graph, there exists a positive integer
t such that every element in at least one column of the matrix Qt is positive, and limt→∞ Qt = 1πT ,
where π > 0 and 1Tπ = 1.

From the above description, we can get limt→∞ φi(t) = πTφ(0) in the system in Equation (4).
This means that all state variables will converge to a common value after t iterations, which depends
on the initial value, φ(0), and the communication topology, Q.

3. Problem Formulation

The classic economic dispatch problem of power systems, including its analytic solution and a
fully decentralized approach proposed in this paper, is discussed in this section.

3.1. Analytic Solution to EDP

3.1.1. Modeling

In this paper, we consider power systems with M buses. The power system contains N generating
units, (N ≤ M), and the received electrical load is denoted by PDi, i = 1, 2, ..., M. In other words, the
number of generation nodes and bus nodes in the network associated with the power system are N
and M, respectively. Let Fi(PGi) denote the cost of power generated by generator i, The total cost of
this system is denoted by F. The essential constraint is the supply and demand balance, that is to say,
the total power generated by generating power must equal the total load demand. We can describe
this system by,
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Objective function:

min F =
N

∑
i=1

Fi(PGi) (6)

Essential constraint:

M

∑
j=1

PDj −
N

∑
i=1

PGi = 0 (7)

i = 1, 2, ..., N; j = 1, 2, ..., M

3.1.2. Solution

This is an optimization problem with equal constraint. We can solve the problem with Lagrange
function. That is,

L(PG, λ) = F + λ∆P

∆P =
M

∑
j=1

PDj −
N

∑
i=1

PGi
(8)

where λ is the Lagrange multiplier associated with the equality constraint in Equation (7). There are
N + 1 variables in this case, λ and PGi, i = 1, 2, ..., N. To make the solutions of Equations (6) and (8)
consensus, ∆P must be equal to 0, and min F = L(PG, λ).

∂L
∂PGi

=
dFi(PGi)

dPGi
− λ = 0 (9)

or, equivalently

λ =
dFi(PGi)

dPGi
(10)

Therefore, the incremental cost rates dFi(PGi)
dPGi

(i = 1, 2, ..., N) are equal to λ, and the power cost
reaches the minimum vale.

Besides the equal constraint condition, there are 2N inequality constraints associate with each
generating unit. That is, the generated power of each generation PGi, i = 1, 2, ..., N cannot exceed the
corresponding minimum, Pmin

Gi , and maximum, Pmax
Gi , bounds. These necessary conditions, equations

and inequalities, are shown in Equation (11).

dFi(PGi)

dPGi
= λ→ N − equations

Pmin
Gi ≤ PGi ≤ Pmax

Gi → 2N − inequalities
N

∑
i=1

PGi =
M

∑
j=1

PDj → 1− constraint

(11)

Based on the above inference, we get features about optimal solution,
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dFi(PGi)

dPGi
= λ Pmin

Gi ≤ PGi ≤ Pmax
Gi

dFi(PGi)

dPGi
≤ λ Pi = PmaxGi

dFi(PGi)

dPGi
≥ λ PGi = Pmin

Gi

(12)

The generation cost function Fi(PGi) is usually approximated [45] by a quadratic function

Fi(PGi) = aiP2
Gi + biPGi + ci =

(PGi +
bi

2ai
)2

1
ai

+ ci −
b2

i
4ai

(13)

Let αi = −(bi)/(2ai), βi = 1/(2ai), and γi = ci − (b2
i )/(4ai); the quadratic function can be now

written as

Fi(PGi) =
(PGi − αi)

2

2βi
+ γi (14)

where αi ≤ 0 and βi > 0. Using the result of Equation (14), the incremental cost for the generator Gi is

dFi(PGi)

dPGi
=

PGi − αi
βi

(15)

From Equations (12) and (15), we get:

P∗Gi − αi

βi
= λ∗ Pmin

Gi ≤ P∗Gi ≤ Pmax
Gi

P∗Gi − αi

βi
≤ λ∗ P∗Gi = Pmax

Gi

P∗Gi − αi

βi
≥ λ∗ P∗Gi = Pmin

Gi

(16)

where λ∗ is the optimal incremental cost. From Equation (16), considering the constraints of generated
power of each generating units, λi ∈ [λi, λi], where λi = (Pmin

Gi − αi)/(βi), and λi = (Pmax
Gi − αi)/(βi).

Hence, the optimal power generation for each individual generator can be given by

P∗Gi = λ∗βi + αi for λi ≤ λ∗ ≤ λi

P∗Gi = Pmax
Gi for λ∗ > λi

P∗Gi = Pmin
Gi for λ∗ < λi

(17)

The solution shows γi does not affect the incremental cost. According to Equation (17), when
the value of parameter, λ∗, is determined, the values of P∗Gi will be fixed. Most of conventional
approaches to gain the values of λ∗ are centralized methods, such a Lambda-iteration [45] and gradient
methods, where the total demand or total losses as global information must be known to the centralized
computing center.

3.2. Fully Distributed Solution to EDP

The proposed approach for solving EDP is composed of two stages, data collection based on FBC
algorithm and optimal solution based on λ−consensus algorithm.
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3.2.1. Data Collection

In the stage of data collection, agents share information about their neighbors who connect to
them in the power system, and parameters including load demand and power outputs that can be
generated by generators in their buses. Agents share information and reach consensus about the
power network based on FBC algorithm mentioned in [46]. In the FBC algorithm, a token is defined
to permit agent to send its message to its neighbors in communication network. The token plays the
role of transmission permits. Agent with a token can send message to a selected neighbor, and it is
necessary to define the communication topology before agent communicating with each other. It is
assumed that there is an agent in each bus of the power system; these agent are embedded in the
power system and responsible for message sharing and EDP calculating. We choose an undirected ring
graph as the communication topology in the data collecting stage. Furthermore, we assume each agent
is marked with a unique identifier (ID). Let us suppose that the agent’s ID is known for its neighbors
in the ring topology graph. Thus, a message from node i or agent i can be represented by a multi-tuple
msgi = {idi, IDneib

i , parami}, where idi is the ID of agent i (for simplicity, we set the agent’s ID equals
to its bus number in this paper), IDneib

i is set of IDs to which agent i is connected, parami contains some
parameters about bus i, and parami =< PDi, Pmin

Gi , Pmax
Gi >. If bus i does not include power generator,

Pmin
Gi = Pmax

Gi = 0, if there is no load demand in bus i, PDi = 0. Next, we illustrate the process of agent
gathering information through an example.

Take the four-bus network, as shown in Figure 2, as an example. An undirected ring communication
graph as shown in Figure 3 is assumed to connected each agents. We choose the undirected ring
graph as the communication topology because it is easy to observe the stopping condition in the
ring communication topology. With each iteration, each agent receives two messages from its two
neighbors; meanwhile, each agent sends message to its two neighbors in per iteration. Based on the
FBC algorithm, the total number of iterations required for a agent to gather global information can be
computed as follows:

It =

{
M/2 if M is even

(M− 1)/2 if M is odd
(18)

where M is the total number of buses in the system. After M iterations, agents’ information about
the power system reach consensus. As a fully decentralized algorithm, the global information
about parameter M is an unknown variable, so we provide another iteration stopping criterion
for information sharing among agents.

As shown in Figure 3, before the first iteration (It = 0), each agent prepares its message, msg0
i =

{idi, IDneib
i , parami}, (i = 1, 2, 3, 4). When agent in the network receives a message, it will get the

contents of the message and updates its message, msgIt
i = msgIt−1

i
⋃

msgIt−1
(neibs o f i), where msgIt−1

(neibs o f i)
denotes message from the neighbors of agent i. After each iteration, each agent will check its message,
msgIt

i , if the set {idi− f irst} = {IDneib
i−second}, it will stop the iteration, where {idi− f irst} and {IDneib

i−second}
are sets of first and second terms, respectively, in msgIt

i . This means that each agent reaches consensus
about the power system after M iterations.
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Figure 3. The process of collecting data for a four-bus network.

The pseudo code of algorithm for data collection based on FBC is given below (Algorithm 1):

Algorithm 1 Data Collection Algorithm Based on FBC

Input: T1: time threshold for receipt a new message;

msg0
i : prepare a message that contains the agent data;

Output: msgIt
i : stopping condition {id} = {IDneib

i }
1: initial It = 1, clock time t = 0;
2: repeat
3: if new message receive from neighbors, get the content of the message and upload msgIt

i , check

the new message whether meet stopping condition, if not It = It + 1, and set t = 0;
4: check t, if t ≥ T1
5: send the message msgi to the neighbor agents {IDneib

i };
6: until msgIt

i meets stopping condition

3.2.2. λ−Consensus Algorithm

After finishing the data sharing among the agents, one agent is chosen randomly to get matrix Q
according to its message. From Equation (1), we observe each row in Q is only related to the number
of neighbors’ nodes. After sharing information, each agent reaches consensus on its information, so
we select an agent randomly and build matrix Q based on the information {IDneib

i } and {idi}.
Again taking the four-bus network as an example, if the chosen agent is agent3, based on its

message, we can get:

{3, < 1, 2, 4 >, param3}
{2, < 1, 3, 4 >, param2}
{4, < 2, 3 >, param4}
{1, < 2, 3 >, param1}

⇒



Q =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/3 1/3 1/3 0
1/3 1/3 0 1/3



Param =


param3

param2

param4

param1

 =


PD3 Pmin

G3 Pmax
G3

PD2 Pmin
G2 Pmax

G2
PD4 Pmin

G4 Pmax
G4

PD1 Pmin
G1 Pmax

G1


Note that choosing a different agent corresponds to different matrix Q and vector Param, however,

due to the one-to-one match between Q and Param, the final result will not be affected.
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If without power generation constraints on each generator, when all generators operate at the
optimal configuration, incremental costs are equal to the optimal value, that is

λ∗ = (x∗i − αi)/βi, i = 1, 2, ..., M (19)

where x∗i is the optimal power generated by generator i, and if the optimal incremental cost λ∗ is
known, i.e.,

x∗i = βiλ
∗ + αi, i = 1, 2, ..., M (20)

Inspired by Equations (19) and (20), we propose the following algorithm: λ-consensus algorithm.
Let λi, xi(t), and yi(t) denote the estimation of incremental cost by generating unit i, the corresponding
power generation which is an estimation of optimal power generation, and the local estimation of the
mismatch between demand and total power generation, respectively.

The rationale of the proposed approach is to reach consensus on the Lagrangian multiplier by
running the following protocol

λi(t + 1) = qiiλi(t) + Σj∈Nneib
i

qijλj(t) + ζyi(t)

xi(t + 1) = βiλi(t + 1) + αi

yi(t + 1) = ωiiyi(t) + Σj∈Nneib
i

ωijyj(t)− (xi(t + 1)− xi(t))

(21)

where ζ is a sufficiently small positive constant, W = {ωij} = QT . The initial value of λi(0), xi(0) and
yi(0) can be set to any admissible value in the case without power generation constraints.

To take account of power generation constraints, define the following projection operators:

ψ(λi) =


xi i f λi > λi

βiλi + αi i f λi ≤ λi ≤ λi
xi i f λi < λi

i = 1, 2, ..., M

where xi and xi denote the corresponding minimum and maximum bounds for bus i, if the bus i
contains load only, then xi = xi = 0. λi = (xi − αi)/βi and λi = (xi − αi)/βi. Now, the distributed
algorithm becomes

λ(t + 1) = Qλ(t) + ζy(t)

x(t + 1) = ψ(λ(t + 1))

y(t + 1) = Wy(t)− (x(t + 1)− x(t))

(22)

where x(t + 1) = [x1(t + 1), x2(t + 1), ..., xM(t + 1)]T , y(t + 1) = [y1(t + 1), y2(t + 1), ..., yM(t + 1)]T ,
and ψ(λ(t + 1)) = [ψ(λ1(t + 1)), ψ(λ2(t + 1)), ..., ψ(λM(t + 1))]T = Bλ(t + 1) + α, and B is a diagonal
matrix with Bii = βi, α = [α1, α2, ..., αM]T . The initial value for the iteration in Equation (22) can be set
as follows:

xi(0) =


xi i f xi < PDi

PDi i f xi ≤ PDi ≤ xi
xi i f PDi < xi

λi(0) =
xi(0)− αi

βi

yi(0) = PDi − xi(0)

(23)

It is easy to calculate that ΣM
i=1xi(0) + ΣM

i=1yi(0) = PD, where PD = ΣM
i=1PDi is the global

power demand.
Figure 4 shows the flowchart of the proposed algorithm in this paper.
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Figure 4. Flowchart of the proposed algorithm.

3.2.3. Algorithm Analysis

The convergence theorem of λ−consensus algorithm and its proof are as follows.

Theorem 3. If ζ is positive and sufficiently small, then the algorithm in Equation (22) converges to a stable
value, that is, limt→∞λi(t) = λ∗, limt→∞yi(t) = 0.

Proof. According to x(t + 1) = Bλ(t + 1) + α and λ(t + 1) = Qλ(t) + ζy(t), we can get,

y(t + 1) = Wy(t)− (Bλ(t + 1) + α− Bλ(t)− α) = B(I −Q)λ(t) + (W − ζB)y(t)

Algorithm in Equation (22) can be rewritten as,[
λ(t + 1)
y(t + 1)

]
=

[
Q ζ I

B(I −Q) W − ζB

] [
λ(t)
y(t)

]
(24)

For simplification, let A =

[
Q 0

B(I −Q) W

]
, p(k) =

[
λ(k)
y(k)

]
, ∆ =

[
0 I
0 −B

]
, and gives the following

notation, u(k) = ζ∆p(k). Above all, we have

p(k + 1) = Ap(k) + u(k) (25)

Since ζ is a sufficient small number, Equation (25) can be seem as a system perturbed by u(k).
As A has a simple eigenvalue 1 and the remaining eigenvalues lie in the open unit disk, construct

vectors H = [h1, h2] =

[
0 1
h −µh

]
, where h1 and h2 are two independent right eigenvectors of A,

µ = ΣM
i=1βi.
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Construct vectors UT =

[
uT

1
uT

2

]
=

[
1T B 1T

νT 0

]
, where u1 and u2 are two independent left

eigenvectors of A, and UT∆H =

[
0 0

νT −µνTh

]
The eigenvalues of UT∆H are 0 and −µνTh < 0. Thus,limk→∞u(k) = 0, that is to say, the system

in Equation (22) is stable.

From the definition of Q and W, it can be verified

[
λ(t)
y(t)

]
converges to span [0, 1]T , when t→ ∞.

That is limt→∞λi(t) = λ∗, limt→∞yi(t) = 0, Hence, the theorem is proved.

4. Simulation Results

In this section, we analyze four cases to show the performance of the proposed algorithm. Firstly,
we consider the cases with and without power generator constraints. Secondly, the plug and play
properties are demonstrated through adding generator and load shedding. Lastly, the IEEE 57-bus is
used to show the effectiveness of the proposed λ−consensus algorithm on large cases.

In our first three cases, we set the generator parameters the same as in the literature [45]. There
are three types of generators, namely, Type A, Type B and Type C, they correspond to coal-fired steam
unit, oil-fired steam unit and oil-fired∗ steam unit, respectively. Besides the types and power ranges of
generator, the cost function parameters a, b and c are given in Table 1. Furthermore, the parameters,
a− b− c, are converted to α− β, where α = −b/(2a), and β = 1/(2a).

Table 1. Generator parameters.

Generator Type A B C

Range (MW) [150, 600] [100, 400] [50, 200]
a ($/MW2h) 0.00142 0.00194 0.00482
b ($/MWh) 7.2 7.85 7.97

c ($/h) 510 310 78
α (MW) −2535.2 −2023.2 −826.8

β (MW2h) 352.1 257.7 103.7

The power system [45], which is shown in Figure 5a, contains six buses, denoted by thick line;
eleven single lines; and three generators, denoted by circle. Disregarding transmission loss of line,
the generators in this SG are labeled as A, B and C. They correspond to the generator types A, B and C
in Table 1.

Figure 5. Six-bus system.
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Create six agents using Java agent development framework (JADE) software. They correspond to
the six bus, respectively, and each agent prepares its message, msgi = {idi, IDneib

i , parami}. In addition,
construct ring topology based on the bus number to collect information from different bus. Figure 6
shows a screen shot of JADE GUI for the six-bus system. In the ring topology, we consider 1− 2−
3− 4− 5− 6− 1 as standard link order for nodes. That is, agent i in JADE, adds message receiver:
agent id(i−) and id(i+), where id(i−) and id(i+) are adjacent agents in ring topology. Meanwhile, agent i
selects messages sent by id(i−) and id(i+) from message queue. Each agent in the platform is given
the ability to detect the existence of its neighbor agents. When finishing data collection, we can build
matrix Q, which must associate with the communication graph as shown in Figure 5b.

Figure 6. JADE GUI for six-bus system.

4.1. Case Study 1: Without Generator Constraints

In our first case study, the power generator constraints are not considered. We set the initial
load demands as 180 MW, 350 MW and 500 MW in bus 4, bus 5 and 6, respectively. The generators
output xi, estimated mismatch yi, incremental cost λi and total power generated by generating units
are displayed in Figure 7. The power outputs of each generator become stable gradually, and the
mismatch between demand and total power generated, yi, goes to zero after 18 iterations. Moreover,
the estimated incremental costs λi of all generators trends toward a stable value. The results are
λ∗ = 8.99 $/MWh, x∗1 = 630.6 MW, x∗2 = 293.8 MW, and x∗3 = 105.6 MW. From left top chart, we
observe the first generator is beyond the limit on its maximum output power Pmax

2 = 600 MW. In Case
Study 2, we add the power generator constraints.
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Figure 7. Case Study 1, without power generator constraints.

4.2. Case Study 2: With Generator Constraints

In this case study, we add the power generator constraints on the basis of Case Study 1.
The behavior of the proposed algorithm is shown in Figure 8; after 40 iterations, the system tends to be
stable, and x∗1 = 600 MW, x∗2 = 315.5MW, and x∗3 = 114.5 MW, with λ∗ = 9.05 $/MWh. In this case,
no generator exceeds its maximum output power.
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Figure 8. Case Study 2, with power generator constraints.

4.3. Case Study 3: Plug and Play Capability

Since the plug and play characteristics of SG simplify the process of accessing to grid for new
energy power generation, the plug and play capability is an important features of SG. In this case
study, the plug and play adaptability of the proposed λ−consensus algorithm is discussed considering
the same power system as in Case Study 2. At time step k = 60, the load demand at bus 6 drops
from 500 MW to 300 MW. The fourth generator is connected in bus 4 at time step k = 120. We set
the type of fourth generator as C. Figure 9 gives the result of this case. At the beginning, the three
generators have already stabilized at the steady-state values before load shedding from bus 6. When
load shedding at time step k = 60, total power mismatch increases from 0 MW to −200 MW, and
the system reaches a new balance of power generated and demand after a few iterations by using
the proposed algorithm. At this point, λ′ = 8.7108 $/MWh, and x′1 = 531.9 MW, x′2 = 221.6 MW,
and x′3 = 76.5 MW. At time step k = 120, the buses detect the connection of a new generator in
node 4, change the bus parameters Pmin

4 = 50 MW and Pmax
4 = 200 MW. Under the new conditions,

the load demand is redistributed among these four generators, and converge to a new solution with
λ∗ = 8.6172 $/MWh, and x∗1 = 498.9 MW, x∗2 = 197.5 MW, and x∗3 = x∗4 = 66.8 MW. The total power
generated by generators is 830 MW.

The simulation results show that the total power mismatch, generator outputs, estimated incremental
cost can reach new steady-state values after a few iterations under the conditions of changing generators
and load demand. This suggests the proposed algorithm can adapt to the dynamic environment of SG,
which demonstrates the effectiveness of the proposed λ−consensus algorithm.
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Figure 9. Case Study 3, plug and play capability.

4.4. Case Study 4: Implementation on IEEE 57-Bus System

This power system of IEEE 57-bus contains seven generator buses. The generator parameters are
shown in Table 2.

Table 2. IEEE 57-bus test system Generator parameters.

Bus a ($/MW2h) b ($/MWh) Pmin (MW) Pmax (MW)

1 0.078 20 0 575.88
2 0.01 40 0 100
3 0.25 20 0 140
6 0.01 40 0 100
8 0.022 20 0 550
9 0.01 40 0 100
12 0.003 20 0 410

The initial power demands at each buses are denoted as {PDi, i = 1, 2, ..., 57} = {55, 3, 41, 0, 13, 75,
0, 150, 121, 5, 0, 377, 18, 10.5, 22, 43, 42, 27.2, 3.3, 2.3, 0, 0, 6.3, 0, 6.3, 9.3, 4.6, 17, 3.6, 5.8, 1.6, 3.8, 0, 6, 0, 0, 14, 0,
0, 6.3, 7.1, 2, 12, 0, 0, 29.7, 0, 18, 21, 18, 4.9, 20, 4.1, 6.8, 7.6, 6.7}, and total demand is 1250.8 MW. We consider
the case study with generator constraints. The numerical results are shown in Figure 10. The generators
outputs are fulfilling the constraints on their maximum output power. After 760 iterations, the
system reaches the balance of power generated and load demand, and the optimal incremental
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cost is λ∗ = 22.4461 $/MWh, and generator outputs are x∗2 = x∗6 = x∗9 = 100 MW, x∗1 = 131.6 MW,
x∗3 = 40.8 MW, x∗8 = 460.4 MW, and x∗12 = 317.6 MW.

Figure 10. Case Study 4, IEEE 57-bus test system.

5. Conclusions

This paper presents a fully distributed approach for EDP of SG. The proposed approach contains
two stages, collecting data from neighbors using FBC algorithm, and getting optimal power outputs
for each generator using λ−consensus algorithm. In the first stage, a ring communication graph is
considered; agents can get global information by communicating many times with its neighbors; and
this data collecting mechanism provides a stopping condition for data gathering. In the second stage,
the computing agent creates the communication matrix according to the information from its number,
and adjusts the estimated cost parameter λ based on the mismatch power. Numerical simulation
results show the effectiveness of the proposed algorithm. Our future work will concentrate on two
aspects: extending the proposed algorithm to address EDP with transmission loss, and considering
energy management problem of SG with renewable resources and energy storage units.
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Abbreviations

The following abbreviations are used in this manuscript:

SG Smart Grid
EDP Economic Dispatch Problem
WAMSs Wide Area Measurement Systems
SANETs Sensor and Actuator Networks
WAN Wide Area Network
NAN Neighborhood Area Network
HAN Home Area Network
MAS Multi-Agent System
DCOPF DC Optimal Power Flow
ID Identifier
JADE Java Agent DEvelopment Framework
FBC Flooding Based Consensus
Nin

i In-neighbor set for node i
Nout

i Out-neighbor set for node i
din

i In-degree of node i
dout

i Out-degree of node i
| · | The cardinality of a set
PGi Power generated by generator i
PDj Load demand in bus j
PD Total load demand
ai, bi, ci Paraments about the cost of generator i
Pmax

Gi Maximum power generated by generator i
Pmin

Gi Minimum power generated by generator i
msgIt

i The holding message of agent i after It iterations
idi unique identifier of agent i
IDneib

i Identifiers set about the neighbors of agent i parami Parameters of agent i or bus i
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