
energies

Article

Multi-Step Ahead Wind Power Generation Prediction
Based on Hybrid Machine Learning Techniques

Wei Dong 1, Qiang Yang 1,2,* ID and Xinli Fang 1,3

1 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
dong_w@zju.edu.cn (W.D.); fxlily2008@163.com (X.F.)

2 Jiangsu Key Construction Laboratory of IoT Application Technology, Taihu University of Wuxi,
Wuxi 214064, China

3 Power China Hua Dong Engineering Corporation Limited, Hangzhou 311122, China
* Correspondence: qyang@zju.edu.cn; Tel.: +86-151-6713-8974; Fax: +86-571-8795-1625

Received: 11 July 2018; Accepted: 25 July 2018; Published: 30 July 2018
����������
�������

Abstract: Accurate generation prediction at multiple time-steps is of paramount importance for
reliable and economical operation of wind farms. This study proposed a novel algorithmic solution
using various forms of machine learning techniques in a hybrid manner, including phase space
reconstruction (PSR), input variable selection (IVS), K-means clustering and adaptive neuro-fuzzy
inference system (ANFIS). The PSR technique transforms the historical time series into a set of
phase-space variables combining with the numerical weather prediction (NWP) data to prepare
candidate inputs. A minimal redundancy maximal relevance (mRMR) criterion based filtering
approach is used to automatically select the optimal input variables for the multi-step ahead
prediction. Then, the input instances are divided into a set of subsets using the K-means clustering to
train the ANFIS. The ANFIS parameters are further optimized to improve the prediction performance
by the use of particle swarm optimization (PSO) algorithm. The proposed solution is extensively
evaluated through case studies of two realistic wind farms and the numerical results clearly confirm
its effectiveness and improved prediction accuracy compared to benchmark solutions.

Keywords: multi-step ahead prediction; phase space reconstruction; input variable selection;
K-means clustering; neuro-fuzzy inference system; wind power prediction

1. Introduction

Currently, the urgent pursuit of low-carbon economy and advances of wind power technologies
are strongly driving the rapid sustainable transition in the energy sector as well as the wind power
development across the world [1,2]. Due to the intermittent and stochastic nature, the power generation
of wind farms needs to be accurately predicted at different time-scales (e.g., daily, hourly or even less)
and timely reported to the dispatch center. Accurate short-term wind power forecasting can improve
wind power utilization, increase system reliability, reduce operational cost nd allow flexible dispatch
strategies [3]. In particular, the ultra-short-term wind power prediction for a couple of hours ahead
with the small prediction cycle (e.g., 15 min) can provide strong support for frequency modulation
and spinning reserve optimization. However, such ultra-short-term prediction is often a non-trivial
task that demands advanced algorithmic solutions and tools with sufficient accuracy and acceptable
computational complexity.

In the literature, much research effort has been made to address the prediction issues
from different aspects, e.g., electricity pricing [4,5] and power generation [6], in energy systems.
The available prediction tools and solutions of ultra-short-term prediction can be categorized into three
classes: physical-based methods, statistical-based methods, and machine learning-based methods.
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The physical-based methods focus on the spatial and temporal factors in a full fluid-dynamics
atmosphere model [7], which can generally perform well in longer horizons. The statistical-based
methods, e.g., autoregressive model (AR), moving-average (MA), auto-regressive integrated moving
average (ARIMA) and Kalman filters, carry out statistical analysis based on the historical data
to identify the internal regularity and the tendency of variations to deduce the prediction results.
The machine learning-based methods include several supervised learning models, e.g., artificial neural
networks (ANNs) [8], support vector machines (SVMs) [9], adaptive neuro-fuzzy inference systems
(ANFISs) [10] and Gaussian processes (GPs) [11]. In addition, some combined or hybrid methods have
been proposed aim to improve the prediction performance. For example, a hybrid intelligent method
was proposed in [3] using multiple support vector regression (SVR) models with the parameters
estimated based on an enhanced harmony search (EHS) algorithm. In [12], a hybrid forecasting model
based on K-means clustering and an a priori algorithm was developed for short-term wind speed
prediction and the prediction errors are corrected by associated rules.

In recent years, the feature selection and analysis of machine-learning based models for wind
power prediction have received much attention. The prediction accuracy can be improved by exploring
the information obtained from of the historical wind speed and generation time series data. In [13],
the features are firstly extracted from the historical power generation data, and then the dataset is split
into subsets based on the stationary patterns. In [14], a novel decomposition approach to fully consider
the chaotic nature of wind power time series was proposed. The time series data were separated
into different frequency characteristics using ensemble empirical mode decomposition (EMD) before
carrying out the chaotic time series analysis and singular spectrum analysis (SSA). A forecasting model
combining a support vector machine (SVM) optimized by a genetic algorithm and feature selection
based on the phase space reconstruction was presented in [15] for short-term wind speed prediction.
In addition, numerical weather prediction (NWP) data (including wind speed, direction, temperature,
humidity, atmospheric pressure, etc.) were adopted as the input variables for supervised models.
In [16], output data from different NWP models were used and the data with the minimum training
error were selected to be used in both ANN and SVM models. Afterwards, the forecasting errors
were corrected based on the model output statistics (MOS). The study in [17] proposed a wind power
prediction model based on the composite covariance function considering the joint effects among
features of NWP data. In [18], a data-driven feature extraction approach was developed to utilize
unlabeled NWP data which can be used in the supervised forecasting models.

It should be noted that, as the dimensionality of input variable increases, irrelevant and redundant
variables can deteriorate the prediction performance. Therefore, the selection of appropriate variables
through dimensionality reduction approaches is needed [19], and two dimensionality reduction
techniques, feature selection (variable selection) and feature extraction (feature transform), are often
used [20]. The latter can produce a new feature space through mapping the original features into lower
dimensional ones, e.g., singular value decomposition (SVD), principal component analysis (PCA) and
locally linear embedding (LLE). However, such feature extraction methods may often lose physical
properties of the original variables, and also difficult to be interpreted. In time series data analysis,
the variable selection that filters out some meaningless attributes without any transformation can be
more attractive than feature extraction. The variable selection methods can select the compact subset
from the original dataset to improve the performance and interpretability of the prediction model.

In general, three types of feature selection methods, filter methods, wrapper methods and
embedded methods, are considered [21]. The filter method ranks the input variables with a correlation
or mutual information (MI) criteria and selects the variable with the highest ranking. It is effectively
a pre-processing step before the development of the predictive model [21]. The wrapper method
identifies and evaluates the subsets of input variables based on the accuracy contributed by the given
output variable. Similarly, the embedded one builds the close-loop search into a classifier construction
in the training process [22]. The wrapper and embedded techniques can generally achieve better
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accuracy than the filter technique, but the filter method is less likely to lead to over-fitting and with
less computational complexity [23].

It should be highlighted that the existing solutions either have not been able to fully consider the
available information (e.g., historical data and NWP) or select the appropriate variables for improving
the prediction accuracy. To the author’s best knowledge, the technical challenge of ultra-short-term
prediction of wind power generation remains and the hybrid approach based on data mining and
machine learning techniques has not been thoroughly exploited.

This paper attempts to address the challenge of ultra-short-term power generation prediction
in wind farms. The main technical contributions made in this work are summarized as follows:
a novel hybrid algorithmic solution is presented which considers both historical generation data and
NWP data, and selects the optimal combination of input features using a filter method for different
prediction steps. The proposed algorithmic solution was extensively evaluated and validated through
case studies of two realistic wind farms. The basic idea behind the proposed prediction solution is
illustrated in Figure 1. The long-term nonlinear dynamic characteristics of wind power time series data
are extracted and recovered by using phase space reconstruction in C_C method. Afterwards, the most
appropriate input variables are selected from the reconstructed phase and NWP features with respect to
different forecasting steps based on the minimal redundancy and maximal relevance criterion. Finally,
an adaptive neuro-fuzzy inference system based algorithmic solution with heuristically optimized
parameters is adopted by using the selected input variables to produce the prediction results.
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Figure 1. The framework of the proposed hybrid algorithmic solution. 
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The rest of this paper is organized as follows: Section 2 describes the input variable selection
(IVS) solution based on (PSR) technique and mRMR criterion. Section 3 presents the framework of the
proposed hybrid intelligence prediction model. Section 4 carries out the case studies and presents a set
of key numerical results. Finally, the conclusions are given in Section 5.

2. Input Variable Selection (IVS)

Due to the chaotic property of the weather system, the evolution of dynamic characteristics has
initial sensitivity. The correlation between historical time series and future wind power generation
will decay rapidly with the increase of forecasting time step, and even deteriorate the prediction
performance. Thus, the adoption of both historical generation data and the numerical weather
prediction (NWP) data as the input variables is required. NWP aims to predict the variation of
weather through solving the process of thermodynamics and hydrodynamics equations based on
the meteorological data of the system. However, it can only provide short-term surface wind and
other weather characteristics prognoses roughly, which are not entirely adequate for specific local
conditions [24]. NWP data are often adopted to provide ancillary information, e.g., wind speed,
wind direction, temperature, humidity and air pressure, for prediction. For different step-ahead
prediction, these input variables can have different impacts on the forecasting targets. Therefore,
a two-stage input variable selection is used in the proposed prediction solution. Firstly, the initial
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variables can be selected from the historical series data through the phase space reconstruction
technique (PSRT), and the initial variables further can be combined with NWP information as the
candidate inputs. Secondly, the optimal input variables are filtered based on mRMR criterion.

2.1. The Initial Input Variable Selection of Historical Series Using PSRT

The Lyapunov exponent can be used to prove that the wind power generation time series has
chaotic characteristics. Therefore, the nonlinear dynamic characteristics of wind power time series
can be extracted and recovered by using phase space reconstruction theory. In [25], the time-delay
technique was used to reconstruct a finite dimensional phase space of sampled system’s time evolution.
In the time delay coordinate reconstruction, it is not only very important but also difficult to choose
an appropriate time delay τ and a good embedding dimension m since real datasets are finite and
noisy. There are currently two different viewpoints for the estimation of the aforementioned parameters.
One holds that they are irrelevant and should be chosen independently. To choose time delay τ, one can
use methods including autocorrelation function, multiple-autocorrelation, mutual information, and so
on. G-P algorithm or False Nearest Neighbor can be used to find the embedding dimension m. However,
it is suggested that the delay time and embedding dimension are dependent mutually. The delay time
window v should be estimated for the choice of m and τ. The delay time window v can be estimated
using C_C method [26]. The C_C method was used to determine the optimal input variables form the
historical generation with reduced computational complexity and enhanced efficiency [27].

The phase space reconstruction is an efficient tool to analyze the dynamic pattern of a chaotic time
series data. The delay-coordinate method was presented by Takens et al. to perform the phase space
reconstruction. The time series x = {xi, i = 1, 2, . . . , N} can be reconstructed into a multi-dimensional
phase space X = {Xi} to represent the dynamic system, according to:

Xi =
[

xi, xi+τ , . . . , xi+(m−1)τ

]
(1)

where i = 1, 2, . . . , M, M = N − (m− 1)τ, m is the embedding dimension, and τ is the delay time.
In this study, the C_C method [26] was constructed via two correlation integrals, developed to
reconstruct the given time series x = {xi} to simplify the candidate input forms.

As suggested in [26], the correlation integral for the embedded time series is defined as:

C(m, N, r, t) =
2

M(M− 1) ∑
1≤i≤j≤M

θ
(
r− dij

)
, r > 0 (2)

where dij = ‖xi − xj‖∞, ‖·‖∞ represents the infinite norm, t denotes the index lag, and θ is the

Heaviside function, θ(x) =

{
0, x < 0
1, x ≥ 0

. The correlation integral is a cumulative distribution function,

which denotes the probability with the distance less than search radius r between any two points in
the phase space. To study the nonlinear dependence and eliminate spurious temporal correlations,
the given time series x = {xi}must be divided into t disjoint sub-sequences. The disjoint time series
can be expressed as (3): {

x1, x1+t, . . . , x1+(l−1)t

}{
x2, x2+t, . . . , x2+(l−1)t

}
· · · · · ·

{xt, x2t, . . . , xlt}

(3)

where l is the length of subseries, l = INT(N/t), and INT(·) denotes reserving integer of the value.
Let us construct a statistic function S(m, N, r, t) as the serial correlation of a nonlinear time series,

which is a dimensionless measure of nonlinear dependence. For general t in the above disjoint time
series expressed in Equation (3), S(m, N, r, t) is defined as Equation (4):
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S(m, N, r, t) =
1
t

t

∑
s=1

[
Cs

(
m,

N
t

, r, t
)
− Cm

s

(
1,

N
t

, r, t
)]

(4)

Finally, when N → ∞ , the following can be obtained:

S(m, r, t) =
1
t

t

∑
s=1

[Cs(m, r, t)− Cm
s (1, r, t)] (5)

If the time series data follows an independent and identical distribution, S(m, r, t) is equal to zero
constantly for fixed value m, t and N → ∞ . However, as the real dataset is finite and the components
of series are correlated, S(m, r, t) is non-zero [26]. The maximum deviation of S

(
m, rj, t

)
for all radius r

can be defined as (6):
∆S(m.t) = max

{
S
(
m, rj, t

)}
−min

{
S
(
m, rj, t

)}
(6)

Here, N, m and r can be estimated based on the Brock–Dechert–Scheinkman (BDS) statistics as
N = 3000, m = 2, 3, 4, 5, ri = iσ/2, i = 1, 2, 3, 4, respectively, where σ = std(x) denotes the standard
deviation of the time series. Then, Equations (7)–(9) can be obtained as:

S(t) =
1

16

5

∑
m=2

4

∑
j=1

S
(
m, rj, t

)
(7)

∆S(t) =
1
4

5

∑
m=2

∆S(m, t) (8)

Scor(t) = ∆S(t) +
∣∣S(t)∣∣ (9)

The optimal delay time τ is determined when the value of S(t) first reaches zero or when ∆S(t)
reaches the first minimum point. The optimal embedding window v corresponds to the global
minimum point of Scor. Furthermore, the embedding dimension m can be obtained by the following
formula: m = v/τ + 1.

Once the reconstruction parameters, delay time τ and embedding dimension m, are determined
by C_C method, the initial variables related to the historical sequence are obtained as
HisInputs(t) = [x(t), x(t− τ), . . . , x(t− (m− 1)τ)], where x(t) is the power generation values
observed at current time t. The forecasting weather variables provided by NWP can be written
as NWPInputs(t′) = [Vwind(t′), (sin(Dwind(t′)) + cos(Dwind(t′))), T(t′), H(t′), P(t′)], where Vwind(t′),
Dwind(t′), T(t′), H(t′) and P(t′) in turn represent wind speed, wind direction, temperature,
humidity and air pressure at the predicted time t′. Therefore, candidate input variables set can be
combined into V =

[
HisInputs(t), NWPInputs(t′)

]
, and the input set dimension is |V| = m + 5.

2.2. The Optimal Selection of Candidate Input Variables Using mRMR-Criterion Ranking

The input variables of historical generation and NWP are selected using the minimal redundancy
maximal relevance (mRMR) criterion based on mutual information (MI) [28]. As MI can measure
both the linear and nonlinear dependency between variables, it has been applied for correlation
measurement and variable selection [29]. The basic idea of variable selection algorithm based on MI
is to select the best subset S from the original dataset X by maximizing the joint MI between S and
target output Y, namely I(S; Y). In the literature, many MI-based variable selection algorithms are
available, e.g., mutual information feature selection (MIFS) [30], mutual information feature selection
under uniform information distribution (MIFS-U) [31], the minimal redundancy maximal relevance
(mRMR) [28], and normalized mutual information feature selection (NMIFS) [32]. In this work,
the mutual-information-based mRMR criterion is adopted to find the compact and informative input
space. The mRMR technique aims to find a subset of candidate variables with maximal dependency
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(with respect to the target to be predicted) as well as minimal redundancy (between the variables in
the subset). The concept of MI is based on entropy that is described as follows.

The entropy of a random variable indicates the required average amount of information to
describe the random variable [33] which has been adopted in many studies [34,35]. The entropy of
a discrete random variable X = (x1, x2, . . . , xN) is denoted by H(X), where xi refers to the possible
values that X can take for discrete variable or the possible value range for continuous variable. H(X) is
defined as:

H(X) = −
N

∑
i=1

p(xi) log(p(xi)) (10)

where p(xi) is the probability mass function.
For any two random variables, X and Y = (y1, y2, . . . , yM), the joint entropy is defined as:

H(X, Y) = −
M

∑
j=1

N

∑
i=1

p
(

xi, yj
)

log
(

p
(
xi, yj

))
(11)

where p
(

xi, yj
)

is the joint probability mass function of X and Y. The conditional entropy of X given Y
is defined as:

H(Y|X) = −
M

∑
j=1

N

∑
i=1

p
(

xi, yj
)

log
(

p
(
yj
∣∣xi
))

(12)

The conditional entropy is the amount of uncertainty left in Y when a variable X is introduced,
so it is less than or equal to the entropy of both variables. The conditional entropy is equal to the
entropy if, and only if, the two variables are independent. Mutual Information (MI) is the amount of
information that both variables share, and is defined as:

I(X; Y) = H(Y)− H(Y|X) (13)

MI can be expressed as the amount of information provided by variable X, which reduces the
uncertainty of variable Y. MI is zero if the random variables are statistically independent. MI is
symmetric, so:

I(X; Y) = I(Y; X) (14)

The minimal-redundancy-maximal-relevance criterion (mRMR) aims to identify a compact
subset of informative input variables by simultaneously considering the maximum relevance
scheme and minimum redundancy. The simple combination of individually informative input
variables does not necessarily achieve a good forecasting performance [28]. Therefore, both the
informativeness of individual input variables and redundancy between them should be considered.
Thus, the informativeness score for individual variable vi based mRMR criterion is given by:

J(vi, S) = I(vi; t)− 1
|S| ∑

vj∈S
I
(
vi; vj

)
vi ∈ (V − S) (15)

where V is the total candidate variables, S is the selected input variables, and | · | is the number of
variables. The mutual information I(vi; t) is used between the target t and the candidate input variable
vi to measure the strength of vi relative to the forecasting process. The goal of second item is to
optimally select those variables that reveal a minimum of resemblance or redundancy between them,
thus making the selected set more representative or informative of the whole set.

In the implementation, a stepwise search, incremental forward selection (IFS) method, is used to
select input variables according to Equation (15), in which greater J(vi, S) scores indicate more promising
input variable vi. In the first step, Max-Relevance score of all candidate input variable is calculated,
where the variable with the maximum I(vi; t) score is determined as the first promising input variable:
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v1 = arg max
vi∈V

I(vi; t) (16)

The rest of the variables are selected step by step according to the criterion in Equation (15). In step
m (2 ≤ m ≤ |V|), it is supposed that an input variable subset Sm−1, composed of m− 1 promising
variables, s1, s2, . . . , sm−1, that has been selected from previous step (e.g., step m − 1). The m-th
promising variable can be selected from V − Sm−1 at step m by optimizing the following condition:

sm = arg max
vi∈V−Sm−1

J(vi, Sm−1) (17)

As one input variable represents one step forward, the promising variables can be incrementally
retrieved until step |V| where a total of input variables V are selected. The variables are also ranked in
selection process and the informativeness score (InSc) in m-th step is given by:

InScm = J(sm, Sm−1)m = 2, 3, . . . , |V| (18)

where sm is the most promising variable to be selected in m-th step according to Equation (17). Thus,
the priority of candidate input variables can be ranked through the mRMR-based incremental forward

selection (IFS) method. The cumulative amount of InSc, denoted as CumInScm =
m
∑

i=1
InSci, indicates

the information contributed from the newly added variable. The final optimal number of input
variables can be determined according to the change trend of CumInSc.

3. Hybrid Intelligent Prediction Model

In this work, the proposed hybrid algorithmic solution combines the K-means clustering,
Particle Swarm Optimization (PSO) and adaptive neuro-fuzzy interference system (ANFIS) in the
prediction model.

3.1. Subsets Partition Using K-Means Algorithm

The obtained historical dataset is divided into subsets and the data in the same class are with the
similar meteorological features. Consequently, the complexity of network training can be significantly
reduced with improved generalization capability. The dataset partitioning is implemented using
K-means algorithm as follows.

Here, data centralization and normalization are needed before clustering. Z-score standardization
of the dataset is expressed as follows:

zi,j =
vi,j − µj

σj
i = 1, 2, . . . N; j = 1, 2, . . . D (19)

where µj is the mean of column i, σj is the standard deviation of column, N is the number of instances,
and D is the dimensionality of input variables.

Given a training set {z1, z2, . . . , zN}, the K-means clustering algorithmic can partition the dataset
into k cohesive groups through an unsupervised learning process [36]. Here, zi ∈ RD and first
choosing cluster centroids {a1, a2, . . . , ak} ∈ RD randomly. Then, the fundamental purpose of K-means
algorithm is to minimize the following cost function:

CN =
1
N

N

∑
i=1

min
1≤j≤k

‖zi − aj‖2 (20)

where ‖·‖ is the function representing the usual Euclidean norm. After determining the cluster
center, the training samples are grouped into the subsets of the nearest cluster centers. For k subsets,
Ul =

{
u1, u2, · · · , uNl

}
, l = 1, 2, · · · , k, the number of samples in each subset is recorded as
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Nl , l = 1, 2, · · · , k. Each subset Ul determines a set of independent ANFIS network parameters
during training process. The vector nearest to the cluster center is adopted as the network input when
performing the online prediction.

3.2. Adaptive Neuro-Fuzzy Inference System

The adaptive neuro-fuzzy interference system (ANFIS) is a data-driven modelling technique [37]
to address the multivariable nonlinear system prediction through nonlinear neural network and
adaptive fuzzy reasoning process. The fuzzy membership function and fuzzy rules of the system can
be obtained through learning from historical data, rather than expert experience or intuition. Figure 2
illustrates the typical structure of two-input ANFIS model. The ANFIS is based on Takagi–Sugeno
inference approach that creates a nonlinear mapping from input space to the output space through
using the fuzzy if−then rules. The ANFIS is comprised of five layers as follows.
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Fuzzifier (Layer 1): Neurons in this layer perform the fuzzification operations, and the
membership degree of input in different fuzzy sets (e.g., A1, A2, B1, and B2) can be obtained.
Fuzzification is represented by fuzzy membership function f , and the output membership degree µA,
µB for x1, x2 can be expressed as:

µAi(x1) = f (x1); µBj(x2) = f (x2)i, j = 1, 2 (21)

1Rules inference (Layer 2): The rules neurons receive input from their respective fuzzified
neurons and calculate the rules active intensity ωn:

ωn = µAi(x1)µBj(x2)i, j = 1, 2n = 1, 2, 3, 4 (22)

Normalization (Layer 3): Each neuron in this layer receives all neuronal inputs from the previous
layer and calculates the normalized active intensity for a given rule ωn:

ωn = ωn/∑ ωn (23)

Defuzzifier (Layer 4): This layer computes the posteriori value with weight of given rule fn:

ωn fn = ωn(pnx1 + pnx2 + rn) (24)

1Output (Layer 5): This layer sums all defuzzified neuron outputs to arrive at the final ANFIS
output y:

y = ∑
n

ωn fn =
∑
n

ωn fn

∑
n

ωn
(25)

In this work, ANFIS is adopted to fit individual sub-training sets with the parameters heuristically
optimized by the use of Particle Swarm Optimization (PSO) algorithm. The structure and parameters
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of ANFIS are firstly determined using the fuzzy C-Means clustering (FCM) algorithm [38]. Afterwards,
PSO is adopted to optimize the parameters. Each particle in PSO can identify and maintain its locally
optimal solution (Pbest), and also collectively search for the global optimal solution (Gbest) in the
swarm [39]. The location and velocity function in PSO can be expressed as (26).{

pd
i (t + 1) = pd

i (t) + vd
i (t + 1)

vd
i (t + 1) = w(t) · vd

i (t) + c1ri1 ·
(

pbestd
i − pd

i (t)
)
+ c2ri2 ·

(
gbestd − pd

i (t)
) (26)

where ri1 and ri2 are two random variables in the range of [0, 1], c1 and c2 are positive constants,
and w is the inertia weight. Pi =

(
p1

i , p2
i , · · · , pn

i
)

and Vi =
(
v1

i , v2
i , · · · , vn

i
)

represents the
position and velocity of the i-th particle, respectively pbesti =

(
pbest1

i , pbest2
i , · · · , pbestn

i
)

and
gbesti =

(
gbest1

i , gbest2
i , · · · , gbestn

i
)

represent the best previous position of the i-th particle and
the best previous position among all the particles in the population, respectively.

4. Performance Assessment and Numerical Result

To extensively verify the reliability of the proposed prediction solution, the performance
assessment based on the data collected in two real wind farms with different locations and seasons are
carried out: Anzishan wind farm (capacity of 45 MW, Henan, China, hub height of 70 m) in June 2017,
and Xuqiao wind farm (capacity of 94 MW, Anhui, China, hub height of 90 m) in December 2017.
The reference height of these two wind farms is 10 m. The power generation (directly measured) and
NWP data with a 15-min interval (e.g., 96 observation values per day) are obtained from these two
wind farms. The three-month data (about 8640 observation values) prior to the test month, March to
May 2017 and September to November 2017, are used in the training process for Anzishan farm and
Xuqiao farm, respectively. The proposed hybrid solution is implemented in the MATLAB (version 8.3,
MathWorks, Natick, MA, USA) programming environment.

4.1. Input Variable Selection Process

The time series data of power generation in the previous month are used to determine the
phase-space reconstruction parameters through the C_C method. With different spatial and temporal
characteristics, the parameters of each wind farm will be determined, respectively. For Anzishan
farm, it can be observed in Figure 3 that ∆S have the first local minimum when t is equal to 26,
thus the optimal delay time τ is set to 26. The global minimum point of Scor corresponds to the
optimal embedding window v = 52 as shown in the figure. Thus, the embedding dimension m can be
calculated as 3. As for Xuqiao farm, the optimal delay time τ is also equal to 26 as shown in Figure 4.
The embedding window v is observed as 134, thus the optimal embedding dimension m is 6.
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The historical time series data can be selected as m-dimension input variables using the
phase-space reconstruction. For the current time t, the initial input variables related to the historical
data are HisInputs(t) = [x(t), x(t− τ), . . . , x(t− (m− 1)τ)], where x(t) is the power generation values
observed at current time t. The m-dimensional input variables are in turn denoted as the set:
{Hin1, Hin2, . . . , Hinm}. In the same way, the forecasting weather variables provided by NWP data
include wind speed, trigonometric wind direction, temperature, humidity, and atmospheric pressure.
NWPInputs(t′) = [Vwind(t′), (sin(Dwind(t′)) + cos(Dwind(t′))), T(t′), H(t′), P(t′)] is in turn denoted as
the set: {windV, windD, Temp, Hum, airP}. Based on the obtained reconstruction parameters by the
C_C method, the candidate input variables set of two wind farms can be obtained as follows:

Anzishan : {Hin1, Hin2, Hin3, WindV, WindD, Temp, Hum, AirP}

Xuqiao : {Hin1, Hin2, Hin3, Hin4, Hin5, Hin6, WindV, WindD, Temp, Hum, AirP}

Afterwards, the candidate variables are sorted through mRMR criterion to rank the predictive
strength of each input variable. By observing the variation trend of the cumulative amount of InSc,
that is, when the CumInSc curve no longer increases or grows very slowly, the optimal number of
input variables is selected. As the input variable selection is carried out adaptively in the prediction
model, the selected input variables may vary for different prediction steps.

Based on proposed mRMR-criterion filter solution, Figure 5 shows the changes of CumInSc curves
of Anzishan and Xuqiao wind farms in different predicted steps (e.g., 1 h, 2 h, 3 h and 4 h ahead),
respectively. The number of input variables is selected accordingly as shown in Figure 5. In this study,
when the CumInSc curve reaches the maxima, it is believed that adding the following variables at the
back of extreme point will not add more useful information. Therefore, the candidate variables before
the cumulative information maximum are regarded as the optimal or near optimal input variables to
the prediction model. The detailed ranking of candidate variables and the number of input choices
in multi-step ahead prediction for each farm are shown in Tables 1 and 2, respectively, where the
selected input variables are highlighted in shade. It can be seen that the variables ranking in the step of
proximity is similar and asymptotic. For different step-ahead prediction, the proposed hybrid solution
with ranking the predictive strength candidate variables can select a compact subset of informative
input variables based on the max-relevance and min-redundancy, which can effectively reduce the
input dimension and interference information.



Energies 2018, 11, 1975 11 of 19

Energies 2018, 7, x FOR PEER REVIEW  11 of 20 

 

candidate variables before the cumulative information maximum are regarded as the optimal or 
near optimal input variables to the prediction model. The detailed ranking of candidate variables 
and the number of input choices in multi-step ahead prediction for each farm are shown in Tables 1 
and 2, respectively, where the selected input variables are highlighted in shade. It can be seen that 
the variables ranking in the step of proximity is similar and asymptotic. For different step-ahead 
prediction, the proposed hybrid solution with ranking the predictive strength candidate variables 
can select a compact subset of informative input variables based on the max-relevance and 
min-redundancy, which can effectively reduce the input dimension and interference information. 

1 2 3 4 5 6 7 8

0.29

0.3

0.31

0.32

0.33

0.34

0.35

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Anzishan Farm

1 2 3 4 5 6 7 8 9 10 11
0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Xuqiao Farm

 
(a) 

1 2 3 4 5 6 7 8
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Anzishan Farm

1 2 3 4 5 6 7 8 9 10 11
0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Xuqiao Farm

 
(b) 

1 2 3 4 5 6 7 8
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Anzishan Farm

1 2 3 4 5 6 7 8 9 10 11

0.3

0.32

0.34

0.36

0.38

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Xuqiao Farm

 
(c) 

Energies 2018, 7, x FOR PEER REVIEW  12 of 20 

 

1 2 3 4 5 6 7 8
0.2

0.21

0.22

0.23

0.24

0.25

0.26

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Anzishan Farm

1 2 3 4 5 6 7 8 9 10 11

0.3

0.32

0.34

0.36

0.38

rank

C
u

m
In

S
c

 

 

seclected variables
unselected variables

Xuqiao Farm

 
(d) 

Figure 5. Cumulative informativeness score curve for IVS of Anzishan and Xuqiao farms: (a) 
one-hour ahead prediction; (b) two-hour ahead prediction; (c) three-hour ahead prediction; and 
(d) four-hour ahead prediction. 

Table 1. Ranking and selection of candidate variables for Anzishan Farm. 

Prediction Time Steps  
(15 min/step) Input Variables Ranking Number of 

Selected Variables 
#1 Hin1, WindD, Hin2, WindV; Hin3, Hum, AirP, Temp 4 
#2 Hin1, Hin3, WindV, WindD, Hin2; Hum, AirP, Temp 5 
#3 Hin1, WindD, WindV, Hin2; Hin3, Hum, AirP, Temp 4 
#4 Hin1, WindD, WindV, Hin2; Hin3, Hum, AirP, Temp 4 
#5 Hin1, WindD, WindV, Hin2; Hum, Hin3, AirP, Temp 4 
#6 Hin1, WindV, Hin2, WindD; Hum, Hin3, AirP, Temp 4 
#7 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3 
#8 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3 
#9 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3 

#10 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3 
#11 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3 
#12 Hin1, WindV; Hin3, WindD, Hin2, Hum, AirP, Temp 2 
#13 Hin1, WindV; Hin3, WindD, Hin2, Hum, AirP, Temp 2 
#14 Hin1, WindV, Hin3; WindD, Hin2, AirP, Hum, Temp 3 
#15 Hin1, WindV; Hin3, WindD, Hin2, AirP, Hum, Temp 2 
#16 Hin1, WindV; WindD, Hin2, Hum, Hin3, AirP, Temp 2 

Table 2. Ranking and selection of candidate variables for Xuqiao Farm. 

Prediction Time 
Steps (15 min/step) 

Input Variables Ranking 
Number of Selected 

Variables 
#1 Hin1, Hum, WindV, Hin2, Hin4; Hin3, Temp, Hin5, WindD, Hin6, AirP 5 
#2 Hin1, Hum, WindV, Hin2, Hin4; Hin3, Temp, Hin5, WindD, Hin6, AirP 5 
#3 Hin1, WindV, Hin2, Hin4; Hum, Hin3, Temp, Hin5, WindD, AirP, Hin6 4 
#4 Hin1, WindV, Hin2, Hin4; Hum, Hin3, Temp, Hin5, WindD, Hin6, AirP 4 
#5 Hin1, Hum, WindV, Hin2, Hin4; Hin3, Temp, Hin5, WindD, Hin6, AirP 5 
#6 Hin1, WindV, Hin2, Hum, Hin4; HisI6, Hin3, Temp, WindD, Hin5, AirP 5 
#7 Hin1, WindV, Hin2, Hin4, Hum; Hin6, Temp, Hin3, WindD, Hin5, AirP 5 
#8 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, Hin5, AirP 5 
#9 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, Hin5, AirP 5 

#10 Hin1, WindV, Hin4, Hin2, Hum; Temp, Hin3, Hin6, WindD, Hin5, AirP 4 
#11 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, AirP, Hin5 5 
#12 Hin1, WindV, Hin4, Hin2, Hum; Temp, Hin3, Hin6, WindD, Hin5, AirP 5 
#13 Hin1, WindV, Hin4, Hin2, Hum; Temp, Hin3, Hin6, WindD, AirP, Hin5 5 
#14 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, AirP, Hin5 5 
#15 Hin1, WindV, Hin3, Hin2, Hum; Temp, Hin4, HisI6, WindD, AirP, Hin5 5 
#16 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, AirP, Hin5 5 

Figure 5. Cumulative informativeness score curve for IVS of Anzishan and Xuqiao farms: (a) one-hour
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Table 1. Ranking and selection of candidate variables for Anzishan Farm.

Prediction Time Steps
(15 min/step) Input Variables Ranking Number of

Selected Variables

#1 Hin1, WindD, Hin2, WindV; Hin3, Hum, AirP, Temp 4
#2 Hin1, Hin3, WindV, WindD, Hin2; Hum, AirP, Temp 5
#3 Hin1, WindD, WindV, Hin2; Hin3, Hum, AirP, Temp 4
#4 Hin1, WindD, WindV, Hin2; Hin3, Hum, AirP, Temp 4
#5 Hin1, WindD, WindV, Hin2; Hum, Hin3, AirP, Temp 4
#6 Hin1, WindV, Hin2, WindD; Hum, Hin3, AirP, Temp 4
#7 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3
#8 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3
#9 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3
#10 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3
#11 Hin1, WindV, Hin3; WindD, Hin2, Hum, AirP, Temp 3
#12 Hin1, WindV; Hin3, WindD, Hin2, Hum, AirP, Temp 2
#13 Hin1, WindV; Hin3, WindD, Hin2, Hum, AirP, Temp 2
#14 Hin1, WindV, Hin3; WindD, Hin2, AirP, Hum, Temp 3
#15 Hin1, WindV; Hin3, WindD, Hin2, AirP, Hum, Temp 2
#16 Hin1, WindV; WindD, Hin2, Hum, Hin3, AirP, Temp 2

Table 2. Ranking and selection of candidate variables for Xuqiao Farm.

Prediction Time Steps
(15 min/step) Input Variables Ranking Number of

Selected Variables

#1 Hin1, Hum, WindV, Hin2, Hin4; Hin3, Temp, Hin5, WindD, Hin6, AirP 5
#2 Hin1, Hum, WindV, Hin2, Hin4; Hin3, Temp, Hin5, WindD, Hin6, AirP 5
#3 Hin1, WindV, Hin2, Hin4; Hum, Hin3, Temp, Hin5, WindD, AirP, Hin6 4
#4 Hin1, WindV, Hin2, Hin4; Hum, Hin3, Temp, Hin5, WindD, Hin6, AirP 4
#5 Hin1, Hum, WindV, Hin2, Hin4; Hin3, Temp, Hin5, WindD, Hin6, AirP 5
#6 Hin1, WindV, Hin2, Hum, Hin4; HisI6, Hin3, Temp, WindD, Hin5, AirP 5
#7 Hin1, WindV, Hin2, Hin4, Hum; Hin6, Temp, Hin3, WindD, Hin5, AirP 5
#8 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, Hin5, AirP 5
#9 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, Hin5, AirP 5
#10 Hin1, WindV, Hin4, Hin2, Hum; Temp, Hin3, Hin6, WindD, Hin5, AirP 4
#11 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, AirP, Hin5 5
#12 Hin1, WindV, Hin4, Hin2, Hum; Temp, Hin3, Hin6, WindD, Hin5, AirP 5
#13 Hin1, WindV, Hin4, Hin2, Hum; Temp, Hin3, Hin6, WindD, AirP, Hin5 5
#14 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, AirP, Hin5 5
#15 Hin1, WindV, Hin3, Hin2, Hum; Temp, Hin4, HisI6, WindD, AirP, Hin5 5
#16 Hin1, WindV, Hin3, Hum, Hin2; Hin4, Temp, Hin6, WindD, AirP, Hin5 5

4.2. Case Study and Numerical Result

For different prediction steps, the corresponding selected samples are used to train the
aforementioned hybrid prediction solution in Section 3. Here, the main parameters and settings
for training the optimal ANFIS are summarized in Table 3. After determining the ANFIS parameters
by training samples, the multi-step ahead prediction results in the test month can be obtained. Figure 6
presents the prediction result of 150 h from the test month for two wind farms, respectively.

Table 3. Main setting parameters for training.

Main Techniques Parameters and Settings

Hyperparameters of PSO

Inertia weight w0 = 1
Inertia weight damping ratio wdamp = 0.99

Individual learning coefficient c1 = 1
Global learning coefficient c2 = 2

Numbers of particles npop = 30
Maximum number of iterations nite = 100

Hyperparameters of ANFIS Number of fuzzy set in each input variable n f uzzy = 5

Hyperparameters of K-means Number of clustering centers k = 6

Number of samples in the two farms Number of training samples nAz
train = 8832nXq

train = 8736
Number of test samples nAz

test = 2880nXq
test = 2796
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Figure 6. Partial results of multi-step ahead prediction in the test month: (a) power generation
prediction of 150 h in Anzishan wind farm (June 2017); and (b) power generation prediction of 150 h in
Xuqiao wind farm (December 2017).

To evaluate the effectiveness and accuracy of the prediction solution, the performance metric in
terms of normalized root mean squared error (nRMSE) and normalized mean absolute error (nMAE)
are adopted [40], as given in Equations (27) and (28), respectively. In general, smaller values of these
measures indicate that the corresponding solution has better prediction performance.

nRMSE =

√√√√ 1
N

N

∑
i=1

(Pmi − Ppi

Ci

)2

(27)

nMAE =
1
N

N

∑
i=1

∣∣∣∣Pmi − Ppi

Ci

∣∣∣∣ (28)

where Ppi is the predicted power of time point i, Pmi is the measured mean power of time point i, N is
the number of prediction samples, and Ci is the operating capacity of time point i.

To evaluate the proposed mRMR-criterion input variable selection (IVS) solution based prediction
approach, mRMR-IVS model, a detailed comparative study was conducted for multi-step ahead wind
power generation prediction. Two IVS based prediction approaches, the phase space reconstruction
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based (PSR-IVS) model and principal component analysis based (PCA-IVS) model, were selected as the
comparative benchmark. For PSR-IVS based prediction model, the input variables included the NWP
variables and the phase space reconstruction variables of the historical time series. The reconstruction
was determined based on C_C method as well. In this model, the input variables were the ones which
are candidates in proposed mRMR-IVS solution, without further exquisite selection. For PCA-IVS
based model, the input variables were transformed from the combination of NWP variables and a time
series of 2 h, which use the principal component analysis (PCA) technique [41] to map the dataset from
the original space to the principal component space. In this model, the original attribute variables are
automatically reduced to appropriate input variables and the independent principal components can
well maintain the key characteristics of the original variables. After selecting or extracting the input
variables, all the IVS-based approaches used the hybrid model introduced in Section 3 to carry out
the predication.

Two error criteria, nRMSE and nMAE, were used to assess the performance of all considered
prediction models. Tables 4 and 5 show the comparison of multi-step ahead prediction performance of
different models for two wind farms, respectively. As shown in Tables 4 and 5, the proposed model
demonstrates the smallest error over all 16 steps of prediction compared with both benchmark models.
In addition, compared with the principal component analysis-based model (PCA-IVS), the phase space
reconstruction based (PSR-IVS) model performs better in short step prediction, but has larger error in
long prediction period. Due to the sophisticated and targeted input variable selection, the proposed
model has a better performance than the benchmark models in the overall multi-step ahead prediction.

To present the comparison more intuitively, Figures 7 and 8 show the broken line in two wind
farms of three cases based on the values of nRMSE and nMAE of different prediction steps. The curve
trend shows that the error level rises with the increase of prediction step, meeting the objective
expectation. It is shown that there are fluctuations in the curve of two benchmark models, especially in
the intermediate prediction period, in that the selection of input variables cannot adapt to each
prediction step. In the proposed model, the error trend increased smoothly, indicating that the
mRMR-IVS based model can automatically select the optimal or nearly optimal input variables for
different prediction steps to reduce the error. It means that the proposed hybrid solution can select
suitable input variables effectively in different geographical environments and seasons, showing better
adaptability and robustness.Energies 2018, 7, x FOR PEER REVIEW  15 of 20 
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Table 4. Comparison of the multi-step ahead prediction performance of Anzishan farm.

Prediction Time Steps
mRMR-IVS PSR-IVS PCA-IVS

nRMSE (%) nMAE (%) nRMSE (%) nMAE (%) nRMSE (%) nMAE (%)

#1 4.78 2.84 5.01 2.90 7.91 5.04
#2 6.67 4.10 6.74 4.27 9.25 5.98
#3 8.04 5.13 8.28 5.43 10.36 6.66
#4 9.64 6.12 10.01 6.64 10.98 7.43
#5 10.44 6.87 10.69 7.21 11.74 8.12
#6 11.18 7.43 11.31 7.96 13.03 8.93
#7 11.32 7.82 12.21 8.48 13.12 9.19
#8 12.02 8.38 13.19 8.81 14.97 10.15
#9 12.17 8.68 13.71 9.37 15.17 10.35

#10 12.54 8.99 13.37 9.64 14.11 9.80
#11 12.80 9.21 14.22 10.04 14.41 10.46
#12 12.88 9.36 15.02 10.66 14.50 10.30
#13 13.06 9.55 14.92 10.48 14.05 9.77
#14 13.17 9.65 14.69 10.49 14.89 10.69
#15 13.24 9.70 14.87 10.82 14.78 10.43
#16 13.51 9.97 14.60 10.39 15.27 10.88

Table 5. Comparison of the multi-step ahead prediction performance of Xuqiao farm.

Prediction Time Steps
mRMR-IVS PSR-IVS PCA-IVS

nRMSE (%) nMAE (%) nRMSE (%) nMAE (%) nRMSE (%) nMAE (%)

#1 4.04 2.34 4.06 2.35 8.19 4.98
#2 6.12 3.71 6.17 3.70 8.69 5.33
#3 7.39 4.47 7.81 4.91 9.72 6.02
#4 8.37 5.22 8.85 5.80 10.40 6.45
#5 9.86 6.28 9.89 6.50 11.53 7.10
#6 10.89 6.93 10.87 7.12 12.37 7.95
#7 11.55 7.34 11.62 7.45 12.65 8.41
#8 12.05 7.78 12.38 8.41 13.40 8.69
#9 12.50 8.02 12.86 8.68 13.66 8.81

#10 13.19 8.57 13.71 9.29 14.11 9.69
#11 13.55 8.85 13.62 9.34 14.82 9.72
#12 14.23 9.28 14.24 9.87 15.02 10.02
#13 14.27 9.39 15.23 10.69 15.69 10.53
#14 14.29 9.33 14.81 9.87 15.82 10.84
#15 14.54 9.68 15.21 10.41 15.79 10.72
#16 14.71 9.65 15.50 10.56 16.35 10.94

To further validate the integral time-scales of ultra-short-term wind power prediction, which is
generally 0–4 h in the future with a resolution of 15 min, 100 integrated time series with consecutive
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4-h prediction were randomly selected during the test-month forecasting process to calculate the
performance metric in statistics. The nRMSE and nMAE indicators of each integrated time series were
calculated. Then, the probability of different error levels could be obtained according to the statistics of
appearing frequency in these 100 results. The average errors and the probability distribution of typical
error levels of Anzishan and Xuqiao wind farms are shown in Tables 6 and 7, respectively. For both
cases, the proposed mRMR-IVS based solution demonstrates the minimum mean errors. The results
given in Tables 6 and 7 verify that the proposed model is more competitive for most probability
distributions at different error levels. This clearly confirms that the proposed solution can provide
improved prediction performance than the comparison benchmarks.

Table 6. Mean errors and probability distributions of Anzishan farm.

Models Mean nRMSE Error Level for
P{nRMSE < 0.2}

Error Level for
P{nRMSE < 0.15}

Error Level for
P{nRMSE < 0.05}

mRMR-IVS 9.95% 93.80% 82.40% 16.8%
PSR-IVS 10.75% 89.80% 82.40% 10.90%
PCA-IVS 11.79% 88.20% 76.10% 9.80%

Models Mean nMAE Error Level for
P{nMAE < 0.2}

Error Level for
P{nMAE < 0.15}

Error Level for
P{nMAE < 0.05}

mRMR-IVS 7.84% 98.20% 92.80% 32.10%
PSR-IVS 8.88% 94.00% 87.40% 21.20%
PCA-IVS 9.65% 93.30% 84.90% 18.10%

Table 7. Mean errors and probability distributions of Xuqiao farm.

Models Mean nRMSE Error Level for
P{nRMSE < 0.2}

Error Level for
P{nRMSE < 0.15}

Error Level for
P{nRMSE < 0.05}

mRMR-IVS 9.71% 91.60% 80.80% 27.00%
PSR-IVS 10.41% 90.00% 75.30% 26.60%
PCA-IVS 11.47% 84.00% 69.60% 25.30%

Models Mean nMAE Error Level for
P{nMAE < 0.2}

Error Level for
P{nMAE < 0.15}

Error Level for
P{nMAE < 0.05}

mRMR-IVS 7.62% 96.80% 89.10% 38.40%
PSR-IVS 8.70% 94.00% 84.00% 32.30%
PCA-IVS 9.73% 89.80% 77.40% 31.50%

5. Conclusions and Future Work

This paper develops a novel algorithmic solution for ultra-short-term wind power generation
prediction using hybrid machine learning techniques. The proposed solution is implemented through
two steps: firstly, the input variable selection (IVS) is carried out using phase space reconstruction
(PSR) technique and minimal redundancy maximal relevance (mRMR) criterion. Secondly, the input
instances are divided into a set of subsets using the K-means clustering to train the ANFIS with
parameters optimized using PSO. The proposed solution was extensively evaluated and validated
through case studies based on real wind farms. The numerical results demonstrate the superiority of
the proposed model compared with the benchmark models.

In the future, two research directions are considered worth further research effort. The proposed
prediction solution can be further exploited using other supervised learning algorithms and advanced
error correction techniques as well as extensively validated based on more field measurements.
The hybrid machine learning techniques can be further extended and incorporated into control
and management strategies of renewable energy systems (e.g., [42–45]) to improve the system
operational performance.
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Abbreviations and Nomenclature

PSR Phase Space Reconstruction
IVS Input Variable Selection
ANFIS Adaptive Neuro-fuzzy Inference System
NWP Numerical Weather Prediction
mRMR Minimal Redundancy Maximal Relevance
PSO Particle Swarm Optimization Algorithm
AR Autoregressive Model
MA Moving-average Model
ARIMA Auto-regressive Integrated Moving Average
ANN Artificial Neural Network
SVM Support Vector Machine
GP Gaussian Process
SVR Support Vector Regression
EHS Enhanced Harmony Search Algorithm
SSA Singular Spectrum Analysis
MOS Model Output Statistics
SVD Singular Value Decomposition
PCA Principal Component Analysis
LLE Locally Linear Embedding
MI Mutual Information
MIFS Mutual Information Feature Selection

MIFS-U
Mutual Information Feature Selection under Uniform
Information Distribution

NMIFS Normalized Mutual Information Feature Selection
IFS Incremental Forward Selection
FCM Fuzzy C-Means Clustering Algorithm
nRMSE Normalized Root Mean Squared Error
nMAE Normalized Mean Absolute Error
mRMR-IVS mRMR-criterion Input Variable Selection
PSR-IVS Phase Space Reconstruction Input Variable Selection

PCA-IVS
Principal Component Analysis Input Variable
Selection
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