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Abstract: The heterogeneous phase combination flooding (HPCF) system which is composed of a
branched-preformed particle gel (B-PPG), polymer, and surfactant has been proposed to enhance
oil recovery after polymer flooding in heterogeneous reservoirs by mobility control and reducing
oil–water interfacial tension. However, the high cost of chemicals can make this process economically
challenging in an era of low oil prices. Thus, in an era of low oil prices, it is becoming even more
essential to optimize the heterogeneous phase combination flooding design. In order to optimize
the HPCF process, the injection strategy has been designed such that the incremental oil recovery
can be maximized using the corresponding combination of the B-PPG, polymer, and surfactant,
thereby ensuring a more economically-viable recovery process. Different HPCF injection strategies
including simultaneous injection and alternation injection were investigated by conducting parallel
sand pack flooding experiments and large-scale plate sand pack flooding experiments. Results show
that based on the flow rate ratio, the pressure rising area and the incremental oil recovery, no matter
whether the injection strategy is simultaneous injection or alternation injection of HPCF, the HPCF
can significantly block high permeability zone, increase the sweep efficiency and oil displacement
efficiency, and effectively improve oil recovery. Compared with the simultaneous injection mode,
the alternation injection of HPCF can show better sweep efficiency and oil displacement efficiency.
Moreover, when the slug of HPCF and polymer/surfactant with the equivalent economical cost is
injected by alternation injection mode, as the alternating cycle increases, the incremental oil recovery
increases. The remaining oil distribution at different flooding stages investigated by conducting
large-scale plate sand pack flooding experiments shows that alternation injection of HPCF can recover
more remaining oil in the low permeability zone than simultaneous injection. Hence, these findings
could provide the guidance for developing the injection strategy of HPCF to further enhance oil
recovery after polymer flooding in heterogeneous reservoirs in the era of low oil prices.
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1. Introduction

Water flooding is one of the most widely used techniques for enhanced oil recovery by
supplementing reservoir energy and displacing remaining oil. However, due to the heterogeneity of
reservoirs and unfavorable mobility ratio between oil and water, the early breakthrough of the injected
water occurs. It is certain that a large percentage of oil remains unrecovered in unswept zones after
water flooding. It is estimated that only about 23%–35% of remaining oil is confined in water flooding
zones and about 65%–77% of remaining oil is left in unswept zones [1–3]. Thus, it is crucial to sweep
remaining oil from unswept zones to enhance oil recovery in heterogeneous reservoirs after water
flooding. Hence, many technologies have been applied to counteract the heterogeneity of reservoirs
and solve the unfavorable mobility ratio and improve the sweep efficiency, such as gel treatment [4–6],
polymer flooding [7], and foam flooding [8].

Polymer flooding has been widely applied in various oilfields to enhance oil recovery by
decreasing the mobility ratio of injected water and oil. It is estimated that the incremental oil recovery
of polymer flooding is about 10% compared with water flooding. However, the remaining oil in the
reservoir is still up to 50% after polymer flooding [9]. Moreover, it is found that there exist some
problems after polymer flooding as follows. The reservoir heterogeneity becomes more serious and
the distribution of residual oil in porous media becomes more scattered. The water breakthrough is
aggravated due to the more serious reservoir heterogeneity after polymer flooding. Thus, with the
popularization of polymer flooding technology, how to further enhance oil recovery after polymer
flooding attracts more and more concerns. Therefore, many technologies including polymer-surfactant
flooding [10,11], alkaline-surfactant-polymer flooding [12–14], foam flooding [15–18], and gel
treatment [19–22] have been developed to further enhance oil recovery by improving the sweep
efficiency and oil displacement efficiency. Gel treatment has been recognized as an effective technology
to enhance oil recovery after polymer flooding. In principle, the gel can be divided into traditionally in
situ polymer gel and preformed particle gel. The traditionally in situ polymer gel that is composed
of polymer and cross linker was injected into the formation to form gel at reservoir condition.
The disadvantages of in situ polymer gel are as follows [23–25]: (1) The effects of adsorption, dilution,
and shear degradation on the cross-linking reaction; (2) it is hard to control the gelation time and
gel strength; (3) possible damages on the low permeability unswept oil zone. To overcome the
effect of adsorption, dilution, and shear degradation that usually occur in the in situ polymer gel,
recently, the preformed particle gels have been widely studied and applied for conformance control.
The preformed particle gels are formed at surface conditions before injection into the formation,
which can avoid the uncertainty of gelation. Thus, preformed particle gels are attracting increasing
interest for conformance control to improve oil recovery in mature oilfields. Recently, a novel
branched-preformed particle gel (B-PPG) has been developed by the Shengli oilfield [26,27]. The B-PPG
is a preformed particle gel with some branched chains. Due to the existence of cross-linked network
and linear branched chains, the B-PPG cannot dissolve completely in water. Compared with the
conventional preformed particle gel (PPG), the B-PPG suspension has viscosity and suspension
properties. Previous experimental studies have shown that the B-PPG has a weak effect on increasing
the viscosity, but it has an excellent elastic property to block, deform, and pass through pore
throats [28–30].

In recent years, a heterogeneous phase combination flooding (HPCF) system that is composed
of branched-preformed particle gel (B-PPG), hydrolyzed polyacrylamide (HPAM), and surfactant
was developed to enhance oil recovery after polymer flooding. The proposed enhanced oil recovery
(EOR) mechanism after polymer flooding is as follows: (1) The B-PPG can react with polymer to
increase viscoelastic of the system to improve sweep efficiency; (2) surfactant can reduce the oil–water
interfacial tension to improve the oil displacement efficiency. It is reported that the pilot test of
heterogeneous combination flooding after polymer flooding was conducted in the Zhongyiqu Ng3
block, Gudao oil plant of Shengli oilfield, which has achieved remarkable incremental oil recovery of
6.62% [31]. Whereas, since mid-2014, oil prices have fallen dramatically and the economic benefit of
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heterogeneous phase combination flooding shows a decline trending due to high chemical costs. It is
of great significance to reduce the dosage of surfactant and B-PPG to improve the economic benefit
of heterogeneous phase combination flooding. Thus, in an era of low oil prices, it is becoming even
more essential to optimize the heterogeneous combination flooding design under reservoir conditions.
In this paper, different injection strategies including continuous injection and alternating injection
modes of heterogeneous combination flooding systems have been investigated by conducting parallel
sand pack flooding experiments and large-scale plate sand pack flooding experiments. The flow rate
ratio, pressure drop change, and incremental oil recovery were investigated. The aim of this work is
to provide an injection strategy of HPCF to further enhance oil recovery after polymer flooding in
heterogeneous reservoirs in the era of low oil prices.

2. Experimental Study

2.1. Materials

Branched-preformed particle gel (B-PPG), partially hydrolyzed polyacrylamide (HPAM),
and crude oil used in this study were provided by Shengli oilfield. The surfactant used in this
study is the combination of petroleum sulfonate (SLPS) and nonionic surfactant (GD-3) with the
ratio of 1:1 provided by Shengli oilfield. The concentration of surfactant was optimized as 0.4%.
Due to the existence of cross-linked networks and linear branched chains, the B-PPG cannot dissolve
completely in water. The appearance of B-PPG before and after being swollen in synthetic formation
brine solution is shown in Figure 1. The size distribution of B-PPG was measured by a Beckman
Coulter Multisizer, shown in Figure 2. The average particle diameter of the B-PPG after being swollen
in synthetic formation brine solution is 240 µm. The viscosity-average molecular weight of HPAM
was about 2.6 × 107. The viscosity of crude oil obtained from Shengli Oilfield was 68.5 mPa·s at 70 ◦C.
The synthetic formation brine with total dissolved solids (TDS) of 7101 mg·L−1 containing 2502 mg·L−1

Na+, 82 mg·L−1 Ca2+, 25 mg·L−1 Mg2+, 3502 mg·L−1 Cl−, and 990 mg·L−1 HCO3
−. The viscosities of

the pre-slug and main slug for different injection modes were measured by a Brookfield viscometer
DV-II. All the viscosity measurements were carried out at 30 ◦C. The viscosity of the pre-slug was
composed of 1500 mg·L−1 polymer and 1500 mg·L−1 B-PPG was 74.5 mPa·s at 30 ◦C. The viscosities
of main slug under different injection modes are shown in Table 1.

Figure 1. The appearance of branched-preformed particle gel (B-PPG) before and after being swollen
in brine solution: (a) before swollen; (b) after swollen.

Figure 2. The apparatus of Beckman Coulter Multisizer.
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Table 1. The viscosities of the main slug under different injection modes.

Injection Mode Main Slug Viscosity (mPa·s)

Simultaneous injection
P + B-PPG + S (HPCF) slug

1200 mg·L−1 Polymer +
1200 mg·L−1 B-PPG +

0.4 wt % Surfactant
60.0

SP slug 1500 mg·L−1 Polymer +
0.4 wt % Surfactant

48.0

Alternation injection
P + B-PPG + S (HPCF) slug

alternating SP slug

1200 mg·L−1 Polymer +
1200 mg·L−1 B-PPG +

0.4 wt % Surfactant
60.0

1200 mg·L−1 Polymer +
0.4 wt % Surfactant

42.0

2.2. Methods

2.2.1. Sand Pack Preparation and Property Determination

Sand packs were prepared at ambient temperature and the quartz sand including coarse sand
(40–60 mesh) and fine sand (80–100 mesh sand and 160 mesh sand with a mass ratio of 2:1) were
used to prepare high permeability and low permeability sand packs. The sand pack was placed in
the vibration unit in a vertical position and filled with the simulated formation brine. Then a perfect
packing was needed for the preparation of the porous media. The porosity was measured by the
volumetric methods and the permeability was measured by Darcy’s law [32].

2.2.2. Parallel Sand Pack Flooding Experiment

The parallel sand pack flooding experiments were conducted to evaluate the enhanced oil
recovery ability in heterogeneous reservoirs. The parallel sand pack model with high permeability
and low permeability was used to simulate the heterogeneous reservoir. The schematic diagram of
the parallel sand pack flooding experimental apparatus is shown in Figure 3. The parallel sand pack
flooding experiments were conducted at the testing temperature (70 ◦C) and the atmospheric pressure.
The experimental procedure was as follows:

(1) The sand packs were saturated with formation brine and the pore volume was calculated;
(2) formation brine was injected at the flow rate of 1.0 mL·min-1 and the absolute permeability of the
sand pack was calculated by using a measured pressure drop across the sand pack. The permeability
to brine was measured at a flow rate of 1.0 mL·min−1. (3) The crude oil was injected to displace water
until no water was produced at the end of sand pack and the initial oil saturation was calculated based
on the volume of water displaced at a flow rate of 0.1 mL·min−1. Then the sand packs were aged for
48 h at 70 ◦C. (4) Water flooding was conducted until the water cut was 95%. The injection pressure,
volume of water and oil produced, and water cut were recorded every few minutes; (5) Then a 0.3 PV
polymer slug was injected into the sand packs, followed by subsequent water flooding until the water
cut was 98%. (6) Then a different heterogeneous combination flooding system was injected into the
sand packs by means of different injection modes and followed by subsequent water flooding until the
water cut was 98%. The slug design of HPCF under different injection modes is shown in Figure 4
and Table 2. (7) Then according to the volume of water and oil produced at different times, the flow
rate ratio as a function of injected pore volumes can be calculated. The amounts of produced fluid
including water and oil of both parallel sand packs were recorded to calculate the flow rate ratios,
respectively. The flow rate ratio of the high permeability sand pack or low permeability sand pack at a
given time can be defined as follows:

fhigh(%) =
Qhigh

Qhigh + Qlow
× 100% (1)
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flow(%) =
Qlow

Qhigh + Qlow
× 100% (2)

where f high and f low is the flow rate ratio of the high permeability sand pack and low permeability
sand pack at a given time, respectively, Qhigh is the volume flow rate of high permeability sand pack,
and Qlow is the volume flow rate of low permeability sand pack.

The injection pressure, oil recovery, and water cut as a function of injected pore volumes can be
obtained. The changes in the flow rate ratios of the high permeability sand pack and low permeability
sand pack can play a role in characterizing the mobility control ability of polymer and HPCF.

Figure 3. The schematic diagram of parallel sand pack flooding experimental apparatus.

Table 2. The slug design of the heterogeneous combination flooding system under different
injection modes.

Injection
Mode

Slug of Heterogeneous Combination Flooding System (HPCF)

Pre-Slug Main Slug 1

Simultaneous
injection

polymer and
B-PPG slug
(P + B-PPG)

0.05 PV (1500 mg·L−1

Polymer + 1500
mg·L−1 B-PPG)

heterogeneous
combination

flooding slug (P +
B-PPG + S)

0.30 PV (1200 mg·L−1 Polymer
+ 1200 mg·L−1 B-PPG +

0.4 wt % Surfactant)

polymer and
B-PPG slug
(P + B-PPG)

0.05 PV (1500 mg·L−1

Polymer +
1500 mg·L−1 B-PPG)

Polymer and
surfactant slug (SP)

0.41 PV (1500 mg·L−1 Polymer
+ 0.4 wt % Surfactant)

Alternation
injection

polymer and
B-PPG slug
(P + B-PPG)

0.05 PV (1500 mg·L−1

Polymer +
1500 mg·L−1 B-PPG)

(P + B-PPG + S)
slug alternating

(SP) slug

0.173 PV HPCF (1200 mg·L−1

Polymer + 1200 mg·L−1

B-PPG + 0.4 wt % Surfactant) +
0.173 PV SP (1200 mg·L−1

Polymer + 0.4 wt % Surfactant)
(alternating cycle 1)

polymer and
B-PPG slug
(P + B-PPG)

0.05 PV (1500 mg·L−1

Polymer + 1500 mg·L–1

B-PPG)

(P + B-PPG + S)
slug alternating

(SP) slug

0.0865 PV HPCF + 0.0865 PV
SP (alternating cycle 2)

1 All the main slugs with the equivalent economical cost.

2.2.3. Large-Scale Plate Sand Pack Flooding Experiments

The large-scale plate sand pack flooding experimental apparatus includes an ISCO pump
(Teledyne ISCO company, Lincoln, NE, USA), large-scale plate sand pack model (50 cm in length,
25 cm in width, and 1.8 cm in depth), LCR digital bridge (Changzhou Tonghui Electronic Co., Ltd.,
Changzhou, China), and oil-water saturation acquisition control system. Figure 5 shows the schematic
diagram of large-scale plate sand pack flooding experimental apparatus. The large-scale plate sand
pack flooding experiments were conducted at the ambient temperature and the atmospheric pressure.
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Figure 4. The slug design of the heterogeneous combination flooding system.

The experimental procedure was as follows:
(1) Two different kinds of quartz sand including coarse sand (40–60 mesh) and fine sand

(80–100 mesh sand and 160 mesh sand with the mass ratio is 2:1) were used to prepare the large-scale
plate sand pack to simulate the high permeability and low permeability zone in the heterogeneous
reservoir. (2) The large-scale plate sand pack model was vacuumed and saturated with the simulated
formation brine. (3) Then the crude oil was injected into the plate sand pack model to displace the
water until no water was produced at the end of the plate sand pack model and the initial oil saturation
was calculated based on the volume of water displaced. Then the sand packs were aged for 48 h at
70 ◦C. (4) Water flooding was conducted until the water cut was 95%. (5) Then a 0.3 PV polymer slug
was injected into the large-scale plate sand pack model and followed by subsequent water flooding
until the water cut was 98%. (6) Then a different heterogeneous combination flooding system was
injected into the sand packs according to different injection modes and followed by subsequent water
flooding until the water cut was 98%. (7) Then the remaining oil saturation at different flooding stages
can be obtained.

Figure 5. The schematic diagram of large-scale plate sand pack experimental apparatus.
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3. Results and Discussion

3.1. Enhanced Oil Recovery of Heterogeneous Phase Combination Flooding System

The heterogeneous phase combination flooding system is composed of branched-preformed
particle gel (B-PPG), polymer, and surfactant. On one hand, the B-PPG can react with the polymer to
increase its viscoelastic properties and improve sweep efficiency; on the other hand, the surfactant can
reduce the oil-water interfacial tension and improve the oil displacement efficiency. Different HPCF
injection strategies including simultaneous injection and alternation injection were investigated and
optimized by conducting parallel sand pack flooding experiments. The diameter and length of sand
pack was 2.5 cm and 50 cm, respectively. The main slug of HPCF injection mode and basic properties
of the sand packs are illustrated in Table 3.

Table 3. The injection mode of flooding fluid and basic properties of sand packs for
flooding experiments.

Injection
Mode Main Slug Sand Packs Permeability

(µm2)
Porosity

(%) Soi (%)

Simultaneous
injection

0.30 PV (1200 mg·L–1 Polymer +
1200 mg·L–1 B-PPG + 0.4 wt % Surfactant)

High permeability 4.27 57.1 90.0
Low Permeability 1.17 48.9 88.6

0.41 PV (1500 mg·L−1 Polymer + 0.4 wt %
Surfactant)

High permeability 4.33 41.6 87.8
Low Permeability 1.26 40.0 80.4

Alternation
injection

0.173 PV HPCF + 0.173 PV SP
(alternating cycle 1)

High permeability 4.36 56.3 81.8
Low Permeability 1.27 51.4 68.2

0.0865 PV HPCF + 0.0865 PV SP
(alternating cycle 2)

High permeability 4.12 40.7 80.0
Low Permeability 1.22 39.1 70.0

3.1.1. Flow Rate Ratio Analysis

The flow rate ratio curves of the initial water flooding, polymer flooding and subsequent water
flooding, and HPCF flooding and subsequent water flooding are plotted in Figure 6.

Figure 6. The flow rate ratio curves of the parallel sand pack flooding test: (a) Simultaneous
injection—HPCF flooding; (b) Simultaneous injection—SP flooding; (c) Alternation injection—alternating
cycle 1; (d) Alternation injection—alternating cycle 2.
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The flow rate ratio curves of the initial water flooding, polymer flooding, and subsequent water
flooding for different injection modes have similar change trends as follows: It can be seen that during
the water flooding period, water channels into the high permeability sand pack and the flow rate
ratio of the high permeability sand pack is higher than 95%, while the flow rate ratio of the low
permeability sand pack is lower than 5%. During the polymer flooding period, the flow rate ratio of
the low permeability sand pack increases and the flow rate ratio of the high permeability sand pack
decreases, which can indicate that the polymer can play a role in mobility control. However, after the
subsequent water flooding, the flow rate ratio of the high permeability sand pack increases and the
flow rate ratio of low permeability sand pack decreases.

Thus, to clarify the flow rate ratio differences during the HPCF flooding period, the flow rate
ratios of the high permeability sand pack and low permeability sand pack have been analyzed.

During the heterogeneous combination flooding and subsequent water flooding period, the flow
rate ratios of the high permeability and low permeability sand pack fluctuate. During the injection
of HPCF period, the branched-preformed particle gel (B-PPG) can plug the pore throat of the high
permeability sand pack and the injection pressure increases. Thus, the fluid is diverted into the low
permeability sand pack which results in an increase in flow rate ratio of the low permeability sand
pack. It also should be mentioned that when the injection strategy of HPCF is simultaneous injection
mode and the main slug is HPCF, the flow rate ratio of the high permeability and low permeability
sand pack do not fluctuate during the injection of HPCF period. The fluctuation of the flow rate ratio
of high and low permeability sand packs occurs during the subsequent water flooding. A similar
changing trend can be observed when the injection strategy of HPCF is alternation injection mode
and the alternating cycle is 1. Whereas, when the injection strategy of HPCF is simultaneous injection
and the main slug is polymer and surfactant, the flow rate ratio of the high permeability and low
permeability sand pack fluctuate during the injection of HPCF period. A similar changing trend can be
observed when the injection strategy of HPCF is alternation injection mode and the alternating cycle is
2. The trend can be accounted for as follows: The fluid diversion ability of B-PPG shows that the fluid
diversion of subsequent injected water can occur when the pressure increases by plugging the high
permeability zone. When the main slug is polymer/surfactant, the fluid diversion occurs earlier.

The above flow rate ratio behaviors of HPCF in parallel sand pack tests demonstrate that no
matter whether it is alternation injection or simultaneous injection of HPCF, the injection of HPCF
shows conformance control ability to adjust the flow rate ratio in heterogeneous reservoirs. Moreover,
the alternation injection of HPCF has a better conformance control ability than simultaneous injection.

3.1.2. The Injection Pressure Drop Change during HPCF Flooding Period

The injection pressure drop change during all five flooding stages including initial water flooding,
polymer flooding and subsequent water flooding, and HPCF flooding and subsequent water flooding
as a function of injected pore volume are plotted in Figure 7.

The injection pressure drop curves during different flooding periods for different injection modes
have similar change trends as follows: It can be seen that during the water flooding period, the injection
pressure decreases and reaches stable point. During the polymer flooding and subsequent flooding
period, the injection pressure initially increases and then decreases. To further clarify the sweep
efficiency improvement ability after polymer flooding, the pressure drop curves of the parallel sand
pack flooding test during the HPCF flooding period are shown in Figure 8.
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Figure 7. The pressure drop curves of different injection modes during different flooding periods:
(a) Simultaneous injection—HPCF flooding; (b) Simultaneous injection—P/S flooding; (c) Alternation
injection—alternating cycle 1; (d) Alternation injection—alternating cycle 2.

Figure 8. The pressure drop curves of different injection modes during the heterogeneous phase
combination flooding (HPCF) flooding period.

During the HPCF flooding period, as the HPCF propagates into the porous media, the injection
pressure increases. When the injection mode of HPCF is different, the increase of injection pressure
is different. Thus, based on the pressure drop change as a function of the injected pore volumes,
the pressure rising area method was firstly proposed to analyze the ability of sweep efficiency
improvement. The pressure rising area during the HPCF flooding was calculated as follows: (1) The
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relationship between injection pressure and injected pore volumes was fitted by polynomial regression;
(2) then the pressure rising area was integrated by fitted function according to the fitted equation below:

S =
∫ PV

0
ydPV

The pressure rising area of different injection modes during HPCF flooding period was depicted
in Figure 9.

Figure 9. The pressure rising area of different injection modes during HPCF flooding period.

Based on the calculated pressure rising area, the alternation injection of HPCF and
polymer/surfactant is higher than the simultaneous injection of HPCF. For the alternation injection
mode, as the alternating cycle increases, the pressure rising area increases. For the simultaneous
injection mode, when the main slug is HPCF, the pressure rising area is higher than that of the slug of
polymer and surfactant. Thus, based on the calculated pressure rising area, it can be concluded that the
alternation injection of slug of HPCF and polymer/surfactant shows better conformance control ability
than the simultaneous injection of slug of HPCF or polymer/surfactant in a heterogeneous reservoir.

3.1.3. Enhanced Oil Recovery Ability

In order to evaluate the ability of enhanced oil recovery, the cumulative oil recoveries and water
cut of the parallel sand pack flooding tests during different flooding stages are plotted as a function
of injected pore volumes in Figure 10. The cumulative oil recoveries of high permeability and low
permeability sand packs during different flooding stages are plotted as a function of injected pore
volumes in Figure 11. The ability of enhanced oil recovery in parallel sand pack flooding test during
different flooding stages are summarized in Table 4.
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Figure 10. The oil recovery and water cut curves of the parallel sand pack flooding test:
(a) Simultaneous injection—HPCF flooding; (b) Simultaneous injection—SP flooding; (c) Alternation
injection—alternating cycle 1; (d) Alternation injection—alternating cycle 2.

Figure 11. The cumulative oil recovery curve of high permeability, low permeability sand pack,
and total sand packs: (a) Simultaneous injection—HPCF flooding; (b) Simultaneous injection—SP
flooding; (c) Alternation injection—alternating cycle 1; (d) Alternation injection—alternating cycle 2.



Energies 2018, 11, 1950 12 of 17

Table 4. Oil displacement effect of heterogeneous composite flooding in different injection modes.

Injection Strategy Sand Pack Type

Enhanced Oil Recovery (% OOIP)

Water
Flooding

After
Polymer
Flooding

After HPCF
Flooding

Incremental
Recovery of Polymer

Flooding

Incremental
Recovery of

HPCF Flooding

Simultaneous
injection—HPCF

flooding

High permeability 62.4 87.4 95.8 25 8.39
Low permeability 16.6 21.3 50.8 4.7 29.5

Total 41 56.6 74.8 15.6 18.2

Simultaneous
injection—SP flooding

High permeability 61.5 81.2 81.8 19.7 0.6
Low permeability 15.8 32.5 65.9 16.7 33.4

Total 40.5 56.3 73.7 15.8 17.4

Alternation
injection—alternating

cycle 1

High permeability 56 80.7 88.3 24.7 7.6
Low permeability 11.7 26.5 62.8 14.8 36.3

Total 39.4 54.5 76.5 15.1 22.0

Alternation
injection—alternating

cycle 2

High permeability 60.7 79.7 82.1 19.0 2.4
Low permeability 17.1 33.5 79.4 16.4 45.9

Total 39.5 57 81.1 17.5 24.1

The cumulative oil recovery covers all five flooding stages: initial water flooding, polymer
flooding, subsequent water flooding, HPCF flooding, and subsequent water flooding. The incremental
oil recovery of high permeability and low permeability sand packs at different flooding stages is
analyzed as follows:

(1) During the initial water flooding, due to the permeability contrast between the high
permeability and low permeability sand packs, the injection water can preferentially flow into the high
permeability sand pack and result in large amounts of residual oil remaining in the low permeability
sand pack unrecovered. Thus, the oil recovery of the high permeability sand pack is much higher
than that of the low permeability sand pack. The total oil recovery of water flooding is about 40%.
Large amounts of oil remains unrecovered in the low permeability sand pack.

(2) During the polymer flooding and subsequent water flooding period, the water cut firstly
decreases and oil recovery increases quickly. Then after subsequent water flooding, water cut increases
and oil recovery increases slowly. Moreover, it can be found that the oil recovery in the low permeability
and high permeability sand pack increases, and the incremental recovery of the high permeability
sand pack is higher than that of low permeability. The results indicate that the polymer solution can
play a role in mobility control and improve the sweep efficiency, thus enhancing the oil recovery of the
low permeability zone.

(3) During the HPCF flooding period, the incremental recovery of the high permeability sand
pack and low permeability sand pack is different for different injection strategies. As shown in Table 4
and Figure 12, it is clear that the oil recovery in the low permeability sand pack can be enhanced
by 29.5%–45.9% and the total oil recovery can be enhanced by 17.4%–24.1% by HPCF flooding after
polymer flooding. The results illustrate that the oil recovery can be enhanced by HPCF flooding after
polymer flooding. The incremental oil recovery of HPCF flooding is different for different injection
modes. The incremental oil recovery of the low permeability sand pack for alternation injection of
the HPCF slug is higher than that of simultaneous injection of the HPCF slug. This phenomenon can
be accounted for as follows: when the slug of HPCF and polymer/surfactant with the equivalent
economical cost is injected by the alternation injection mode, after the slug of HPCF is injected into
the sand pack, due to the conformance control ability, the subsequent injected polymer/surfactant
combined system can be diverted into the low permeability sand pack. Combining the effects of
mobility control and oil displacement of the polymer/surfactant combined system, the oil recovery in
low permeability can be improved greatly. Moreover, the more of the polymer/surfactant combined
system that is diverted into the low permeability sand pack, the less of the HPCF slug is injected into
the high permeability sand pack. Thus, the incremental oil recovery of the high permeability sand pack
for the alternation injection of the HPCF slug is slightly lower than that of the simultaneous injection of
the HPCF slug. However, after polymer flooding, the remaining oil in the high permeability sand pack
is far less than that in low permeability. Therefore, the total incremental oil recovery of the alternation
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injection of the HPCF slug is higher than that of the simultaneous injection of the HPCF slug. Moreover,
when the slug of HPCF and polymer/surfactant with equivalent economical cost is injected by the
alternation injection mode, the alternating cycle increases and the incremental oil recovery increases.
Based on the above discussions, to enhance oil recovery after polymer flooding, it is key to recover the
oil which remains in the low permeability sand pack.

Figure 12. The incremental oil recovery of the parallel sand pack flooding test after polymer flooding.

3.2. The Remaining Oil Distribution at Different Flooding Stages

The remaining oil distribution at different flooding stages was studied by conducting large-scale
plate sand pack flooding experiments. The plate sand pack model with water and oil saturation
acquisition system can be used to monitor the remaining oil distribution in porous media. The results
of the remaining oil distribution at different flooding stages are analyzed.

3.2.1. Water Flooding Period

During the water flooding stage, due to the permeability contrast between the high permeability
zone and low permeability zone, the injected water preferentially enters the high permeability zone
and gradually flows through the high permeability zone, shown in Figure 13a. As the injection time
lengthens, due to the lack of barrier between the high permeability zone and low permeability zone,
the injected water flows through the junction of the high permeability zone and low permeability zone.
Then when the injected water flows to the end of plate sand pack model, a water channel through the
high permeability zone occurs, which results in large amounts of remaining oil unrecovered in the
low permeability zone. When the water cut reaches 95%, the water flooding is terminated and the
remaining oil distribution at the end of water flooding is shown in Figure 13b.

Figure 13. The remaining oil distribution during water flooding: (a) the initial stage; (b) the end of
water flooding.
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3.2.2. Polymer Flooding Period

After water flooding, an 0.3 PV polymer slug was injected into the large-scale plate sand pack
model and followed by subsequent water flooding until the water cut was 98%. The remaining oil
distribution at the end of polymer flooding is shown in Figure 14. Compared with the remaining oil
distribution at the end of water flooding, it can be clearly seen that most of the remaining oil in the
high permeability zone at the end of water flooding has been displaced and only a small amount of
remaining oil remains unrecovered. The remaining oil nearby the injection and outlet section of the
low permeability zone has been recovered. Moreover, it can be inferred that the remaining oil in the
area of the low permeability zone, far away from the high permeability zone, cannot be displaced
and there may still be a large amount of remaining oil after polymer flooding. This phenomenon can
be explained as follows: due to the viscosity property of the polymer solution, it can decrease the
mobility ratio between oil and water and increase the sweep efficiency. Whereas, the polymer solution
has a limit ability of conformance control in heterogeneous reservoir, resulting in a large amount of
remaining oil in the low permeability zone far away from the high permeability zone.

Figure 14. The remaining oil distribution at the end of polymer flooding.

3.2.3. Heterogeneous Phase Combination Flooding Period

After polymer flooding, the heterogeneous phase combination flooding system slug was injected
into the large-scale plate sand pack model and followed by subsequent water flooding until the water
cut was 98%. The remaining oil distribution at the end of heterogeneous combination flooding is shown
in Figure 15. It can be seen clearly that compared with polymer flooding, the water flow channel has
formed in the high permeability zone and the remaining oil distribution area obviously decreases at
the end of heterogeneous combination flooding. Moreover, compared with the simultaneous injection
mode of HPCF, for the alternation injection mode of HPCF, the remaining oil in the high permeability
zone can be basically recovered and only a small amount of oil remains unrecovered near the edge of
plate sand pack model, which indicates that the alternation injection can show better sweep efficiency
and oil displacement efficiency.

Figure 15. The remaining oil distribution at the end of heterogeneous phase combination flooding:
(a) simultaneous injection; (b) alternation injection.
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3.3. Potential EOR Mechanism of HPCF after Polymer Flooding in Heterogeneous Reservoirs

Based on the above discussions, an enhanced oil recovery mechanism for the heterogeneous
phase combination flooding system composed of branched-preformed particle gel (B-PPG), polymer,
and surfactant after polymer flooding in heterogeneous reservoirs was proposed, as shown in
Figure 16. After polymer flooding, subsequent injected water can more easily channel through
the high permeability zone, resulting in more remaining oil distributed in the low permeability zone
than the high permeability zone (Figure 16b). Therefore, it is key to recover the remaining oil in
the low permeability zone to enhance oil recovery after polymer flooding. Then the slug of HPCF
is injected and the HPCF slug preferentially enters into the high permeability zone and diverts the
subsequent water into the low permeability zone (Figure 16c). During the subsequent water flooding,
the B-PPG can propagate through porous media by blocking, deforming, and passing through the
throat, which can change the fluid diversion and improve the sweep efficiency (Figure 16d). Moreover,
the surfactant can reduce oil–water interfacial tension and improve oil displacement efficiency.

Figure 16. The proposed enhanced oil recovery (EOR) mechanism of HPCF: (a) initial distribution
of oil in heterogeneous reservoir; (b) water channel through high permeability zones after polymer
flooding; (c) injection of slug of HPCF; (d) subsequent water injection after HPCF flooding.

4. Conclusions

In this study, laboratory experiments have been conducted to investigate the injection strategy of
a branched-preformed particle gel/polymer/surfactant heterogeneous phase combination flooding
system for enhanced oil recovery after polymer flooding in heterogeneous reservoirs. Some conclusions
can be drawn from this study, and are as follows:

(1) The parallel sand pack flooding experimental results show that based on the flow rate ratio,
the pressure rising area and the incremental oil recovery, no matter whether the injection strategy is
simultaneous injection or alternation injection of HPCF, the HPCF can significantly block the high
permeability zone, increase sweep efficiency and oil displacement efficiency, and effectively improve
oil recovery. Compared with the simultaneous injection mode, the alternation injection of HPCF can
show better sweep efficiency and oil displacement efficiency. Moreover, when a slug of HPCF and
polymer/surfactant with the equivalent economical cost is injected by alternation injection mode,
as the alternating cycle increases, the incremental oil recovery increases.

(2) The remaining oil distribution at different flooding stages investigated by conducting
large-scale plate sand pack flooding experiments demonstrates that most of the remaining oil is
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distributed in the low permeability zone after polymer flooding and thus it is key to recover the
remaining oil in the low permeability zone to enhance oil recovery after polymer flooding. Moreover,
alternation injection of HPCF can recover more remaining oil in the low permeability zone than
simultaneous injection.
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