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Abstract: The multi-tooth fault tolerant switched-flux machines (MTFTSFM) providing both
excellent fault tolerant capability and relatively high torque density are good choices for high
reliability applications. A rapid control of the electromagnetic torque under open-circuit fault
can always be achieved by the direct torque control with voltage vector reconstruction (RDTC);
however, with respect to the rotor speed, its dynamic performance is still impacted by the
proportion-integration (PI) parameters. Therefore, a torque impulse balance control (TIBC) is
investigated in this paper for the MTFTSFM under open-circuit fault to obtain excellent dynamic
performance of the rotor speed. During the dynamic state, the electromagnetic torque and the speed
can converge at the same time after only one adjustment of the speed by using the optimized voltage
vector sequence based on torque impulse balance, thus, achieving the best possible dynamic process
for the speed. The TIBC method is carried out on an MTFTSPM machine system, and the correctness
and effectiveness are verified.

Keywords: switched-flux machine; fault tolerant; torque impulse balance control

1. Introduction

Nowadays, multi-electric aircraft (MEA) technology has become a hot topic in the field of aviation.
As an important system of the MEA, the electric drive system for electro-mechanical actuators (EMA)
should offer the following characteristics [1,2]:

(1) Excellent torque capability and high power density.
(2) High reliability and strong fault tolerant capability.
(3) Superior steady-state and dynamic performance for the system under both healthy condition and

open-circuit faults.

As a robust machine, the switched reluctance machine (SRM) exhibits a double salient structure
of both stator and rotor, and the concentrated windings are housed on the stator whereas the rotor is
passive [3]. Moreover, the SRM is characterized by strong magnetic independence of the phases and
by inverter circuit independence during the current control of individual phases. This feature assures
an ability of continuing the electromagnetic torque generation also with less number of phases [4,5].

However, when it comes to noise, torque density, and efficiency, the permanent-magnet (PM)
machine has more positive features [6]. The introduction of conventional fault tolerant rotor-PM
(FTRPM) machines has been widely reported in the literature [7–10], as seen in Figure 1a.

The flux switching permanent magnet (FSPM) machine exhibits the following merits [11]:
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(1) The PMs are mounted on the stator, being free from centrifugal force.
(2) Simple and robust rotor.
(3) The PM field and the armature field distribute in parallel, leading to very low risk

of demagnetization.
(4) The FSPM machine can suppress the short-circuit current by increasing self-inductance,

whereas the rotor-PM machine needs to increase the leakage inductance to suppress the
short-circuit current. Therefore, the SFPM machine can guarantee relatively high torque density
while enhancing the ability to suppress the short-circuit [12].

Hence, many fault-tolerant flux-switching PM machines have been proposed. Based on a 12-stator
pole, 10-rotor pole, all-pole wound FSPM machine, paper [13] has proposed alternate pole-wound
FSPM design, as seen in Figure 1b. Although the 12-stator pole, 14-rotor pole alternate pole-wound
fault-tolerant FSPM (FTFSPM) machine using a smaller magnet volume has a little reduction in
torque density, it shows relatively lower mutual inductance which will lead to good physically and
magnetically isolated capability between phases.
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Figure 1. Fault tolerant PM machines. (a) Fault tolerant rotor-PM(FTRPM) machine; (b) Fault-tolerant
FSPM (FTFSPM) machine.

In order to further improve the capability to restrain short-circuit currents, on the basis of the
multi-tooth structure [14,15], a multi-tooth 6-stator pole, 19-rotor pole fault-tolerant FSPM (MTFTFSPM)
machine is developed with magnetic and physical isolation capability by introducing a decoupling
tooth, as shown in Figure 2.
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In conclusion, both the SRM and the FTFSPM machine exhibit excellent dynamic performance;
however, there are several differences:
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(1) The mutual inductance of the SRM is basically zero, whereas the FTFSPM needs the alternate
pole-wound structure to reduce the mutual inductance.

(2) The short-circuit current of the SRM is basically zero due to the absence of PMs, whereas the
FTFSPM needs a special design to suppress the short-circuit current.

(3) The SRM operates in half-cycle mode, whereas the FTFSPM operates in whole-cycle mode
owing to the PMs, making a relatively high torque density and efficiency. In addition, although
with doubly salient structure and concentrated winding, the SFPM machine can provide high
sinusoidal PM back-electromotive force (back-EMF) due to the complementary winding structure;
thus, this kind of machine is suitable for operation in BLAC mode [11,12].

Under phase failure condition, one of the important fault tolerance capabilities of the electric
drive system is to guarantee good control performance of both the speed and the torque [16,17].

Paper [3] has given a detailed and in-deep review of the existing fault-tolerant control strategies
for SRM. In many applications, the torque ripple is an important issue for the SRM under open-circuit
condition, and many techniques were proposed to suppress it [18–24].

Based on one method, the direct instantaneous torque controller, maintaining the torque within
an imposed hysteresis band, is applied [25]. However, the currents in this method are uncontrollable,
causing the currents in healthy remaining phases to increase under faulty conditions.

In another method, the torque sharing functions (TSFs) are applied. On the basis of the torque
and rotor position look-up table, I = f (T, θ), where T is the torque, θ is the rotor position, the torque
references of each phase are independently changed into imposed currents. Practically, the outputs
from the TSF are curves of imposed torques with linear or conventional cosine TSF profiles [26,27].
These outputs are also inputs of the I = f (T, θ) table, which is converted from the measured T = f (θ, I)
table without taking into account the current rising and falling ability of the SRM. This can have an
undesirable effect on the torque ripple (due to torque drops or excesses) when the current controller is
not able to reach the demanded current.

In addition, the current profiling method can also reduce the torque ripple, and this method
directly employs the three currents from the I = f (T, θ) table, which are computed in accordance
with the current rising and falling ability (and also with respect to minimize torque ripple, or another
imposed condition) for healthy and faulty states. This method can reach a minimal torque ripple
which is limited just by the switching frequency [28]. In paper [3], the basic approach of current
profiling [29–31] has been implemented, and a new methodology of current profile calculation in
offline mode for torque ripple minimization was proposed. Based on the two steps that implemented
in this strategy, the problem of torque excess (or drop) is eliminated.

In paper [32], the vector control method is applied for the three-phase SFPM machine under
an open-circuit condition. By setting the q-axis component of armature current invariant before and
after the fault, the output torque can be kept constant while offering good steady-state performance
of electromagnetic torque under the open-circuit condition. For a six-phase SFPM machine, a fault
tolerant control method is presented in [33] to supplement the average torque and offset the harmonic
torque under the open-circuit fault by setting

√
3 times the current amplitudes in two of the five

remaining healthy coils. In order to reduce the torque ripple during the loss of one phase and reduce
the capability requirements of power converter, paper [34] has investigated a compensating method
by injecting second-harmonic currents. The main idea of the above methods is to adjust the magnitude
and phase angle of the currents in the healthy windings, which is similar to the methods of increasing
the value and conducting period of currents in the healthy remaining phases in the SRM system.

In the above vector control methods with current vector compensation (CVC) technology,
the dynamic performance of the electromagnetic torque is to some extent limited by the current
loop [35,36]. Therefore, the direct torque control (DTC) method with fault tolerant capability has
been proposed for the alternating current (AC) machines under open-circuit fault. The space vector
reconstruction method is used in [37] under the open-circuit condition. This method makes a new area
division of the stator flux linkage vector and gives a new switch table, and is found to improve the
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control capability of the electromagnetic torque under the open-circuit condition. Similar to the direct
instantaneous torque controller in SRM system, the direct torque control (DTC) method can achieve
good dynamic performance of phase currents.

Compared with CVC, the above direct torque control with voltage vector reconstruction technique
(RDTC) offers the electromagnetic torque with good dynamic performance. But the dynamic
performance of the rotor speed is always affected by the PI parameters of the speed loop.

Thus, to boost the dynamic performance of the rotor speed under open-circuit fault, a torque
impulse balance control (TIBC) is investigated in this paper. When the load changes suddenly under
open-circuit fault, the RDTC with TIBC (TIBC-RDTC) can calculate an optimal voltage vector sequence
which results in the speed with no overshoot and the shortest settling time.

Thus, to boost the dynamic performance of the rotor speed under open-circuit fault, a torque
impulse balance control (TIBC) is investigated in this paper. When the load changes suddenly under
open-circuit fault, the RDTC with TIB (TIBC-RDTC) can calculate an optimal voltage vector sequence
which results in the speed with no overshoot and the shortest settling time.

This paper is organized as follows. The machine topology and torque impulse balance control are
introduced in Section 2. The experimental results are presented in Section 3. Finally, conclusions are
given in Section 4.

2. System Structure and Operation Principle

2.1. Machine Topology

Figure 3 shows the armature field distribution of the fault-tolerant PM machines. It can be found
that the armature field and the PM field of the FTRPM machine are distributed in series while those of
the FTFSPM machine are distributed in parallel. Therefore, armature winding leakage of the FTRPM
machine must be increased to restrain short-circuit currents and avoid the demagnetization; however,
this will reduce the effectiveness of the armature current and the torque density.

Energies 2018, 11, x FOR PEER REVIEW  4 of 21 

Energies 2018, 11, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/energies 

Compared with CVC, the above direct torque control with voltage vector reconstruction 

technique (RDTC) offers the electromagnetic torque with good dynamic performance. But the 

dynamic performance of the rotor speed is always affected by the PI parameters of the speed loop.  

Thus, to boost the dynamic performance of the rotor speed under open-circuit fault, a torque 

impulse balance control (TIBC) is investigated in this paper. When the load changes suddenly under 

open-circuit fault, the RDTC with TIBC (TIBC-RDTC) can calculate an optimal voltage vector 

sequence which results in the speed with no overshoot and the shortest settling time. 

Thus, to boost the dynamic performance of the rotor speed under open-circuit fault, a torque 

impulse balance control (TIBC) is investigated in this paper. When the load changes suddenly under 

open-circuit fault, the RDTC with TIB (TIBC-RDTC) can calculate an optimal voltage vector 

sequence which results in the speed with no overshoot and the shortest settling time. 

This paper is organized as follows. The machine topology and torque impulse balance control 

are introduced in Section 2. The experimental results are presented in Section 3. Finally, conclusions 

are given in Section 4. 

2. System Structure and Operation Principle 

2.1. Machine Topology 

Figure 3 shows the armature field distribution of the fault-tolerant PM machines. It can be 

found that the armature field and the PM field of the FTRPM machine are distributed in series while 

those of the FTFSPM machine are distributed in parallel. Therefore, armature winding leakage of the 

FTRPM machine must be increased to restrain short-circuit currents and avoid the demagnetization; 

however, this will reduce the effectiveness of the armature current and the torque density.  

  
(a) (b) 

Figure 3. Armature field distribution: (a) FTRPM machine; (b) FTFSPM machine. 

The MTFTFSPM can also obtain 1-per unit (1-p.u.) phase inductance to restrain the 

short-circuit current without increasing the armature winding leakage. However, when the 

MTFTFSPM operates under multi-phase (six-phase) condition, the flux-linkage and back-EMF will 

be asymmetrical [14,15]. Although the rotor skewing method can reduce this asymmetry, it will 

decrease the back-EMF magnitude and the torque density.  

Hence, in order to obtain a symmetrical back-EMF without the magnitude reduction, a 

multi-tooth 6-stator pole, 19-rotor pole fault-tolerant FSPM machine with twisted-rotor 

(MTFTFSPM-TR) is investigated [12], as shown in Figure 4. As can be seen: 

(1) The stagger degree between the two parts of the rotor is 180° (electrical degree). 

(2) The two-part PMs in a stator tooth have opposite magnetization direction. 

Figure 3. Armature field distribution: (a) FTRPM machine; (b) FTFSPM machine.

The MTFTFSPM can also obtain 1-per unit (1-p.u.) phase inductance to restrain the short-circuit
current without increasing the armature winding leakage. However, when the MTFTFSPM operates
under multi-phase (six-phase) condition, the flux-linkage and back-EMF will be asymmetrical [14,15].
Although the rotor skewing method can reduce this asymmetry, it will decrease the back-EMF
magnitude and the torque density.

Hence, in order to obtain a symmetrical back-EMF without the magnitude reduction, a multi-tooth
6-stator pole, 19-rotor pole fault-tolerant FSPM machine with twisted-rotor (MTFTFSPM-TR) is
investigated [12], as shown in Figure 4. As can be seen:

(1) The stagger degree between the two parts of the rotor is 180◦ (electrical degree).
(2) The two-part PMs in a stator tooth have opposite magnetization direction.
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Based on the above two features, the back-EMF in each is symmetrical without magnitude
reduction (the back-EMF superposition factor of the two parts in each coil is − cos 180◦ = 1).

In conclusion, the advantages of this topology are as follows [12]:
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(1) The multi-tooth structure can effectively improve the ability to restrain short-circuit currents and
maintain a relatively high torque density.

(2) Based on the twisted-rotor, the phase back-EMF of high sinusoidal and symmetric can be obtained
without amplitude decrease.

2.2. Influence of PI Controller on Rotor Speed Dynamic Performance

The diagram of the direct torque control is given in Figure 5.
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The voltage vectors and switch table under healthy condition are given in Figure 6 and Table 1,
respectively. Under open-circuit fault, the voltage vectors and switch table should be reconstructed, as
seen in Figure 7 and Table 2, respectively.
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Table 1. Switch table.

Torque and Flux-Linkage I II III IV V VI

Te ↑ ψs ↑ V2 V3 V4 V5 V6 V1
Te ↑ ψs ↓ V3 V4 V5 V6 V1 V2
Te ↓ ψs ↑ V0 V0 V0 V0 V0 V0
Te ↓ ψs ↓ V0 V0 V0 V0 V0 V0
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Table 2. Switch table when phase B in open-circuit fault.

Torque and Flux-Linkage I II III IV V VI

Te ↑ ψs ↑ Vo2 Vo3 Vo4 Vo5 Vo6 Vo1
Te ↑ ψs ↓ Vo3 Vo4 Vo5 Vo6 Vo1 Vo2
Te ↓ ψs ↑ Vo6 Vo1 Vo2 Vo3 Vo4 Vo5
Te ↓ ψs ↓ Vo5 Vo6 Vo1 Vo2 Vo3 Vo4

The direct torque control with voltage vector reconstruction (RDTC) can effectively reduce the
open-circuit fault torque ripple; thus, the steady-state performance of the system is improved, but the
dynamic performance of the rotor speed is affected by the PI parameters of the speed loop.

The dynamic process under a sudden load change for the DTC is shown in Figure 8. At t2, t4, t6, t8,
t10 and t12, nr = n∗r because Te 6= Tl , nr will continue to change. At t1, t3, t5, t7, t9 and t13, the change
rate of the speed is zero because Te = Tl , and the change of Te will continue with T∗e , because nr 6= n∗r .

As can be seen from Figure 8, after a certain adjustment process and adjustment time, the speed
is finally converged through a proper group of PI parameters. However, the dynamic process of the
speed cannot be guaranteed to be optimal. The speed dynamic responses, including settling time,
peak value time, speed dip, overshoot amount and adjustment times, will be different if PI parameters
of the speed loop are different.
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Some key conclusions are found based on above analysis, as follows:

(1) For the control system, the electromagnetic torque and the rotor speed converge at the same time
are sufficient conditions for restoring to the steady-state.

(2) The PI parameters of the speed loop in the RDTC always affect the dynamic response of both
electromagnetic torque and rotor speed. The PI controller cannot possibly guarantee the optimal
dynamic performance.

(3) A group of switching vector sequences can be found to simultaneously restore the electromagnetic
torque and the rotor speed at t1. Thus, the speed can be restored to the reference after a decrease
and increase only once without overshooting, that is, the possible optimal dynamic response of
nr can be obtained.

2.3. Torque Impulse Balance Control

Figure 9 shows the synchronous buck converter, where Vin is the input voltage, Vo is the output
voltage, Vc is the capacitor voltage, iL is the inductance current, iC is the capacitor current and io is the
output current.
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For output voltage regulation, the voltage mode control based on PI controller can hardly
guarantee the optimal dynamic performance of the output voltage. Generally speaking, the design
objectives for voltage mode control, or other conventional linear control methods are to make the
steady state error converge to zero and to achieve wide bandwidth with sufficient phase margin.
The design is based on frequency domain analysis and does not focus on the time-domain response.
Additionally, since the controller is based solely on the small signal response of the converter, it cannot
possibly guarantee optimal large signal dynamic performance. Therefore, the charge balance control
(CBC) is proposed to achieve the best possible dynamic response [38].
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The waveforms of buck converter under steady-state are shown in Figure 10, during a sampling
time (Ts), can obtain:

Vc(Ts)−Vc(0) =
1
C

icavg =
1

C× Ts

∫ Ts

0
ic(t)dt = 0 (1)

Then, extend the principle of (1) to transient period,

Vc(ta)−Vc(tb) =
1
C

icavg =
1

C× (tb − ta)

∫ tb

ta
ic(t)dt = 0 (2)

It can be observed from (2) that voltage recovers to the original value when the net charge
is balanced.
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Figure 10. Waveforms of buck converter under steady-state.

According to (2), the optimal inductor current path for load current change can be achieved, as
seen in Figure 11. In Figure 11, from t0 to t2, the inductor current is rising; from t2 to t3, the inductor
current is decreasing, and Acharge = Adischarge. In this condition, the shortest recover time is achieved
and there is no overshoot in the voltage.
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The above control approach can be applied to the motor drive system to make the dynamic
performance of the speed independent of the PI parameters and the speed converge in the shortest
time without overshoot.

The T-i analogy relationships can be found, as shown in Table 3.

Table 3. The T-i analogy relationships.

Terms for Comparison Mechanical System Electrical System

Coordinate Angular displacement θ Flux-linkage ψ
Velocity Angular velocity ω Voltage u

Force Torque T Current i
Inertial element Moment of inertia J Capacitor C
Elastic element Torsional stiffness coefficient Kθ Inductance reciprocal 1/L

Resistance element Rotation resistance coefficient Rω Conductance G

On the basis of above analysis, the variables of the motor mechanical system have analogous
relationships with those of the electrical system. Therefore, the torque impulse of the motor mechanical
system corresponds to the amount of charge of the electric system; then, the torque impulse balance
control of the motor mechanical system based on (10) corresponds to the charging balance control
(CBC) of the capacitor based on (9). Similarly, the control target of the torque impulse balance control
is to achieve a quick dynamic response.

Take the Buck converter as an example, in the charging balance control, when the switch is on,
the voltage of the capacitor is rising; when the switch is off, the voltage of the capacitor is decreasing.
In the motor drive system, when the forward vector is applied, the electromagnetic torque is increasing;
when the backward vector or the zero vectors is applied, the electromagnetic torque is decreasing.
Therefore, applying the forward vector in the motor drive system corresponds to turning the switch
on in the converter system, and applying the backward vector or zero vector in the motor drive system
corresponds to turning the switch off in the converter system.

According to the above analysis, the torque balance control is investigated.
By neglecting the damping coefficients, the motion equation of the machine is:

Te − Tl = J
dω

dt
(3)

Here, J is the moment of inertia, Te is the electromagnetic torque of the machines, Tl is the load
torque, and the integral form of (3) is

∫ b

a
(Te − Tl)dt = J(ωa −ωb) (4)

It can be found from (4), at moment a, and after that, at any moment when ωa −ωb, the following
equation can be obtained: ∫ b

a
(Te − Tl)dt = 0 (5)

Thus, the load torque impulse is balanced by the electromagnetic torque impulse.
Hence, Figure 12 gives the optimal response to load sudden change for the electromagnetic torque.

Tl changes suddenly at t0; from t0 to t2, the forward vectors are employed and Te increases continuously.
From t2 to t3, the zero vectors are employed and Te decreases continuously.
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Figure 12. Optimal response to a sudden load sudden for the electromagnetic torque.

Both Te and nr can respectively converge to their corresponding reference values at t3, if a proper
t2 is obtained to satisfy A1 = A2 + A3. Thus, the shortest restoration time of nr and the minimum ripple
of the speed are reached.

In Figure 6, A1 = A2 + A3 can be replaced by:

A1a = A2 + A3 (6)

When using the feed forward control, TeH + Ts can be obtained as:

Te =
6

2Lq
Prψsψpm sin θ (7)

Here, Pr represents the rotor pole pairs, Lq is the inductance of q-axis, ψs is the amplitude of the
stator flux linkage, ψpm is the amplitude of the PM flux linkage, respectively, and θ is the torque angle.

Te is linearly related to sinθ when ψs is kept constant, thus, Figure 6 is identical to Figure 13.
In Figure 13, sin γ = 2Tl Lq/6Prψsψpm.
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The curve slope of sin θ from t0 to t2 can be expressed as:
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I. In sector II and V of the stator flux linkage, see (8).

k1 = sin(θ0+ωnT−ωrnT)−sin[θ0+ω(n−1)T−ωr(n−1)T]
T

= cos 2θ0+ω(2n−1)T−ωr(2n−1)T]
T ( 1

T arctg 2
√

3Udc×T
πψs

−ωr)
(8)

II. In sector I, III, IV and VI of the stator flux linkage, see (9).

k1 = sin(θ0+ωnT−ωrnT)−sin[θ0+ω(n−1)T−ωr(n−1)T]
T

= cos 2θ0+ω(2n−1)T−ωr(2n−1)T]
T ( 1

T arctg 3
√

3Udc×T
2πψs

−ωr)
(9)

Here Udc is the converter direct current (DC) link voltage, ω is the angular frequency of the stator
flux linkage vector when the forward vectors are applied to the machine, T and n are the interrupt
period and the number of interrupt periods, respectively, ωr is the rotor angular frequency, and θ0 is
the torque angle at t0.

The curve slop of sin θ from t2 to t3 can be expressed as:

I. In sector II and V of the stator flux linkage, see (10).

k2 = sin(θ0−ωnT−ωrnT)−sin[θ0−ω(n−1)T−ωr(n−1)T]
T

= cos 2θ0−ω(2n−1)T−ωr(2n−1)T]
T (− 1

T arctg 2
√

3Udc×T
πψs

−ωr)
(10)

II. In sector I, III, IV and VI of the stator flux linkage, see (11).

k2 = sin(θ0−ωnT−ωrnT)−sin[θ0−ω(n−1)T−ωr(n−1)T]
T

= cos 2θ0−ω(2n−1)T−ωr(2n−1)T]
T (− 1

T arctg 3
√

3Udc×T
2πψs

−ωr)
(11)

where θ2 is the torque angle at t2.

Then, (6) is derived to

A1a = A2 +
k1

−k2
A2 (12)

On the basis from (1) to (12) we can obtain:

∫ t1

t0

k1tdt =
∫ t2

t1

k1tdt +
k1

−k2

∫ t2

t1

k1tdt =
∫ t2

t1

(
k1 −

k2
1

k2

)
tdt (13)

Then, according to (13), t2 can be achieved via the following steps:

(1) First, achieve the double integral value of k1 from t0 to t1, where t1 is the moment when
dωr/dt = 0.

(2) Then, calculate the double integral value of
(
k1 − k2

1/k2
)

using t1, the moment when this integral

value is equal to
∫ ∫ t1

t0
k1dtdt is t2.

The RDTC system with torque integral balance control (TIBC-RDTC) is shown in Figure 14.
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3. Experimental Results

Figures 15 and 16 show the experimental platform and its diagram, respectively. Figure 16 shows
the test bench. The design specifications and parameters of the MTFTFSPM machines are as follows:
the stator outer diameter is 150 mm, the stator inner diameter is 89.5 mm, the air-gap is 0.5 mm,
the stack length is 60 mm, the stator slot number is 12, the rotor pole number is 19, the number of
armature turns per coil is 50, the rated armature current is 8.6 A, the magnet remanence is 1.15 T,
the magnet relative permeability is 1.05.The rated electro-magnetic torque of the machines is 9.6 Nm.
The load of the machine is provided by a magnetic powder brake ZF20B.
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Figure 16. The diagram of test bench.

The phase currents ia, ib, ic are acquired by current sensors LA28-NP (measuring range: 0–25 A)
and phase voltages ua, ub, uc are acquired by voltage sensor LA28-P (measuring range: 0–500 V).
The rotor speed is measured by encoder NOC-SP10000-2MD. The program is developed by a
TMS320F2812 digital controller, and the sampling period is 32 µs.

3.1. Experimental Results under Open-Circuit Fault

3.1.1. Steady-State Performance

For the MTFTSFPM machine under open-circuit fault, Figures 17 and 18 give the waveforms
of Te and nr by using DTC and RDTC, respectively. The torque ripple peak value in Figure 17 is
2.4 N·m while that in Figure 18 is only 0.9 N·m, indicating that the RDTC can effectively suppress the
torque ripple.
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3.1.2. Dynamic Performance

For the MTFTSFPM machine under open-circuit fault, Figures 19 and 20 give the dynamic
performance of RDTC without TIBC when P = 7.2, I = 0.96 and P = 9.5, I = 1.1, respectively.
Figure 21 gives the dynamic performance of TIBC-RDTC.

For RDTC without TIBC, the PI parameters are analyzed and optimized using time domain
analysis. The variation of PI parameters affects the pole distribution of the control system closed-loop
transfer function, and further affects the speed dynamic performance.

When the poles are near to the imaginary axis, nr has a long period of oscillation before it
converges, and the peak value of the oscillation is high, whereas when the poles are far away from the
imaginary axis, the adjustment of nr lasts for a long time.

When the poles are at a moderate distance from the imaginary axis, the dynamic performance of
nr is improved, as shown in Figure 19.

Furthermore, when the poles are at a moderate distance from both the imaginary axis and the
solid axis, the overall performance of nr is excellent, as seen in Figure 20.

In Figure 21, when the TIBC are employed, the settling time is only 50 ms, the speed dip is only
60 r/min and there is no overshoot. It can be found that, consistent with previous theoretical analysis,
the shortest possible convergence time in the dynamic process to load can be obtained and the speed
overshoot can be minimized based on the TIBC-RDTC.
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Figure 21. Dynamic performance of RDTC with TIBC (TIBC-RDTC).

For easier comparison, the performance metrics of RDTC without TIBC and with TIBC are given
in Table 4.

Table 4. Performance metrics of the direct torque control with voltage vector reconstruction (RDTC)
without torque impulse balance control (TIBC) and with TIBC.

Methods Settling
Time (ts )

Peak Value
Time

(
tp
) Speed Dip

∆n-down
Over Shoot

Amount (œ% )
Adjustment
Times (Z)

RDTC without TIBC
(P = 7.2, I = 0.96) 205 ms 75 ms 120 r/min 16.67% 3

RDTC without TIBC
(P = 9.5, I = 1.1) 95 ms 60 ms 70 r/min 13.33% 4

RDTC with TIBC
(TIBC-RDTC) 50 ms 50 ms 60 r/min 0.00% 1

In Table 4, where the definition of the variables are as follows:
Settling time (ts): The minimum time required for the speed response to achieve its final value

and keep within 2% error range of the final value.
Peak value time (tp): The time required for the speed response exceeding its final value to reach

the first peak.
Speed dip (∆n)-down: Maximum drop value of speed response.

Overshoot amount (σ%): σ% =
n(tp)−n(∞)

n(∞)
× 100%, where n(∞) is the final value of the speed.

Adjustment times (Z): The number of times that the speed response value is equal to n(∞) in the
adjusting process.

3.2. Experimental Results under Healthy Condition

Under healthy conditions, k1 and k2 are calculated as follow:

k1 = cos
2θ0 + ω(2n− 1)T −ω(2n− 1)T

2
(

1
T

arctg
Udc × T√

3ψs
−ωr) (14)

where θ0 is the torque angle at t0, ω is the angular frequency of stator flux linkage vector when the
forward vectors are applied to the machine, T is the sampling period, ωr is the rotor angular frequency,
Udc is the DC link voltage of the converter.
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The slope of the curve sin θ from t2 to t3 can be expressed as:

k2 = sin(θ2−ωrnT)−sin[θ2−ωr(n−1)T]
T

= 2
T cos 2θ2−ωr(2n−1)T

2 sin −ωrT
2

≈ 1
T cos 2θ2−ωr(2n−1)T

2 sin(−ωrT)

≈ (−ωr) cos 2θ2−ωr(2n−1)T
2

(15)

where θ2 is the torque angle at t2.
The experimental results under healthy conditions are as follows:
The experimental results of the DTC under P = 20 and I = 0.8 are given in Figure 22.

Figure 23 shows the experimental results of the DTC under P = 10 and I = 1.2. In Figure 22, the speed
exhibits several adjustment processes and the convergence time is 375 ms. In Figure 23, the speed
exhibits an obvious overshoot and the convergence time is 200 ms.
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Figure 23. Experimental results of DTC (P = 10, I = 1.2). 

Figure 22. Experimental results of DTC (P = 20, I = 0.8).
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Figure 23. Experimental results of DTC (P = 10, I = 1.2). Figure 23. Experimental results of DTC (P = 10, I = 1.2).

In Figure 24, when the load changes, recovery time of the speed is only 50 ms by using TIBC-DTC,
meanwhile, the speed undershoot is 40 r/min and there is no overshoot.
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Figure 25, and the performance metrics of DTC and TIBC-DTC are given in Table 5.
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Table 5. Performance metrics of DTC and TIBC-DTC (Experimental results).

Methods ts tp ∆n-down σ% Z

DTC (P = 20, I = 0.8) 375 ms 175 ms 65 r/min 21.67% 6
DTC (P = 10, I = 1.2) 200 ms 160 ms 48 r/min 16.00% 2

TIBC-DTC 50 ms 50 ms 40 r/min 13.33% 1

It can be concluded that the new method can minimize the speed overshoot and can achieve the
shortest possible recovery time in load transient states, which agrees with previous theoretical analysis.

Figure 26 shows experimental results of TIBC-DTC under load step change (5.5–11.5 N·m).
When the load changes, recovery time of the speed is only 55 ms by using TIBC-DTC; the speed
undershoot is 75 r/min and there is no overshoot, which agrees with the theoretical analysis. It can be
found that TIBC-DTC is still effective at different load changes.
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4. Conclusions 

This paper investigates a torque impulse balance control for multi-tooth fault tolerant 

switched-flux machines under open-circuit fault. The following conclusions are obtained: 

• Compared with the vector control with current vector compensation technology, the direct 

torque control with voltage vector reconstruction technique (RDTC) can achieve the 

electromagnetic torque with good dynamic performance, but for the rotor speed, its dynamic 

performance is always influenced by the PI parameters of the speed loop.  

• In the dynamic process, the torque impulse balance control (TIBC) can obtain an optimal 

voltage vector sequence which has only one switch between forward vectors and zero vectors.  

• The optimal voltage vector can achieve excellent dynamic performance of the rotor speed: (1) 

No overshoot in the speed; (2) Only one adjustment; (3) The shortest settling time. 
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4. Conclusions

This paper investigates a torque impulse balance control for multi-tooth fault tolerant
switched-flux machines under open-circuit fault. The following conclusions are obtained:

• Compared with the vector control with current vector compensation technology, the direct torque
control with voltage vector reconstruction technique (RDTC) can achieve the electromagnetic
torque with good dynamic performance, but for the rotor speed, its dynamic performance is
always influenced by the PI parameters of the speed loop.

• In the dynamic process, the torque impulse balance control (TIBC) can obtain an optimal voltage
vector sequence which has only one switch between forward vectors and zero vectors.

• The optimal voltage vector can achieve excellent dynamic performance of the rotor speed: (1) No
overshoot in the speed; (2) Only one adjustment; (3) The shortest settling time.
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