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Abstract: The uncertainty that dominates in the functioning of the electricity market is of great
significance and arises, generally, because of the time imbalance in electricity consumption rates and
power plants’ production capacity, as well as the influence of many other factors (weather conditions,
fuel costs, power plant operating costs, regulations, etc.). In this paper we try to incorporate this
uncertainty in the electricity price forecasting model by applying interval numbers to express the price
of electricity, with no intention of exploring influencing factors. This paper represents a hybrid model
based on fuzzy C-mean clustering and the interval-valued autoregressive process for forecasting
the short-term electricity price. A fuzzy C-mean algorithm was used to create interval time series
to be forecasted by the interval autoregressive process. In this way, the efficiency of forecasting is
improved because we predict the interval, not the crisp value where the price will be. This approach
increases the flexibility of the forecasting model.
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1. Introduction

Over the last few decades, many models for forecasting electricity prices have been developed
using different mathematical methods. Generally, these models are based on simulation techniques;
time series analysis; autoregressive processes such as autoregressive, autoregressive integrated,
autoregressive moving average and seasonal autoregressive methods; artificial neural network;
fuzzy logic; grey system theory; game theory; and combinations of two or more methods.
Weron explained the complexity of available solutions, their strengths and weaknesses, and the
opportunities and threats that the forecasting tools offer or that may be encountered in the process of
electricity price forecasting [1]. A very useful tutorial review of probabilistic electricity price forecasting
that presented much-needed guidelines for the rigorous use of methods, measures and tests, in line with
the paradigm of ‘maximizing sharpness subject to reliability,’ was created by Nowotarski and Weron [2].
With the introduction of deregulation to the power industry, the price of electricity has been the key
to all activities in the power market. Accurately and efficiently forecasting electricity prices becomes
more and more important. Accordingly, Shahidehpour et al. mainly described short-term electricity
price forecasting models based on simulations, neural networks, conditional probability distribution,
and risk analysis [3]. Electricity markets suffer from a severe case of over-dimensionality due to
the lack of economic storage of the commodity and the scarcity and hedging formulations can help
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users to form dynamic replicating portfolios. By using this approach they can reduce the complexity
of possible future price combinations [4]. Forecasting is an integral part of revenue management.
Designing dynamic prices requires forecasts of future demand, and scheduling consumption requires
forecasts of future prices. Dutta and Mitra described research on prices in the electricity sector.
They showed how different methods, such as the dynamic regression model, the transfer function
model, the autoregressive integrated moving average model, the artificial neural network technique,
the kernel-based method, principal component analysis, exponential smoothing,
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complexity of possible future price combinations [4]. Forecasting is an integral part of revenue 
management. Designing dynamic prices requires forecasts of future demand, and scheduling 
consumption requires forecasts of future prices. Dutta and Mitra described research on prices in the 
electricity sector. They showed how different methods, such as the dynamic regression model, the 
transfer function model, the autoregressive integrated moving average model, the artificial neural 
network technique, the kernel-based method, principal component analysis, exponential smoothing, 
ɛ-insensitive loss function support vector regression, trigonometric gray prediction, and the semi-
parametric additive model, can be used for forecasting the price [5]. The main methodologies used 
in electricity price forecasting have been reviewed by Aggarwal et al. The following price-forecasting 
techniques have been covered: stochastic time series, causal models, and artificial intelligence-based 
models [6]. 

In a data-sparse electricity market, Cheng et al. applied a novel interval grey prediction model 
to forecast the mid-term electricity market clearing price [7]. Day-ahead price forecasting of a daily 
electricity market using autoregressive integrated moving average models was used by Contreras et 
al. to forecast today the 24 market clearing prices of tomorrow [8]. A modified version of geometric 
Brownian motion has been proposed by Barlow (2002) as a jump diffusion model for the stochastic 
modeling of spot power prices [9]. Fu and Li applied simulation of power system equipment to 
forecast the electricity price within the context of a competitive electricity market [10]. A hybrid 
electricity price forecasting model for the Finnish electricity spot market proposed by Voronin and 
Partanena was based on the autoregressive moving average process and a neural network [11]. A 
wavelet transformation-based neural network model has been applied by Aggarwal et al. to forecast 
price profile in a deregulated electricity market [12]. Ghodsi and Zakerinia made a hybrid of the 
autoregressive integrated moving average process, an artificial neural network, and fuzzy regression 
to forecast short-term electricity prices [13]. Yamin et al. used an artificial neural network and 
developed an adaptive short-term electricity price forecasting model [14]. Statistical techniques for 
the pre-processing of data and a multi-layer neural network for forecasting electricity price and price 
spike detection were used by Cerjan et al. to develop a hybrid model for short-term electricity price 
forecasting [15]. A method using modular feed-forward neural networks and fuzzy inference system 
for forecasting short-term electricity price was developed by Esfahani [16]. Autoregressive integrated 
moving average models, complemented by the use of generalized autoregressive conditional 
heteroscedasticity models and their variants to account for volatility, were used for univariate 
forecasting of Singapore’s weekly wholesale electricity prices [17]. Ziel and Weron conducted an 
extensive empirical study of short-term electricity price forecasting to address the long-standing 
question of whether the optimal model structure for electricity price forecasting is univariate or 
multivariate. They provided evidence that, despite having the edge in terms of overall predictive 
performance, the multivariate modeling framework does not uniformly outperform the univariate 
one across all 12 considered datasets, seasons of the year, or hours of the day, and at times is 
outperformed by the latter [18]. Gonzalez et al. proposed a new functional forecasting method that 
attempts to generalize the standard seasonal ARMAX time series model to the L2 Hilbert space. The 
structure of the proposed model is a linear regression where functional parameters operate on 
functional variables [19]. A new approach to forecast day-ahead electricity market prices, whose 
methodology is divided into two parts (forecasting of the electricity price through autoregressive 
integrated moving average models and construction of a portfolio of autoregressive integrated 
moving average models per hour using stochastic programming) was created by Nieta et al. [20]. 
Neupane et al. employed an ensemble prediction model in which a group of different algorithms 
participates in forecasting one hour ahead the price for each hour of a day. They proposed two 
different strategies, namely, the fixed weight method and the varying weight method, for selecting 
each hour’s expert algorithm from the set of participating algorithms [21]. 

Alvarez et al. applied a partitioning–clustering technique to the electricity price time series to 
discover the behavior patterns of a series [22]. A combination of a fuzzy C-mean clustering algorithm 
and a teaching–learning-based optimization algorithm was used to forecast the next day’s electricity 
price [23]. Sokhanvar et al. proposed a method that involves input–output decomposition and a 

-insensitive loss
function support vector regression, trigonometric gray prediction, and the semi-parametric additive
model, can be used for forecasting the price [5]. The main methodologies used in electricity price
forecasting have been reviewed by Aggarwal et al. The following price-forecasting techniques have
been covered: stochastic time series, causal models, and artificial intelligence-based models [6].

In a data-sparse electricity market, Cheng et al. applied a novel interval grey prediction model
to forecast the mid-term electricity market clearing price [7]. Day-ahead price forecasting of a daily
electricity market using autoregressive integrated moving average models was used by Contreras et al.
to forecast today the 24 market clearing prices of tomorrow [8]. A modified version of geometric
Brownian motion has been proposed by Barlow (2002) as a jump diffusion model for the stochastic
modeling of spot power prices [9]. Fu and Li applied simulation of power system equipment to
forecast the electricity price within the context of a competitive electricity market [10]. A hybrid
electricity price forecasting model for the Finnish electricity spot market proposed by Voronin and
Partanena was based on the autoregressive moving average process and a neural network [11].
A wavelet transformation-based neural network model has been applied by Aggarwal et al. to forecast
price profile in a deregulated electricity market [12]. Ghodsi and Zakerinia made a hybrid of the
autoregressive integrated moving average process, an artificial neural network, and fuzzy regression
to forecast short-term electricity prices [13]. Yamin et al. used an artificial neural network and
developed an adaptive short-term electricity price forecasting model [14]. Statistical techniques for
the pre-processing of data and a multi-layer neural network for forecasting electricity price and
price spike detection were used by Cerjan et al. to develop a hybrid model for short-term electricity
price forecasting [15]. A method using modular feed-forward neural networks and fuzzy inference
system for forecasting short-term electricity price was developed by Esfahani [16]. Autoregressive
integrated moving average models, complemented by the use of generalized autoregressive conditional
heteroscedasticity models and their variants to account for volatility, were used for univariate
forecasting of Singapore’s weekly wholesale electricity prices [17]. Ziel and Weron conducted an
extensive empirical study of short-term electricity price forecasting to address the long-standing
question of whether the optimal model structure for electricity price forecasting is univariate or
multivariate. They provided evidence that, despite having the edge in terms of overall predictive
performance, the multivariate modeling framework does not uniformly outperform the univariate one
across all 12 considered datasets, seasons of the year, or hours of the day, and at times is outperformed
by the latter [18]. Gonzalez et al. proposed a new functional forecasting method that attempts to
generalize the standard seasonal ARMAX time series model to the L2 Hilbert space. The structure of the
proposed model is a linear regression where functional parameters operate on functional variables [19].
A new approach to forecast day-ahead electricity market prices, whose methodology is divided into
two parts (forecasting of the electricity price through autoregressive integrated moving average models
and construction of a portfolio of autoregressive integrated moving average models per hour using
stochastic programming) was created by Nieta et al. [20]. Neupane et al. employed an ensemble
prediction model in which a group of different algorithms participates in forecasting one hour ahead
the price for each hour of a day. They proposed two different strategies, namely, the fixed weight
method and the varying weight method, for selecting each hour’s expert algorithm from the set of
participating algorithms [21].

Alvarez et al. applied a partitioning–clustering technique to the electricity price time series to
discover the behavior patterns of a series [22]. A combination of a fuzzy C-mean clustering algorithm
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and a teaching–learning-based optimization algorithm was used to forecast the next day’s electricity
price [23]. Sokhanvar et al. proposed a method that involves input–output decomposition and a simple
clustering algorithm to classify the data points. The prediction is then generated by using the weighted
mean of forecasted outputs of some clusters with the highest probabilities [24]. A hybrid model of
fuzzy C-elliptotypes of fuzzy clustering and an advanced general radial basis function network was
developed to forecast electricity prices in the market [25].

This paper represents a hybrid model based on the fuzzy C-mean clustering and interval-valued
autoregressive process for forecasting the short-term electricity price. A fuzzy C-mean algorithm
is used to separate a set of monitored data into an adequate number of fuzzy states. Accordingly,
we can create chronological fuzzy time series by inspection of what fuzzy state the monitored value
belongs to. In many cases, creating fuzzy relations among fuzzy time series is very difficult. To avoid it,
we represent a fuzzy time series by an interval time series. Every interval corresponds to an adequate
fuzzy state, but is expressed by closed bounded set of real numbers. The lower bound of an interval
is equal to the electricity price with a minimum value in the fuzzy state while the upper bound is
the price with the maximum value. Generally, a fuzzy C-mean clustering algorithm can be treated
as a data preprocessing phase, i.e., the preparation of data to be forecasted by the interval-valued
autoregressive process. The main target of the data preprocessing is to decrease the volatility of
the monitored states, because sometimes it is very hard to describe it adequately. Calibration of the
forecasting model considers two main parameters. The first parameter represents the number of fuzzy
states for a monitored electricity price series, while the second gives the order of the autoregressive
process. To define the number of fuzzy states we developed an approach based on the autocorrelation
function of the interval series created with respect to a given number of fuzzy states. The order of
the autoregressive process is defined by Akaike and the Schwartz–Bayesian information criterion.
The model was tested on the real monitored electricity price series and the accuracy of the model is
very high.

2. Short-Term Forecasting Model

This paper investigates time invariant fuzzy time series of daily electricity prices. The investigation
includes two main components. The first component refers to the fuzzification of monitored data using
the fuzzy C-mean clustering algorithm, while the second refers to the creation of a forecasting model
based on the interval-valued autoregressive process.

2.1. Fuzzification of Monitored Data

The fuzzy time series was originally defined by Song and Chissom [26,27]. The basic definitions
of the fuzzy time series, and time-variant and time-invariant fuzzy time series, are given as follows.

Suppose that X(t) ∈ R1, t = 0, 1, 2, . . . is the universe of monitored data that should be fuzzified by
fuzzy sets fi(t), i = 1, 2, . . . and let F(t) be a set of fi(t). Then, F(t) is called a fuzzy time series on X(t).
If F(t) is caused by F(t− 1), this dependency is defined as F(t) = F(t− 1) ∗ R(t, t− 1), where R(t, t− 1)
is a fuzzy relation of the first order between F(t) and F(t− 1) and * is the fuzzy operator. If F(t) is caused
by F(t− 1) and R(t, t− 1) is constant for each t, then F(t) is a time-invariant fuzzy series.

The intention of fuzzification is to transform a series of monitored data into a series of fuzzy
states. Using this approach, each value within a series is transferred into an adequate fuzzy state
and we obtain the order of states instead of the order of discrete values. For that purpose, we apply
the fuzzy C-mean clustering algorithm [28–31] over the set of daily monitored electricity prices,
P(i) = {pi}, i = 1, 2, . . . , N.

A fuzzy C-mean algorithm is a method based on the minimization of a generalized least-squared
error function within groups. Let P = {pi} j RN×1 be the univariate series of monitored data and
Cm = {cm}, m = 1, 2, . . . , M be the electricity price vector composed of M cluster centers. Every cluster
is a fuzzy set defined by the relative closeness to space P = {pi} j RN×1.
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The membership degree uim ∈ [0, 1] indicates to what degree the relative closeness PN belongs to
the cluster center vector Cm, which results in a fuzzy partition matrix U = |uim|N×M. Let uim be the
membership, Cm the center of the cluster, N the number of observed data points, and M the number of
clusters. Then, the objective function, which should be minimized in fuzzy clustering, is defined as
follows:

J = (U, c1, c2, . . . , cm, P) = ∑ N
i=1 ∑ M

m=1uω
imd2

im(pi, cm), (1)

where dmi is the Euclidean distance between the observation and the center of the cluster;

dim =
√
(si − cm)

2, i = 1, 2, . . . , N, and exponent ω is the fuzzy index (ω > 1). In this paper we
set up ω = 2. The objective function J is minimized subject to the following constraints:

∑ M
m=1uim = 1, i = 1, 2, . . . , N, (2)

0 ≤ uim ≤ 1, m = 1, 2, . . . , M, i = 1, 2, . . . , N, (3)

0 < ∑ N
i=1uim < m, m = 1, 2, . . . , M. (4)

An iterative algorithm is used to find the minimum of the objective function. In j-th iteration, the
values of uω

mi and cm are updated as follows:

cm =
∑N

i=1 uω
im pi

∑N
i=1 uω

im
, (5)

uim =
( 1
|pi−cm | )

1
ω−1

∑M
m=1 (

1
|pi−cm | )

1
ω−1

. (6)

The iteration process stops when
∣∣∣∣∣∣J(j+1) − J(j)

∣∣∣∣∣∣< δ , where δ represents the minimum amount of
improvement or a given threshold value.

The number of clusters represents the number of fuzzy sets or states. According to the obtained
fuzzy partition matrix (U = |uim|N×M) we can define the fuzzy state matrix S(i) of the observed data
as follows:

S(i) =


s(1) = max{u11(c1), u12(c2), . . . , u1M(cM)}
s(2) = max{u21(c1), u22(c2), . . . , u2M(cM)}

...
s(N) = max{uN1(c1), uN2(c2), . . . , uNM(cM)}

 (7)

If we take into consideration that the fuzzy C-mean algorithm produces a sequence of M cluster
centers, then, on the basis of the maximum value of the membership function we can determine
the fuzzy state to which the i-th monitored value belongs. Finally, the sequence of fuzzy states
S(i) = {s(1), s(2), . . . , s(N)} represents a fuzzy time series on P(i) = {pi}, i = 1, 2, . . . , N.

The creation of fuzzy relations among obtained fuzzy states can be very complex. To overcome
this problem, we transform the sequence of fuzzy states into an adequate stationary interval series and
apply an interval-valued autoregressive process to create a short-term forecasting model.

2.2. Interval-Valued Forecasting Model

The process of transformation of a fuzzy time series into an interval time series is based on the
fact that each fuzzy state Sm(i), i ∈ {1, 2, . . . , N}, m ∈ {1, 2, . . . , M} can be represented by a triplet;
S(i) = [cmin

m (i), cm(i), cmax
m (i)], where cmin

m (i) is equal to the element of the cluster with minimum value,
cmax

m (i) is equal to the element with the maximum value, and cm(i) is the center of the cluster. If we
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take into consideration that we monitored the daily electricity price then transformation produces the
following interval time series:

P(i) →
C−mean

S(i);



p1

p2
...
pi
...

pN


→

C−mean



[
pl

1(m), pu
1 (m)

][
pl

2(m), pu
2 (m)

]
...[

pl
i(m), pu

i (m)
]

...[
pl

N(m), pu
N(m)

]


, m ∈ {1, 2, . . . , M}, (8)

where, pl
1(m) is the lowest and pu

1 (m) is the highest daily electricity price for the m-th fuzzy state.
Accordingly, we can say that we created chronological sequence of interval-valued data, i.e., we have a
time series of interval data.

An interval variable X is defined as a closed, bounded set of real numbers in the form of X =
[
xl, xu

]
,

where xl is the lower bound, xu is the upper bound of interval, and xl, xu ∈ <. An interval time series is a
sequence of interval variables monitored in successive time points and expressed as a two-dimensional

vector X(i) =
[
xl

i , xu
i

]T
, i = 1, 2, . . . , N. In this paper we use the basic interval arithmetic operations

introduced by Moore et al. [32]:

X + Y = [xl + yl , xu + yu]

X−Y = [xl − yu, xu − yl ]

X·Y = [min(xlyl , xlyu, xuyl , xuyu), max(xlyl , xlyu, xuyl , xuyu)]
X
Y = X· 1Y
1
Y =

[
1

yu ,
1
yl

]
, with 0 /∈ [yl , yu]

(9)

The attraction of interval arithmetic is that it would not be necessary to analyze whether the
conventional point-wise floating-point computations are safe. As the interval results contain all possible
values, a narrow interval indicates success. A wide interval does not prove that a conventionally
computed result is wrong, but it does indicate a risk. Interval arithmetic has the property of correctness;
result intervals are guaranteed to contain the real number that is the value of the expression [33].

Every monitored series contains information about the process that generated it. This process
can be realized by modeling the current value as a function of its previous values. An autoregressive
process defines the current value of the variable as a weighted linear sum of its previous values and is
defined as the following stochastic difference equation:

yt = β0 + ∑ k
j=1βiyt−i + εt, (10)

where, β0 is a constant, β1, β2, . . . , βk are coefficients of the model, εt is white noise ( εt ∼ iidN(0, σ2)),
and k is the order of the autoregressive process (lag). In the context of interval variables, the autoregressive
process becomes an interval autoregressive process:

[yl
t, yu

t ] = [βl
0, βu

0 ] + ∑ k
j=1[β

l
j, βu

j ][y
l
t−j, yu

t−j] + [εl
t, εu

t ]. (11)

Another representation of the interval can be done in terms of the so-called midpoint and radius,
with XC = xl+xu

2 and XR = xu−xl

2 . The midpoint is the center of an interval (the location), whereas the
radius is the half-width of an interval (a measure of imprecision), with XR ≥ 0 [34]. Let Y(i) = [yC

i , yR
i ]

be the interval response variable and X(j) = [xC
j , xR

j ] be the set of interval explanatory variables
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monitored on N units. Accordingly, Equation (11) can now be expressed by the following linear
relationships:

yC
i = βC

0 + βC
1 xC

i−1 + βC
2 xC

i−2 + . . . + βC
j xC

i−j + εC
i , (12)

yR
i = βR

0 + βR
1 xR

i−1 + βR
2 xR

i−2 + . . . + βR
j xR

i−j + εR
i , (13)

where:

yC
i , yR

i —the center and radius of the i-th interval response variable,
xC

i−j, xR
i−j—the center and radius of the j-th interval explanatory variables,

βC
0 , βR

0 —the center and radius of the constant,
βC

j , βR
j —the center and radius of the regression coefficients of j-th interval explanatory variables,

εC
i , εR

i —the center and radius of the residual of the i-th interval response variable.

The optimal coefficients are obtained according to the least-squares approach by minimizing the
sum of squared residuals of yC

i and yR
i subject to non-negativity of βR

j . The criterion of minimization is
defined as:

min︸︷︷︸
βC

0 ,βC
1 ,...,βC

j ;βR
0 ,βR

1 ,...,βR
j

k
∑

i=1
[(εC

i )
2
+ (εR

i )
2
]

βR
j ≥ 0, j = 1, 2, . . . , k

(14)

To define the values of the coefficients we apply the center and range method developed by Neto
and de Carvalho [35]. The values of the coefficients βC

0 , βC
1 , . . . , βC

j and βR
0 , βR

1 , . . . , βR
j are the solutions

of the following system of 2(k + 1) normal equations written in matrix form:

β̂ = (β̂C
0 , β̂C

1 , . . . , β̂C
j , β̂R

0 , β̂R
1 , . . . , β̂R

j ) = (A)−1 × b, (15)

where A is a 2(k + 1)× 2(k + 1) matrix and b is a 2(k + 1)× 1 vector described as:

A =



N ∑N
i=1 xC

i−1 . . . ∑N
i=1 xC

i−k 0 0 . . . 0

∑N
i=1 xC

i−1 ∑N
i=1
(

xC
i−1

)2 . . . ∑N
i=1 xC

i−kxC
i−1 0 0 . . . 0

...
...

...
...

...
...

...
...

∑N
i=1 xC

i−k ∑N
i=1 xC

i−1xC
i−k . . . ∑N

i=1

(
xC

i−k

)2
0 0 . . . 0

0 0 . . . 0 N ∑N
i=1 xR

i−1 . . . ∑N
i=1 xR

i−k

0 0 . . . 0 ∑N
i=1 xR

i−1 ∑N
i=1
(
xR

i−1
)2 . . . ∑N

i=1 xR
i−kxR

i−1
...

...
...

...
...

...
...

...
0 0 . . . 0 ∑N

i=1 xR
i−k ∑N

i=1 xR
i−1xR

i−k . . . ∑N
i=1
(
xR

i−k
)2



, (16)

b =
[
∑ N

i=1yC
i , ∑ N

i=1yC
i xC

i , . . . , ∑ N
i=1yC

i xC
i−k, ∑ N

i=1yR
i , ∑ N

i=1yR
i xR

i , . . . , ∑ N
i=1yR

i xR
i−k

]T
. (17)

.
If the interval time series is stationary, then d = 0; otherwise d > 0, where d denotes the order of

differencing. If the interval series is non-stationary, then it is necessary to transform it into a stationary
series by d-differencing. First-order differencing is performed in the following manner:[

∆yl
i , ∆yu

i

]
=
[
yl

i , yu
i

]
−
[
yl

i−1, yu
i−1

]
, i = 1, . . . , N. (18)

After differencing, the interval time series becomes stationary and we can apply the k-th interval
autoregressive process (Equation (11)) on differenced series. Values of the interval differenced series
will be forecasted as follows:[

∆ŷl
i , ∆ŷu

i

]
=
[
∆ŷC

i − ŷR
i , ∆ŷC

i + ŷR
i

]
, i = 1, . . . , N. (19)
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Equation (19) represents values for forecasting the first-order differenced series, but we want
to forecast monitored electricity price series. Therefore, we must transform these values into the
Ŷ(i) =

[
ŷl

i , ŷu
i

]
, i = 2, . . . , N form as follows:

[
∆ŷl

i , ∆ŷu
i

]
=
[
∆ŷC

i − ŷR
i , ∆ŷC

i + ŷR
i

]
, i = 1, . . . , N. (20)

If we take into consideration that the monitored series is represented by the series composed of
M fuzzy states, then it is necessary to find out to which fuzzy state of M values the forecasted state
corresponds. We propose the following procedure for expressing the sequence of forecasted fuzzy
states by the set of M fuzzy states (Algorithm 1):

Algorithm 1:

Input: forecasted series by AR(k); P̂(i), i = 1, . . . , N
Output: forecasted fuzzy states expressed by M fuzzy states

Step 1. create series of forecasted centers; p̂C
i =

p̂l
i+ p̂u

i
2

Step 2. create a fuzzy partition matrix; Û = |ûim|N×M

ûim =

(
1∣∣ p̂C

i − cm
∣∣
) 1

ω− 1

∑M
m=1

(
1∣∣ p̂C

i − cm
∣∣
) 1

ω− 1

, m ∈ {1, 2, . . . , M}

Step 3. create forecasted fuzzy state matrix; Ŝ(i)

Ŝ(i) =


ŝ(1) = max{û11(c1), û12(c2), . . . , û1M(cM)}
ŝ(2) = max{û21(c1), û22(c2), . . . , û2M(cM)}
...
ŝ(N) = max{ûN1(c1), ûN2(c2), . . . , ûNM(cM)}


Step 4. create the sequence of forecasted fuzzy states; Ŝ(i) = {ŝ(1), s (̂2), . . . , s (̂N)}
Step 5. according to Ŝ(i) create interval forecasted series; P̂(i, m) = [ p̂l

i(m), p̂u
i (m)]

Algorithm 1 represents the forecasting model. This algorithm is applied to forecast the future
electricity price for N + h, h = 1, 2, . . . , H. Note that this is a short-term forecasting model and H
should be set to a few days.

Calibration of the forecasting model is related to the determination of two main parameters.
The first parameter considers the number of fuzzy states (M-clusters) for a monitored electricity price
series, while the second considers the order of the autoregressive process (k).

We developed the following iterative algorithm to define the minimum number of possible fuzzy
states (clusters), (Algorithm 2):

Algorithm 2:

Input: monitored series Y(i), i = 1, 2, . . . , N
Output: minimum number of clusters mmin
Step 1. set up the initial value of M to m = 3 and k = 20
Step 2. do the fuzzy C-mean
Step 3. create interval series [yl

i(m), yu
i (m)], i = 1, 2, . . . , N

Step 4. if interval series is non-stationary do d-differencing
Step 5. create center series yC

i , i = 1, . . . , N
Step 6. do autocorrelation function for 20 lags ACF(yC

i , 20)
Step 7. if there is one and only one lag such that ACF(yC

i , 20) > ±2× standard error, stop.
Otherwise set m + 1 and go to Step 2

Figure 1 shows a case when the condition defined by Step 7 is met.



Energies 2018, 11, 1911 8 of 17

Energies 2018, 11, x  7 of 17 

 

푢 =

1
푝̂ − 푐

∑ 1
푝̂ − 푐

,푚 ∈ {1,2,… ,푀} 

Step 3. create forecasted fuzzy state matrix; 푆(푖)  

푆(푖) =

s(1) = 푚푎푥{푢 (푐 ), 푢 (푐 ),… , 푢 (푐 )}
s(2) = 푚푎푥{푢 (푐 ), 푢 (푐 ),… , 푢 (푐 )}
⋮
s(푁) = 푚푎푥{푢 (푐 ), 푢 (푐 ), … , 푢 (푐 )}

 

Step 4. create the sequence of forecasted fuzzy states; 푆(푖) = {s(1), s(2), … , s(푁)}     
Step 5. according to 푆(푖) create interval forecasted series; 푃(푖,푚) = 푝̂ (푚), 푝̂ (푚)     

Algorithm 1 represents the forecasting model. This algorithm is applied to forecast the future 
electricity price for 푁+ ℎ, ℎ = 1,2,… ,퐻. Note that this is a short-term forecasting model and H should 
be set to a few days. 

Calibration of the forecasting model is related to the determination of two main parameters. The 
first parameter considers the number of fuzzy states (M-clusters) for a monitored electricity price 
series, while the second considers the order of the autoregressive process (k). 

We developed the following iterative algorithm to define the minimum number of possible 
fuzzy states (clusters), (Algorithm 2): 

Algorithm 2: 
Input: monitored series 푌(푖), 푖 = 1,2,… ,푁   
Output: minimum number of clusters mmin  
Step 1. set up the initial value of M to m = 3 and k = 20 
Step 2. do the fuzzy C-mean 
Step 3. create interval series 푦 (푚), 푦 (푚) , 푖 = 1,2,… ,푁      
Step 4. if interval series is non-stationary do d-differencing   
Step 5. create center series 푦 , 푖 = 1,… , 푁     
Step 6. do autocorrelation function for 20 lags 퐴퐶퐹(푦 ,20)        
Step 7. if there is one and only one lag such that 퐴퐶퐹(푦 ,20) > ±2 × 푠푡푎푛푑푎푟푑	푒푟푟표푟, stop.  
Otherwise set m + 1 and go to Step 2  

Figure 1 shows a case when the condition defined by Step 7 is met. 

 
Figure 1. Autocorrelation function that satisfies the conditions. 

The autocorrelation function (ACF) of any series gives the correlation between yt and yt−k for k = 
1, 2, 3,…. Theoretically, the autocorrelation between yt and yt−k is calculated as: 

퐴퐶퐹 = ( , )
. .( ) . .( ). (21)

Figure 1. Autocorrelation function that satisfies the conditions.

The autocorrelation function (ACF) of any series gives the correlation between yt and yt−k for
k = 1, 2, 3, . . . . Theoretically, the autocorrelation between yt and yt−k is calculated as:

ACF =
Covariance(yt, yt−k)

Std.dev.(yt)Std.dev.(yt−k)
. (21)

Since the minimum number of clusters is defined, we continue the iteration process until the
condition (Step 7) is met. Suppose the condition is not met in the j-th iteration, in that case, we stop the
iterative process and take the number of clusters from j − 1 iteration to be the maximum number of
clusters. The algorithm that considers the maximum number of fuzzy states is as follows (Algorithm 3):

Algorithm 3:

Input: monitored series Y(i), i = 1, 2, . . . , N
Output: maximum number of clusters mmax

Step 1. set up the initial value of M to m = mmin and k = 20
Step 2. do the fuzzy C-mean
Step 3. create interval series [yl

i(m), yu
i (m)], i = 1, 2, . . . , N

Step 4. if interval series is non-stationary do d-differencing
Step 5. create center series yC

i , i = 1, . . . , N
Step 6. do autocorrelation function for 20 lags ACF(yC

i , 20)
Step 7. if there is one and only one lag such that ACF(yC

i , 20) > ±2× standard error,
set m+1 and go to Step 2. Otherwise stop and get m = mmax from the previous iteration

Accordingly, the number of possible fuzzy states is defined as M̃ = [mmin, mmax]. The expected
number of clusters equals the center of the interval; E(M̃) = mmin+mmax

2 . Figure 2 shows a case when
the condition defined by Step 7 is not met.
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Algorithm 2 produces the minimum number of fuzzy states that can be used to transform a
monitored series into an interval one, which can be further forecasted by the interval autoregressive
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process alone, while Algorithm 3 produces the maximum number of fuzzy states. In this way we can
increase the flexibility of the forecasted model because any number of fuzzy states in that range can
be taken for the purposes of transformation. Finally, the main aim of the proposed algorithms is to
prepare a monitored series to be forecasted by the autoregressive model only.

The order of the autoregressive model (lag length) is defined according to information criteria
that measure the quantity of information about the dependent variable contained in a set of regressors.
In this paper we will use the Akaike information criterion (AIC) [36] and the Schwartz–Bayesian
information criterion (SBIC) [37]. They are calculated by the following equations:

AIC = ln(
∑N

i=1 û2
i

N
) +

2k
N

, (22)

SBIC = ln(
∑N

i=1 û2
i

N
) +

kln(N)

N
, (23)

where N is the sample length; k is the total number of estimated coefficients; and ûi are the residuals.

ûi = pi − ŝi, (24)

The sum of the squared residuals represents the main part of both criteria and we want to
minimize it. Thus, we select the model with the smallest value of ACI or SBIC.

The absolute percentage error of the model for the i-th electricity price is calculated as follows:

APEi =

 0, i f pi ∈
[

p̂l
i(m), p̂u

i (m)
]

|pi− p̂u
i (m)|+|pi− p̂l

i(m)|
2pi

× 100, otherwise
. (25)

To demonstrate the effectiveness of the model, the forecasted results are analyzed by the mean
absolute percentage error (MAPE):

MAPE =
1
N ∑ N

i=1 APEi. (26)

3. Numerical Example

In this section, we focus on the practical performance of the proposed approach. To test the
efficiency of the model we used the data of daily monitored electricity price recorded by Nord Pool,
N2EX Day Ahead Auction Prices [38] (Figure 3).

The set of data was divided into a training subset and validation subset. The training subset was
composed of data from 1 March 2017 to 31 March 2018. We used this subset to check the confidence of
the developed model. The validity subset was composed of data from 1 April 2018 to 10 April 2018,
and has been used to check the validity of the model.

The results of Algorithms 2 and 3 are represented in Figure 4.
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Obviously, six fuzzy states have met the conditions of Algorithm 2 and seven fuzzy states have
not met the conditions of Algorithm 3. Accordingly, the minimum number of fuzzy states is six and
the maximum number of fuzzy states is six as well. Hence, the expected number of fuzzy states,
i.e., clusters, is six. Fuzzy C-mean clustering algorithm has realized the following cluster center
vector; Cm = [c1, c2, c3, c4, c5, c6] = [42.75, 47.25, 52.31, 57.26, 63.25, 90.10] and fuzzy partition matrix
U = |uim|396×6. Using matrix U and Equation (7) we obtained the fuzzy time series on daily monitored
electricity price (see Table 1).

Table 1. Fuzzy time series of monitored series (six fuzzy states).

Year 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2018 2018

Month 3 4 5 6 7 8 9 10 11 12 1 2 3

1 s4 s2 s2 s1 s2 s2 s2 s3 s3 s5 s3 s3 s6
2 s3 s2 s3 s1 s1 s1 s2 s1 s4 s5 s4 s4 s6
3 s3 s2 s3 s1 s2 s1 s2 s2 s4 s4 s4 s4 s6
4 s2 s2 s2 s1 s4 s1 s2 s3 s3 s5 s4 s3 s5
5 s2 s3 s2 s1 s4 s1 s2 s3 s3 s5 s5 s4 s5
6 s3 s4 s2 s1 s3 s1 s2 s3 s3 s4 s4 s4 s4
7 s3 s3 s2 s1 s2 s2 s2 s2 s4 s5 s4 s4 s4
8 s3 s2 s2 s2 s1 s2 s2 s3 s4 s5 s4 s4 s4
9 s3 s2 s3 s1 s1 s1 s3 s4 s4 s5 s4 s4 s4
10 s2 s2 s3 s1 s3 s2 s2 s3 s4 s5 s5 s3 s4
11 s2 s2 s3 s1 s5 s2 s1 s3 s4 s5 s5 s3 s5
12 s2 s2 s2 s1 s2 s2 s3 s3 s3 s6 s4 s4 s4
13 s2 s2 s1 s1 s1 s2 s3 s2 s4 s5 s4 s3 s6
14 s1 s2 s2 s1 s1 s2 s3 s3 s4 s5 s4 s4 s5
15 s2 s2 s2 s1 s1 s2 s3 s2 s4 s5 s4 s3 s5
16 s2 s3 s2 s1 s1 s1 s4 s3 s4 s5 s4 s4 s5
17 s2 s2 s4 s1 s2 s2 s3 s3 s4 s5 s4 s4 s5
18 s2 s2 s3 s1 s1 s2 s5 s4 s4 s5 s4 s4 s5
19 s1 s2 s3 s2 s1 s1 s5 s3 s4 s5 s3 s4 s5
20 s2 s3 s2 s1 s1 s2 s3 s3 s4 s5 s4 s4 s5
21 s2 s2 s2 s2 s1 s3 s3 s2 s4 s5 s4 s4 s4
22 s2 s2 s2 s2 s1 s3 s3 s2 s4 s5 s4 s5 s5
23 s2 s2 s2 s1 s2 s2 s2 s3 s4 s4 s3 s5 s4
24 s2 s2 s2 s1 s1 s2 s2 s3 s4 s4 s3 s5 s5
25 s2 s2 s2 s1 s2 s2 s3 s3 s4 s4 s4 s5 s4
26 s2 s3 s1 s5 s1 s2 s3 s4 s4 s4 s4 s5 s4
27 s3 s3 s1 s2 s1 s2 s3 s3 s4 s4 s3 s5 s3
28 s2 s4 s1 s1 s1 s2 s4 s3 s4 s5 s3 s5 s4
29 s2 s2 s1 s2 s1 s3 s3 s2 s4 s4 s2 s4
30 s2 s2 s2 s2 s1 s3 s3 s3 s5 s4 s3 s4
31 s2 s2 s1 s3 s3 s3 s3 s3

The transformation of six fuzzy states into six intervals is represented by Table 2. For example,
fuzzy state s1 appears 58 times in the monitored sequence. The minimum value of the electricity price



Energies 2018, 11, 1911 11 of 17

for the state s1 is 33.88 EUR/MWh, which corresponds to 16 June 2017, while the maximum value is
44.78 EUR/MWh, which corresponds to 27 May 2017. In this way we defined the first interval that
corresponds to fuzzy state s1. The remaining intervals are defined in the same way.

Table 2. From fuzzy state to interval.

Fuzzy State Interval

s1 [33.88, 44.78]
s2 [45.03, 49.71]
s3 [49.82, 54.71]
s4 [54.79, 60.23]
s5 [60.30, 74.35]
s6 [76.68, 104.44]

The original time series was first transformed into an ordered fuzzy time series whereby each
fuzzy state was expressed by an adequate center of cluster. After that, the ordered fuzzy time series
was further transferred into an ordered interval-valued time series, where the lower bound of the
interval was equal to the electricity price of the fuzzy state with a minimum value and the upper bound
was equal to the electricity price of the fuzzy state with maximum value. The process of transformation
is expressed by Figure 5.
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The stationary nature of the time series is the main prerequisite for the application of an autoregressive
process. Figure 6 shows the presence of a trend in the fuzzy time series, i.e., the series is non-stationary.
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After first-order differencing of fuzzy time series and interval-valued time series, we can see that
these two series became stationary series (Figure 7).Energies 2018, 11, x  12 of 17 
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394 0 0 0
0 13,349.34 0 0
0 0 394 2846.09
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, (27)

∆푏 =

0
−4514.03
2846.09
25,175.24

 (28)

The parameters of the interval autoregressive process are: 

∆훽 = ∆훽 , ∆훽 , ∆훽 , ∆훽 = (∆퐴) × ∆푏 =

0
−0.338
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 (29)

Delta indicates that an interval autoregressive process is applied to the differenced series. The 
forecasting model of the midpoint–radius series is represented by the following two equations: 
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After differencing, data were prepared to be modeled by an interval autoregressive process.
Hereinafter, we present the interval autoregressive process for k = 1 in detail. According
to the fuzzy time series (see Table 1) starting on 1 March 2017 and ending on 31 March
2018, s4→ s3→ s3→ s2→ s2→ . . .→ s4→ s4→ s4→ s3 ; we created interval time series;
[54.79, 60.23]→ [49.82, 54.71]→ [49.82, 54.71 ]→ [45.03, 49.71 ]→ [45.03, 49.71]→ . . .→ [54.79, 60.23 ]
→ [54.79, 60.23 ]→ [54.79, 60.23 ]→ [49.82, 54.71 ] (see Figure 5). Since the interval time series was
non-stationary, we have done first-order differencing and obtained the following stationary series:
[−10.41,−0.08]→ [−4.89, 4.89]→ [−9.68,−0.11]→ [−4.68, 4.68] . . . (see Figure 7). The obtained
stationary series was then expressed in the form of a midpoint and radius (see Table 3).

Table 3. Midpoint–radius form of interval.

Data Interval Midpoint Radius

2 March 2017 [−10.41,−0.08] −5.24 5.16
3 March 2017 [−4.89, 4.89] 0 4.89
4 March 2017 [−9.68,−0.11] −4.89 4.78

...
...

...
...

31 March 2018 [−10.41,−0.08] −5.24 5.16

According to the center and range method, the following matrices ∆A and ∆b are defined as
follows:

∆A =


394 0 0 0

0 13, 349.34 0 0
0 0 394 2846.09
0 0 2846.09 25, 842.83

, (27)

∆b =


0

−4514.03
2846.09

25, 175.24

 (28)

The parameters of the interval autoregressive process are:

∆β̂ = (∆β̂C
0 , ∆β̂C

1 , ∆β̂R
0 , ∆β̂R

1 )
T
= (∆A)−1 × ∆b =


0

−0.338
0.913
0.874

 (29)
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Delta indicates that an interval autoregressive process is applied to the differenced series.
The forecasting model of the midpoint–radius series is represented by the following two equations:

∆ p̂C
i = ∆β̂C

0 + ∆β̂C
1 ∆pC

i−1(m) + εC
i = −0.338∆pC

i−1(m) + εC
i , (30)

∆ p̂R
i = ∆β̂R

0 + ∆β̂R
1 ∆pR

i−1(m) + εR
i = 0.913 + 0.874∆pR

i−1(m) + εR
i . (31)

According to Equation (19), the values of the interval differenced series is forecasted as follows:[
∆ p̂l

i , ∆ p̂u
i

]
=
[
−0.338∆pC

i−1(m)− (0.913 + 0.874∆pR
i−1(m)),−0.338∆pC

i−1(m) + (0.913 + 0.874∆pR
i−1(m))

]
. (32)

By using Equation (20), real interval values are obtained (see Table 4).

Table 4. Forecasted interval series.

Data Forecasted Interval Forecasted Center

3 March 2017 [46.16, 61.91] 54.03
4 March 2017 [44.63, 59.89] 52.26

...
...

...
31 March 2018 [49.12, 65.89] 57.51

Now, it is necessary to inspect to what fuzzy state of M = 6 values the forecasted state (center)
corresponds. Results of the application of Algorithm 1 are shown in Table 5 and Figure 8.

Table 5. Forecasted states.

Data Forecasted Center
Fuzzy Partition Matrix Û=|ûim|394×6

Ŝ(i)
c1 = 42.75 c2 = 47.25 c3 = 52.31 c4 = 57.26 c5 = 63.25 c6 = 90.10

3 March 2017 54.03 0.0702 0.1167 0.4583 0.2465 0.0861 0.0219 52.31
4 March 2017 52.26 0.0044 0.0085 0.9734 0.0085 0.0038 0.0011 52.31

...
...

...
...

...
...

...
...

...
31 March 2018 57.51 0.0151 0.0217 0.0428 0.8745 0.0388 0.0068 57.26
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Absolute percentage error of the model for 4 March 2017 is: |47.25−52.31|
47.25 × 100 = 10.71%.

Mean absolute percentage error that regards the original fuzzy time series and forecasted fuzzy
time series of monitored electricity price is 4.95%. The Akaike information criterion (AIC) for AR(1) is
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3.173 and the Schwartz–Bayesian information criterion (SBIC) is 3.183. According to Equations (25)
and (26), the mean absolute percentage error that regards the daily monitored electricity price and
forecasted interval time series is 5.43%. Results of the model are represented by Figure 9.Energies 2018, 11, x  14 of 17 
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The procedure was repeated for k = 2, 3, . . . , 6 and the results are shown in Table 6.

Table 6. Characteristics of the AR(k) process.

Order AR(k) MAPE (%) Original-Forecasted States MAPE (%) Monitored-Interval Series AIC SBIC

AR(1) 4.95 5.43 3.173 3.183
AR(2) 4.77 5.01 3.161 3.171
AR(3) 4.91 5.11 3.182 3.192
AR(4) 4.41 4.71 3.026 3.036
AR(5) 4.39 4.68 2.995 3.005
AR(6) 4.89 5.31 3.157 3.167

Optimal order of interval-valued autoregressive process is k = 5, and the results of the model are
represented by Figure 10.

We used Algorithm 1 for period h = 1, 2, . . . , 10 to measure the validity of the proposed model.
The obtained values are represented in Table 7 and Figure 11.

Table 7. Validity of proposed mode for h = 1, 2, . . . , 10.

Data Monitored Value Forecasted Interval Center of Forecasted Interval Forecasted Fuzzy State Fuzzy Interval

1 April 2018 57.37 [49.47,68.23] 58.86 s4 [54.79,60.23]
2 April 2018 55.38 [47.04,66.70] 56.88 s4 [54.79,60.23]
3 April 2018 57.98 [47.86,66.93] 57.40 s4 [54.79,60.23]
4 April 2018 55.59 [47.84,66.92] 57.38 s4 [54.79,60.23]
5 April 2018 56.49 [48.04,67.12] 57.52 s4 [54.79,60.23]
6 April 2018 53.88 [48.22,66.93] 57.57 s4 [54.79,60.23]
7 April 2018 57.94 [48.19,67.12] 57.65 s4 [54.79,60.23]
8 April 2018 57.37 [47.89,67.08] 57.49 s4 [54.79,60.23]
9 April 2018 62.05 [47.88,67.11] 57.50 s4 [54.79,60.23]

10 April 2018 57.48 [47.82,67.16] 57.49 s4 [54.79,60.23]
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Figure 11. Monitored and forecasted values of electricity price for h = 10 days.

In the two cases, the model missed the original fuzzy state within a range of ±1 state. The mean
absolute percentage error for a monitored electricity price series of 10 days and forecasted fuzzy states
is 1.41%.
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4. Conclusions

In this paper we try to incorporate uncertainty in the electricity price forecasting model by
applying interval numbers to express the price of electricity, with no intention of exploring influencing
factors. We applied a fuzzy C-mean clustering algorithm to separate the data of electricity prices into
an adequate number of states (clusters), with the intention of representing a price time series by a
fuzzy time series, i.e., the interval state time series. The main aim of this application is to decrease the
volatility of monitored series. Results that are obtained by a fuzzy C-mean algorithm were used as
input to the interval-valued autoregressive forecasting model. To define the number of fuzzy states,
we developed an algorithm that was based on the autocorrelation function of centers of the interval
state time series. The defined number of states prepares the original data to be modeled (forecasted)
by an autoregressive process only. The order of the autoregressive process is defined by Akaike and
Schwartz–Bayesian information criterion. The model was tested on the real monitored electricity price
series and the accuracy of the model was very high.
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