
energies

Article

Assessment and Performance Evaluation of a Wind
Turbine Power Output

Akintayo Temiloluwa Abolude 1 ID and Wen Zhou 2,*
1 School of Energy and Environment, City University of Hong Kong, Hong Kong, China;

atabolude2-c@my.cityu.edu.hk
2 Guy Carpenter Asia-Pacific Climate Impact Center, School of Energy and Environment,

City University of Hong Kong, Hong Kong, China
* Correspondence: wenzhou@cityu.edu.hk

Received: 12 June 2018; Accepted: 26 June 2018; Published: 1 August 2018
����������
�������

Abstract: Estimation errors have constantly been a technology bother for wind power management,
often time with deviations of actual power curve (APC) from the turbine power curve (TPC). Power
output dispersion for an operational 800 kW turbine was analyzed using three averaging tine steps
of 1-min, 5-min, and 15-min. The error between the APC and TPC in kWh was about 25% on
average, irrespective of the time of the day, although higher magnitudes of error were observed
during low wind speeds and poor wind conditions. The 15-min averaged time series proved
more suitable for grid management and energy load scheduling, but the error margin was still a
major concern. An effective power curve (EPC) based on the polynomial parametric wind turbine
power curve modeling technique was calibrated using turbine and site-specific performance data.
The EPC reduced estimation error to about 3% in the aforementioned time series during very good
wind conditions. By integrating statistical wind speed forecasting methods and site-specific EPCs,
wind power forecasting and management can be significantly improved without compromising
grid stability.
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1. Introduction

Conventionally, energy from multiple sources, such as coal, natural gas, nuclear power, wind,
and tides, goes from a power plant to an electrical grid or network for some form of storage,
stabilization, and regulation before eventual transmission and distribution through substations to
end users. For fossil fuels and non-renewable energy sources, the actual energy input into the grid
per unit time is known hence “static”, while that of renewable sources is “dynamic”. Typically, the
energy profile includes three major parts: base load, middle load, and peak load [1]. One major
challenge of limiting wind power diffusion is that wind sources cannot serve as a base load due to
intermittency [1–5]. Since the base load is that fraction of total energy demand that must be available
constantly to avoid power outage, it must be static. In energy surplus conditions where supply exceeds
demand, the challenge for wind energy is one of optimization. For energy deficit conditions when
demand exceeds supply, maximizing wind power input into the grid and meeting energy demand
are key.

The relationship between wind speed and wind power based on the wind power equation is
described by a turbine specific non-linear transformation curve termed turbine power curve (TPC) and
is turbine-specific. One method of wind resource assessment is to fit the wind speed characteristics of
the select location into the Weibull distribution probability distribution function (PDF). The frequency
of occurrence of different wind speed bins obtained from the PDF is then used to estimate the total

Energies 2018, 11, 1992; doi:10.3390/en11081992 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4273-6588
http://www.mdpi.com/1996-1073/11/8/1992?type=check_update&version=1
http://dx.doi.org/10.3390/en11081992
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1992 2 of 15

power generated for the corresponding wind speed and time duration [5,6]. The sum of all the bins is
the total estimate of wind energy output for such a study site. Another method is to use the wind power
density (WPD), which does not consider the turbine characteristics, but rather gives an estimate of the
available wind power based on wind speed only [7]. Both methods are capable of expressing long-term
estimates, which has been shown to sometimes vary from actual field observations. For example, wind
speed and power pairs collected from an observational 800 kW wind turbine show deviations of the
measured power output (referred to as the actual power curve henceforth APC) from the TPC creating
a dispersion belly [8]. Similar dispersion in other studies [3,5,6,9] suggest that if the time series were
extracted, APC fluctuations would make estimations of wind energy source input into the electrical
grid a technical problem for energy grid operators. Table 1 shows some reviewed studies that have
identified fluctuations of the TPC from the APC. Specifically, the turbine model, location, time steps
considered, and scope of studies are included in the table. Although there are marked differences in
these deviations, the surveyed studies all point to occurrence of deviations occuring irrespective of
turbine location, turbine type or specific climatic conditions.

Table 1. Literature with evidence of dispersion of actual power curve from the theoretical power curve.

Author Study Context/Focus WT 1 Model Location Time Interval

[9] WT true power curves Made AE-61
Bonus 1.3 MW Galicia, Spain 10-min

[10] Sharing wind energy data N.A 2 N.A 10-min

[11] Wind farm performance decline
with aging N.A (wind farm) UK Hourly

[12] Wind turbine power estimation
using Neural network N.A–500 kW Texas, US 10-min

[13] Data-mining for WTPCs 3 N.A–2 MW Germany 10-min

[14] WT power curve modeling Vestas
V82–1650 kW Canada Hourly

[15] WT power generation performance N.A (Wind farm) US 10 s

[16] Wind turbine performance in urban
environment

Vestas
V52–850 kW Ireland 10-min

1 WT: Wind Turbine; 2 N.A: Not Available; 3 WTPC: Wind Turbine Power Curve.

Wind turbine control system operators require wind speed prediction times in the range of
seconds ahead. Wind speed prediction can be via numerical weather prediction (NWP) methods as
summarized in previous works [17–19] and [1] who developed an adaptive neural fuzzy inference
system (ANFIS) for wind speed forecasting. Another approach is through statistical methods as
described in Reference [3] and used in Reference [8] to develop a linear prediction model effective for
wind speed forecasting or the fractionally-integrated Auto-Regressive Integral and Moving Average
(f-ARIMA) method adopted in Reference [20]. Statistical methods are ideally suited for short-term
predictions, and common forms include regression based methods such as auto-regressive (AR),
auto-regressive and moving-average, (ARMA) [21], auto-regressive integral and moving-average
(ARIMA) [22]; exponential smoothing (single or double); the persistence model; and neural network
fitting (Artificial Neural Network). However, studies on wind speed prediction still continue because
there does not seem to be any industry-wide accepted, short-term wind forecasting system for wind
power. While studies on wind power and wind turbine performance exists (see Table 1), more recently
the use of stochastic models for wind power related studies have increased. Wind turbine fatigue
load estimation was conducted by Reference [23] using a stochastic model, especially in wind farms,
a condition that is certain to affect turbine performance and power output. In Reference [24], actual
measured data was used to construct a stochastic model to monitor wind turbine vibrations and could
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prove significant for understanding and monitoring turbine operations/maintenance. As regards
to the operation and control of turbines, better modeling that incorporates wind uncertainty and
accommodates deviations from “normal” turbine working conditions [25] are essential for performance
characterization and fault diagnosis. Such better modeling is seen in Reference [26] where a stochastic
approach was applied to model energy conversion and power production from a wind farm under
various wind conditions including turbulent wind fluctuations. In another dimension, Reference [27]
combined a computational fluid dynamic (CFD) approach with blade element momentum (BEM)
theory to propose operating conditions for wind turbines during icing conditions.

When errors from wind power estimation occur, the base load may have to be increased [28],
and large amounts of usable wind energy may have to be disposed of [29]. In addition, power
outages may occur while financial losses in the energy market would be incurred [30]. Ultimately, grid
systems may be jeopardized, thereby affecting energy quality and stability [3]. Thus, a combination of
approaches from previous studies is adopted to analyze actual turbine performance and its impact
on grid input. Measurements from a single turbine such as conducted by References [3,13] is used to
investigate the occurrence of very short-term wind variation and turbine power output similar to the
studies by References [15,16]. Three different time-steps and averaging times greater than 10 s intervals
used by Reference [15], but less than 1 h used by Reference [5] was adopted. This was then extended
to investigating estimation errors and possible methods for reducing these errors based on a form
of polynomial curve belonging to the parametric modeling technique of wind power curves seen in
Reference [31]. The results from this study will be of significant interest for electrical grid management,
wind power optimization, and wind turbine controllers and operators, as well as the wind energy
industry. First, insight into the time series of wind power estimation is provided for energy grid
operators who play an essential role in ensuring an uninterrupted power supply and maintaining
grid quality. Second, the analysis provides real-time information for wind turbine controllers to guide
decision making in short-term time scales during turbine operation, as opposed to previous studies
that provided such information in the range of 1 h, 6 h, or even daily. Third, by investigating estimation
errors, the wind energy industry is able to overcome some of the marketing and policy challenges
affecting wind power optimization and diffusion.

2. Data and Methodology

Wind speed and wind power pairs for an operational wind turbine were sourced in 15 s intervals
for a period of 14 days each for 2 seasons. The first set of measurements were taken in August
2016, representative of the summer season, while the second set was collected in February 2017,
representative of the winter season. The turbine is located on a hill approximately 440 m above mean
sea level, a Nordex N-50 800 kW turbine with a hub height of 46 m. The coefficient of performance
(Cp) ranged from 35% at low wind speed to about 45% at between 5 m/s and 10 m/s, before gradually
reducing to about 21% at wind speed above 10 m/s (see Figure S1). The turbine serves mostly for
educational and demonstration purposes with real time performance data available.

For the two periods considered, the dataset was initially divided into two parts (dataset A and
dataset B) for both summer and winter measurements. The first dataset, comprising about 80% of the
datasets, was used for aggregation into 1-min, 5-min, and 15-min time steps using the mathematical
notation below.

Xi =
∑n

x=1 Xi
n

(1)

where X is the value considered (i.e., wind speed and wind power), i is the time, and n is the number
of observations. The second set (20%) was used for model development.
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Three case scenarios were established to typify possible variations of daily wind speed irrespective
of time of day using 60 time steps per scenario.

• Scenario A–u > 3.0 from t1–t60: Wind speed range above cut-in speed for the 60 time steps
• Scenario B–u < 3.0 at t1: Wind speed startup lower than cut-in speed
• Scenario C–u > 3.0 between t1–tn, u < 3.0 at tn+1: A range of lower wind speed between

higher values

where t1 = time step 1, tn = time step at arbitrary time n, and tn+1 = wind speed at the next time step
after time tn; all scenarios were considered using 60 time steps.

The actual power curve (APC) is derived from the wind power values recorded from the
corresponding speed for the time series by taking the instantaneous power output from the turbine.
The turbine power curve (TPC) is obtained by using a nonlinear transformation function for wind
power as stated in two below. It is important to state here that the TPC can actually be divided into
three regimes, the non-linear (also cubic) transformation of wind speed to wind power when incident
wind speed ranges between 3.0–15 m/s, the linear regime during which the power output is constant
for a rated wind speed of 15–25 m/s, and the saturated regime where power output is negligible due
to turbine shut-down for too high wind speeds greater than 25 m/s.

P =
1
2

Cp ∗ As ∗ ρ ∗ u3 (2)

To minimize estimation errors, an effective power curve (EPC) was proposed for the performance
evaluated using the following criteria: mean absolute error (MAE), mean square error (MSE), and root
mean square error (RMSE) [32].

MAE =
1
n

n

∑
i=1
| p̂i − pi| (3)

MSE =
1
n

n

∑
i=1

(pi − p̂i)
2 (4)

RMSE =

[
1
n

n

∑
i=1

(pi − p̂i)
2

] 1
2

(5)

where n is the number of samples, p is the actual power output (APC) and wind speed, and p̂ is the
modelled output (EPC).

3. Results and Discussion

Power output based on the APC, which is the actual turbine output per time step, and the TPC,
which is the power output estimated using the wind power expression were compared. The APC and
TPC for each scenario previously defined were considered using 60 time steps t1–t60 for the winter and
summer data, respectively, for 1-min, 5-min, and 15-min time intervals. Statistical details describing
the wind speed distribution for each of the scenarios and time intervals are provided in Table 2.
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Table 2. Descriptive statistics of observed wind speed distribution (units in m/s).

Scenario Winter Summer

Scenario A 1-min 5-min 15-min 1-min 5-min 15-min

Mean 8.61 8.29 7.73 7.46 7.54 6.22
Std. dev. 0.78 1.13 1.69 1.36 1.28 1.44

Range 3.30 4.88 6.00 5.83 4.94 5.47

Scenario B

Mean 4.15 6.37 4.87 2.87 4.14 2.46
Std. dev. 1.57 1.46 2.25 1.10 1.77 1.95

Range 5.30 6.78 9.20 4.65 5.82 8.74

Scenario C

Mean 4.78 5.04 3.27 5.30 3.66 3.50
Std. dev. 1.46 1.79 1.16 1.63 2.24 0.87

Range 6.10 6.52 4.70 7.00 5.82 4.05

3.1. Scenario A

Figure 1a (upper left) shows the APC and TPC at 1-min time intervals during winter from 20:00 to
20:59 hours. The pattern of the APC is accurately captured by the TPC, although TPC underestimated
the APC throughout the one hour duration. Compared to Figure 1b, the estimation errors observed in
summer were of a lesser magnitude, with two occurrences of overestimation lasting for about 4–5 min
each. In both cases the output from the turbine is negligible, almost equivalent to the output during a
turbine downtime period. This occurred when instantaneous wind speed was greater than the cut-in
speed of 3 m/s required for power generation. Relatively wind speed in winter appeared less dynamic
than in summer, although they were measured at different hours of the day. The total energy yield at
the end of the hour is 449.3 kWh and 227.5 kWh compared to the theoretical estimate of 324.4 kWh and
215.5 kWh for winter and summer, respectively.

For the 5-min time interval, a similar pattern is observed, with the TPC constantly below the APC
for all time steps in winter, as illustrated in Figure 1c. The magnitude of the estimation errors for the
individual time steps increased as wind speed reduced and vice versa, although this may be due to
averaging rather than a performance issue. The delays in the response time of the wind turbine to
fluctuations in wind speed were diminished in this time series, probably as an effect of the averaging.
In Figure 1d (middle left) the APC is above the TPC at t60, thus an overestimation. Also, estimation
errors appeared to be comparatively less at lower wind speeds and greater at higher wind speeds.
For the span of 5 h, the total energy yield was 2125.1 kWh and 1095.9 kWh for winter and summer,
respectively. These values are greater than the TPC estimations by 30% and 29%, respectively.

In the case of the 15-min time interval, the first observation was that for each time step estimation
errors were less compared to the time series earlier discussed. From Figure 1e,f, it can also be observed
that at the same average wind speed, the APC is slightly higher in winter than in summer. This suggests
that turbine performance may be significantly affected by season. Mathematically, the wind power
expression factors in air density, which is in turn affected by temperature. However, there is limited
proof in studies attempting to quantify or measure this impact on wind resource assessments or yield
which may form a probable hypothesis for future work. There are notable periods of overestimations
of turbine yield by the TPC, although for only about 4–5 time steps. Winter values were from 6:00–19:00
hours to yield 5388.4 kWh, while summer values were from 22:00 hours to 11:00 hours (next day),
yielding 2904.9 kWh of energy.
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3.2. Scenario B 

The 1-min time series are shown in Figure 2a,b for winter and summer, respectively. A similar 
underestimation of the power generated by the TPC is also observed. The estimation error is of 
lesser magnitude when wind speed is gradually rising, relative to when wind speed falls. The 
performance in winter is also slightly higher than in summer, although the hour of the day varied for 
both seasons. There is a noticeable delay of about 8–10 min in power production for the wind turbine 
in 2a despite wind speed being above the cut-in speed. This suggests that wind direction and/or 
turbine inertia may affect energy production, especially during poor wind conditions. Wind 
direction however is a stochastic property and technically challenging to predict in short time scales. 
Energy yield was underestimated at the end of the hour by 14% (43%) for winter (summer). 

Figure 1. Turbine actual and theoretical power output during scenario A for: 1-min time intervals
in (a) winter and (b) summer; 5-min time intervals in (c) winter and (d) summer; and 15-min time
intervals in (e) winter and (f) summer, with average wind speed bars inset.

3.2. Scenario B

The 1-min time series are shown in Figure 2a,b for winter and summer, respectively. A similar
underestimation of the power generated by the TPC is also observed. The estimation error is of lesser
magnitude when wind speed is gradually rising, relative to when wind speed falls. The performance
in winter is also slightly higher than in summer, although the hour of the day varied for both seasons.
There is a noticeable delay of about 8–10 min in power production for the wind turbine in 2a despite
wind speed being above the cut-in speed. This suggests that wind direction and/or turbine inertia
may affect energy production, especially during poor wind conditions. Wind direction however is
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a stochastic property and technically challenging to predict in short time scales. Energy yield was
underestimated at the end of the hour by 14% (43%) for winter (summer).
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Figure 2. Turbine actual and theoretical power output during scenario B for: 1-min time intervals
in (a) winter and (b) summer; 5-min time intervals in (c) winter and (d) summer; and 15-min time
intervals in (e) winter and (f) summer, with average wind speed bars inset.

The 5-min interval time series shown in Figure 2c,d are quite similar to those of the 1-min interval.
There was an overestimation by the TPC for about four time steps since in these instances the actual
power generated was negligible. As highlighted earlier, less deviation of the TPC from the APC was
observed when wind speed gradually increased, in contrast to when wind speed decreased or when
there are abrupt changes in the magnitude of wind speed. There are minimized occurrences of lags and
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delays, perhaps due to the averaging of the series. Overall estimation error in this case was generally
lower compared to scenario A because of a considerably lower turbine operation time. Total yield in
winter was 1164.5 kWh, while that in summer was 353.0 kWh, compared to theoretical estimates of
733.0 kWh and 249.3 kWh, respectively.

In the 15-min interval time series shown in Figure 2e,f, the APC and TPC appeared to respond
immediately to changes in wind speed and are less sensitive to abrupt variations. Also, delays and
lags are completely eliminated due to the averaging. A period of poor wind speed was observed in
summer (Figure 2f) which lasted for over 6 hours. This is undesirable for wind power production, as it
would impact energy supply and grid quality, putting customers at risk of power outages. Also, this
spell means that estimation error would be relatively lower, since again total turbine operational time
was less. Energy yield for the 60 time steps was 2510.5 kWh and 390.6 kWh for winter and summer
respectively, corresponding to an overestimation of summer wind power by 3%.

3.3. Scenario C

For times where wind speed varied between less than and greater than 3.0 m/s for a short time
spans, turbine yield is sustained, as seen in winter in Figure 3a. From t2–t5 and from t11–t15, wind
speed was less than 3.0 m/s although power was generated by the turbine. There was, however,
a considerable reduction in power output in the latter case. Variation in wind speed is mirrored by
the APC and TPC for most of the remaining time steps. The summer test in Figure 3b also shows
a pattern similar to those of winter, except between t50 and t58 where the APC is negligible. This
again suggested that wind direction and turbine inertia may affect turbine yield, especially during
wind conditions. The TPC underestimated yield by 39% and 9% after the 1 h sampled for winter and
summer, respectively.

For the winter 5-min interval time series seen in Figure 3c, the actual yield by the APC was
considerably higher than the TPC for most of the initial time steps when wind speed was greater
than 6.0 m/s. A sharp decline of power output was also observed in summer (see Figure 3d) despite
average wind speed being slightly above the cut-in speed. For both seasons, there were instances of
negligible power generated by the turbine, attributable to poor wind speed, changes in wind direction,
or the effect of time-series averaging. The total yield from the APC (TPC) was 643.7 (438.2) kWh and
302.8 (257.4) kWh for winter and summer, respectively.

In this scenario for the 15-min time interval series, there was only one instance of negligible wind
power production despite average wind speed of greater than 3.0 m/s in winter and summer seasons
combined, as illustrated in Figure 3e,f. However, prolonged poor wind conditions again severely affect
energy yield, as there is no power production for transmission into the grid. There were instances of
sustained turbine yield despite the average wind speed being less than the cut-in speed. A possible
explanation is that some actual wind speeds within the 15 time steps that were averaged to give this
time series might have been greater than 3.0 m/s, enough to initiate turbine blade motion and power
generation. Also, it might be that the momentum gained by the turbine blades sustained the continued
rotation even when the wind speed was slightly lower than the cut-in speed but there was no major
change in the angular direction of the wind. Since the time series are based on averaged values, these
suggested dynamics are not exhaustive. Similar to the other series discussed, the APC underestimated
actual yield by 38% and 48% in winter and summer, respectively.

The time series discussed above show turbine performances in three different scenarios, showing
mostly underestimations of actual turbine yield by the theoretical power curve. These three scenarios
are everyday occurrences due to the stochastic nature of wind, and turbine performance under such
conditions bears great implications for wind turbine operators.
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3.4. Estimations Using the Effective Power Curve

Potential wind power bears a cubic relationship with wind speed provided other factors in the
wind power equation (Equation (2)) remain constant. This relationship is the basis for the power curve
(TPC) used for wind power estimation [33–36]. Using this expression causes estimation errors, often an
underestimation of the actual power produced, as seen in the time series in Figures 1–3 above, and as
documented in the other studies highlighted, especially when considering hourly averaged wind
power. These errors have been attributed to some energy meteorology parameters such as shear [37],
turbine age [11], atmospheric conditions [9], ambient turbulence [38], thermal effects and surface
roughness [39], although there are limited scholarly articles to validate and quantify these impacts.

A polynomial relation referred to as the effective power curve of the form

EPC = au2 + bu + c (6)
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Was then proposed for time-series estimation of turbine power production and input into the
electrical grid based on the data pairs. The concept of an EPC based on actual turbine performance is
not entirely new. For example, Reference [31] surmised that the shape of a wind turbine power curve
can be estimated by using the power characteristics of the rotor, generator, and efficiency of component
parts and/or gearbox ratio. Adopting a TPC developed from operational data is sure to overcome
some of the limitations imposed by a manufacturer provided power curve, a strategy now explored in
through wind turbine power curve modeling techniques. In a study, reference [40] reviewed a number
of mathematical wind turbine power curve modeling methods from which a number of polynomial
functions classified under parametric modeling techniques are listed, a conclusion corroborated in
Reference [26]. Of the various forms of polynomial curves available (see also [41]), the EPC adopted
here is the second degree polynomial order function similarly used in [42]. This selection is based on
relatively lower number of coefficients required (compared to ninth degree polynomial), uses real time
data (compared to the model based on Weibull parameter, and accommodates site-specific conditions
(as against the cubic and approximate cubic power curves) which are various available alternatives in
the polynomial parametric modeling techniques. Although the exponential curve is very similar to the
EPC, it is essential to adopt the better-suited model which forms the best fit with the observed data
from which the polynomial model is based.

In this case however, coefficients a, b, and c are obtained from approximations of the curve
of best fit for the 20% model development dataset using the method of least squares. By using
two representative seasons, differences in atmospheric conditions are accounted for. In Figure 4,
the wind turbine used in the study for both winter and summer seasons depict a near linear or
polynomial relationship when filtered wind speed and power pairs were plotted. The filtered data is
the 20% for model development with wind speed less than the cut-in speed and wind power less than
30 kW excluded.
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Figure 4. Dataset B observed wind speed and wind power pairs (after filtering) for Nordex N50-800 kW
wind turbine in (a) winter and (b) summer.

Table 3 shows details of the constants, with correlation coefficients of the APC and the EPC of
0.94 and 0.98 for winter and summer, respectively. The dataset also corroborate earlier inferences that
average wind speed is higher during winter than during summer.

In Figure 5, it is observed that the estimation error between the APC and EPC for each of the
time steps in the 15-min interval time series reduces considerably when compared to its equivalent
TPC. The high R values give credence to the fact that polynomial functions are valid for explaining the
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relationship between wind speed and wind power for time-series estimation. A limitation (quite similar
to that of the TPC) is present, which requires that the EPC be “corrected” at the rated speed. This
correction imposes constant wind power production (rated power of the turbine) when the wind speed
is between 15 m/s and 25 m/s.

Table 3. Details of constants and correlation coefficients for the effective power curve.

Constant Winter Summer

a 3.96 7.04
b 28.94 −10.78
c −126.04 −20.09
R 0.9713 0.9880
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Table 4 provides a statistical summary of the performance of the EPC for the scenarios considered,
comparing with that of the TPC with respect to actual power generated. The EPC performed best
in Scenario A, with an approximately 3% underestimation of total yield in kWh in winter, while for
summer there is an overestimation, also of 3%. The maximum error recorded is an overestimation
of 35% during summer for scenario B. This illustrates the sensitivity of the wind turbine to poor
weather conditions.

Table 4. Statistical performance of the effective power curve.

Error
Winter Summer

Scenario A Scenario B Scenario C Scenario A Scenario B Scenario C

MAE EPC 31.10 19.80 19.01 13.14 22.44 11.00
- TPC 103.62 76.95 20.87 64.88 9.90 24.92

MSE EPC 6.45 5.05 4.68 3.49 6.13 2.79
- TPC 10.84 10.63 5.53 8.54 4.95 5.20

RMSE EPC 41.56 25.55 21.86 12.10 37.55 7.80
- TPC 117.54 113.00 30.56 72.91 24.55 27.02

Figure 6 gives a diagrammatic representation of the accuracy and consistency of the EPC
(predicted output) relative to the APC (actual values). The degree of alignment of points on the
diagonal line indicates the accuracy of the predictions. The performance is satisfactory for all scenarios,
although the most accurate predictions appear to be during scenario A, where wind conditions are
highly favorable for continued wind turbine operation.
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Figure 6. Comparison of 15-min actual output in kW (APC) and modelled output (EPC) in kW for:
scenario A in (a) winter and (d) summer; scenario B in (b) winter and (e) summer; and scenario C in
(c) winter and (f) summer.

4. Conclusions

Time series of wind turbine performance and energy yield were examined under three different
scenarios using two representative seasons (i.e., winter and summer). First, a 1-min interval time
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series comparison of actual turbine output (APC) and theoretical turbine output (TPC) was considered.
The observed data show that wind direction may significantly impact turbine power output; likewise
turbine momentum may sustain wind power production despite low wind speed. Knowledge of
this effect and its dynamics is very useful for guiding the actions of wind turbine controllers and
operators. The 5-min and 15-min interval time series appear more suited for addressing delays in
turbine response, developing energy storage systems, energy scheduling, and load management,
and bear greater significance in electrical grid quality and stability. All the cases and scenarios
considered exhibit relatively large estimation errors both for each time step and for the total energy
yield in kWh. These errors are major underestimations of actual power and could directly hinder wind
power diffusion and optimization, especially in terms of acceptance, adoption, and commercialization.

An effective power curve (EPC) was proposed based on turbine performance over a given period.
The EPC produces fewer estimation errors relative to the TPC when used for estimating power
production in the 15-min interval time series. The EPC afforded an easier and more direct estimation
of turbine power production, with an estimation error of less than 5% (average value) during “good”
wind conditions. Better estimates during good wind conditions offer optimal value in terms of wind
power exploitation and harnessing. Generated energy does not have to be disposed-off while energy
from alternate sources (non-stochastic/intermittent) can be stored or reserved Energy Storage Systems
(ESS). However, under poor wind conditions where the performance of the EPC is less remarkable
other strategies may be required in addition. Typically, a change in turbine blade operating conditions
such as turbine shut-down or sustaining a certain rotational speed may be more beneficial for accurate
estimations. Another strategy can require operator changes to the turbine tip speed ratio (TSR), thus
creating a better define estimate. These strategies are however best suited for defined environmental
conditions and relatively higher wind speeds (higher mean value but less time-step fluctuations).
Importantly, studies on turbine performance during poor wind and wind ramp events would be scaled
up in the near future, requiring a combination of approaches (computational fluid dynamic modeling,
machine learning, and or support vector mechanism) validated with field observations to increase
estimation accuracy. This line of knowledge provides a great motivation for our future studies based
on the foundation provided in this study.

Since estimation errors and fluctuations occur irrespective of turbine type, location, and size,
an essential step by energy producers would be to create their turbine or wind farm EPC before
grid connection. By combining the turbine EPC approach with accurate short-term wind prediction
tools such as the ARMA, ARIMA, and exponential smoothing methods, wind power prediction
and estimation for very very short term (>5 min) and very short term (10 min–6 h) can be done
more accurately. This would foster wind power optimization, positively influence the wind energy
market, and improve wind power diffusion. Also, by minimizing estimation errors, policy support for
increasing wind power share in energy portfolios may be more easily achieved.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/11/8/1992/
s1, Figure S1: Coefficient of Performance curve profile for the Nordex-N50 wind turbine.

Author Contributions: The study idea, plan and design were conceived by W.Z. and A.T.A. Calculations, analysis
and visualizations were carried out by A.T.A. and W.Z., who jointly prepared the manuscript, discussed the
results and decided on the final version.

Funding: The first author is a recipient of a research studentship provided by the City University of Hong Kong.

Acknowledgments: The authors would like to thank the Energy Company whose wind turbine data were used
for this study. We are also grateful to the anonymous reviewers for their insightful comments, which helped
improve the overall quality of this publication.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/1996-1073/11/8/1992/s1
http://www.mdpi.com/1996-1073/11/8/1992/s1


Energies 2018, 11, 1992 14 of 15

References

1. Negnevitsky, M.; Potter, C.W. Innovative short-term wind generation prediction techniques. In Proceedings
of the Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; pp. 60–65.

2. Valentine, S.V. A STEP toward understanding wind power development policy barriers in advanced
economies. Renew. Sustain. Energy Rev. 2010, 14, 2796–2807. [CrossRef]

3. Renani, E.T.; Elias, M.F.M.; Rahim, N.A. Using data-driven approach for wind power prediction: A comparative
study. Energy Convers. Manag. 2016, 118, 193–203. [CrossRef]

4. Bludszuweit, H.; Domínguez-Navarro, J.A.; Llombart, A. Statistical analysis of wind power forecast error.
IEEE Trans. Power Syst. 2008, 23, 983–991. [CrossRef]

5. García-Bustamante, E.; González-Rouco, J.F.; Jiménez, P.A.; Navarro, J.; Montávez, J.P. A comparison of
methodologies for monthly wind energy estimation. Wind Energy 2009, 12, 640–659. [CrossRef]

6. García-Bustamante, E.; González-Rouco, J.F.; Jiménez, P.A.; Navarro, J.; Montávez, J.P. The influence of the
Weibull assumption in monthly wind energy estimation. Wind Energy 2008, 11, 483–502. [CrossRef]

7. Akinsanola, A.A.; Ogunjobi, K.O.; Abolude, A.T.; Sarris, S.C.; Ladipo, K.O. Assessment of wind energy
potential for small communities in south-south Nigeria: Case study of Koluama, Bayelsa State. J. Fundam.
Renew. Energy Appl. 2017, 7, 1–6. [CrossRef]

8. Abolude, A.; Zhou, W. A preliminary analysis of wind turbine energy yield. Energy Procedia 2017, 138,
423–428. [CrossRef]

9. Villanueva, D.; Feijóo, A. Normal-based model for true power curves of wind turbines. IEEE Trans. Sustain.
Energy 2016, 7, 1005–1011. [CrossRef]

10. Kusiak, A. Share data on wind energy. Nature 2016, 529, 19–21. [CrossRef] [PubMed]
11. Staffell, I.; Green, R. How does wind farm performance decline with age? Renew. Energy 2014, 66, 775–786.

[CrossRef]
12. Li, S.; Wunsch, D.C.; O’Hair, E.A.; Giesselmann, M.G. Using neural networks to estimate wind turbine power

generation. IEEE Trans. Energy Convers. 2001, 16, 276–282.
13. Schlechtingen, M.; Santos, I.F.; Achiche, S. Using data-mining approaches for wind turbine power curve

monitoring: A comparative study. IEEE Trans. Sustain. Energy 2013, 4, 671–679. [CrossRef]
14. Shokrzadeh, S.; Jozani, M.J.; Bibeau, E. Wind turbine power curve modeling using advanced parametric and

nonparametric methods. IEEE Trans. Sustain. Energy 2014, 5, 1262–1269. [CrossRef]
15. Long, H.; Wang, L.; Zhang, Z.; Song, Z.; Xu, J. Data-driven wind turbine power generation performance

monitoring. IEEE Trans. Ind. Electron. 2015, 62, 6627–6635. [CrossRef]
16. Cooney, C.; Byrne, R.; Lyons, W.; O’Rourke, F. Performance characterisation of a commercial-scale wind

turbine operating in an urban environment, using real data. Energy Sustain. Dev. 2017, 36, 44–54. [CrossRef]
17. Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Yan, Z. A review on the forecasting of wind speed and

generated power. Renew. Sustain. Energy Rev. 2009, 13, 915–920. [CrossRef]
18. Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind

power generation. Renew. Energy 2012, 37, 1–8. [CrossRef]
19. Riahy, G.H.; Abedi, M. Short term wind speed forecasting for wind turbine applications using linear

prediction method. Renew. Energy 2008, 33, 35–41. [CrossRef]
20. Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy

2009, 34, 1388–1393. [CrossRef]
21. Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy

2011, 88, 1405–1414. [CrossRef]
22. Chen, P.; Pedersen, T.; Bak-Jensen, B.; Chen, Z. ARIMA-based time series model of stochastic wind power

generation. IEEE Trans. Power Syst. 2010, 25, 667–676. [CrossRef]
23. Lind, P.G.; Herráez, I.; Wächter, M.; Peinke, J. Fatigue load estimation through a simple stochastic model.

Energies 2014, 7, 8279–8293. [CrossRef]
24. Lind, P.G.; Vera-Tudela, L.; Wächter, M.; Kühn, M.; Peinke, J. Normal Behaviour Models for Wind Turbine

Vibrations: Comparison of Neural Networks and a Stochastic Approach. Energies 2017, 10, 1944. [CrossRef]
25. Simani, S.; Farsoni, S. Fault Diagnosis and Sustainable Control of Wind Turbines: Robust Data-Driven and

Model-Based Strategies; Butterworth-Heinemann: Oxford, UK, 2018.

http://dx.doi.org/10.1016/j.rser.2010.07.043
http://dx.doi.org/10.1016/j.enconman.2016.03.078
http://dx.doi.org/10.1109/TPWRS.2008.922526
http://dx.doi.org/10.1002/we.315
http://dx.doi.org/10.1002/we.270
http://dx.doi.org/10.4172/2090-4541.1000227
http://dx.doi.org/10.1016/j.egypro.2017.10.189
http://dx.doi.org/10.1109/TSTE.2016.2515264
http://dx.doi.org/10.1038/529019a
http://www.ncbi.nlm.nih.gov/pubmed/26738579
http://dx.doi.org/10.1016/j.renene.2013.10.041
http://dx.doi.org/10.1109/TSTE.2013.2241797
http://dx.doi.org/10.1109/TSTE.2014.2345059
http://dx.doi.org/10.1109/TIE.2015.2447508
http://dx.doi.org/10.1016/j.esd.2016.11.001
http://dx.doi.org/10.1016/j.rser.2008.02.002
http://dx.doi.org/10.1016/j.renene.2011.05.033
http://dx.doi.org/10.1016/j.renene.2007.01.014
http://dx.doi.org/10.1016/j.renene.2008.09.006
http://dx.doi.org/10.1016/j.apenergy.2010.10.031
http://dx.doi.org/10.1109/TPWRS.2009.2033277
http://dx.doi.org/10.3390/en7128279
http://dx.doi.org/10.3390/en10121944


Energies 2018, 11, 1992 15 of 15

26. Milan, P.; Wächter, M.; Peinke, J. Stochastic modeling and performance monitoring of wind farm power
production. J. Renew. Sustain. Energy 2014, 6, 033119. [CrossRef]

27. Zanon, A.; De Gennaro, M.; Kühnelt, H. Wind energy harnessing of the NREL 5 MW reference wind turbine
in icing conditions under different operational strategies. Renew. Energy 2018, 115, 760–772. [CrossRef]

28. Doherty, R.; O’Malley, M. A new approach to quantify reserve demand in systems with significant installed
wind capacity. IEEE Trans. Power Syst. 2005, 20, 587–595. [CrossRef]

29. Kaldellis, J.K.; Kavadias, K.A.; Filios, A.E.; Garofallakis, S. Income loss due to wind energy rejected by the
Crete island electrical network—The present situation. Appl. Energy 2004, 79, 127–144. [CrossRef]

30. Fabbri, A.; Roman, T.G.S.; Abbad, J.R.; Quezada, V.M. Assessment of the cost associated with wind generation
prediction errors in a liberalized electricity market. IEEE Trans. Power Syst. 2005, 20, 1440–1446. [CrossRef]

31. Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. A comprehensive review on wind turbine power
curve modeling techniques. Renew. Sustain. Energy Rev. 2014, 30, 452–460. [CrossRef]

32. Azad, A.K.; Rasul, M.G.; Yusaf, T. Statistical diagnosis of the Best Weibull methods for wind power
assessment for agricultural applications. Energies 2014, 7, 3056–3085. [CrossRef]

33. Lu, L.; Yang, H.; Burnett, J. Investigation on wind power potential on Hong Kong islands—An analysis of
wind power and wind turbine characteristics. Renew. Energy 2002, 27, 1–12. [CrossRef]

34. Lynn, P.A. Onshore and Offshore Wind Energy: An Introduction; John Wiley & Sons: New York, NY, USA, 2012;
233p, ISBN 9780470976081.

35. Gao, X.; Yang, H.; Lu, L. Study on offshore wind power potential and wind farm optimization in Hong Kong.
Appl. Energy 2014, 130, 519–531. [CrossRef]

36. Ashtine, M.; Bello, R.; Higuchi, K. Assessment of wind energy potential over Ontario and Great Lakes using
the NARR data: 1980–2012. Renew. Sustain. Energy Rev. 2016, 56, 272–282. [CrossRef]

37. Hansen, K.S.; Barthelmie, R.J.; Jensen, L.E.; Sommer, A. The impact of turbulence intensity and atmospheric
stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 2012, 15,
183–196. [CrossRef]

38. Lubitz, W.D. Impact of ambient turbulence on performance of a small wind turbine. Renew. Energy 2014, 61,
69–73. [CrossRef]

39. Emeis, S. Current issues in wind energy meteorology. Meteorol. Appl. 2014, 21, 803–819. [CrossRef]
40. Thapar, V.; Agnihotri, G.; Sethi, V.K. Critical analysis of methods for mathematical modelling of wind

turbines. Renew. Energy 2011, 36, 3166–3177. [CrossRef]
41. Jafarian, M.; Ranjbar, A.M. Fuzzy modeling techniques and artificial neural networks to estimate annual

energy output of a wind turbine. Renew. Energy 2010, 35, 2008–2014. [CrossRef]
42. Carrillo, C.; Montaño, A.O.; Cidrás, J.; Díaz-Dorado, E. Review of power curve modelling for wind turbines.

Renew. Sustain. Energy Rev. 2013, 21, 572–581. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.4880235
http://dx.doi.org/10.1016/j.renene.2017.08.076
http://dx.doi.org/10.1109/TPWRS.2005.846206
http://dx.doi.org/10.1016/j.apenergy.2003.12.008
http://dx.doi.org/10.1109/TPWRS.2005.852148
http://dx.doi.org/10.1016/j.rser.2013.10.030
http://dx.doi.org/10.3390/en7053056
http://dx.doi.org/10.1016/S0960-1481(01)00164-1
http://dx.doi.org/10.1016/j.apenergy.2014.02.070
http://dx.doi.org/10.1016/j.rser.2015.11.019
http://dx.doi.org/10.1002/we.512
http://dx.doi.org/10.1016/j.renene.2012.08.015
http://dx.doi.org/10.1002/met.1472
http://dx.doi.org/10.1016/j.renene.2011.03.016
http://dx.doi.org/10.1016/j.renene.2010.02.001
http://dx.doi.org/10.1016/j.rser.2013.01.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methodology 
	Results and Discussion 
	Scenario A 
	Scenario B 
	Scenario C 
	Estimations Using the Effective Power Curve 

	Conclusions 
	References

