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Abstract: With extensive research being undertaken into small modular reactor design concepts, this
has brought new challenges to the industry. One key challenge is to be able to compete with large
scale nuclear power plants economically. In this article, a novel approach is applied to reduce the
overall dependence on fixed burnable poisons during high reactivity periods within a high temperature
graphite moderated reactor. To reduce the excess activity, we aim to harden the flux spectrum across
the core by removing part of the central moderation column, thus breeding more plutonium, in a later
period the flux spectrum is softened again to utilise this plutonium again. This provides a neutron
storage effect within the 238U and the resulting breeding of Plutonium. Due to the small size and the
annular design of the high temperature reactor, the central reflector is key to the thermalization process.
By removing a large proportion of the central reflector, the fuel within the proximity of the central
reflector are less likely to receive neutrons within the thermal energy range. In addition to this, the
fuel at the extremities of the core have a higher chance of fission due to the higher number of neutrons
reaching them. This works as a method of balancing the power distribution between the central and
outside fuel pins. During points of low reactivity, such as the end of the fuel cycle, the central reflector
can be reinserted and the additionally bred plutonium and U235 at the centre of the core will encounter
a higher probability of fission due to more thermal neutrons within this region. By removing the central
reflector, this provided a 320 pcm reactivity drop for the duration of the fuel cycle. The plutonium
buildup provided additional fissile material up until the central reflector was reinserted. The described
method created a two-fold benefit. The overall full power days within the core was increased by
~31 days due to the additional fissile material within the core and secondly the highest loaded power
pins saw a 30% power reduction during the removal of the central reflector column.

Keywords: nuclear; nuclear reactors; high temperature reactors; small modular reactors; reactor
design; reactor control; micro reactors

1. Introduction

The global energy landscape is transforming at a dramatic rate due to legislation promoting the
reduction of carbon dependent sources in favour of low carbon or green alternatives. Within the UK there
are currently three legally binding acts to promote the transition from a fossil fuel dependent nation, to a
minimum reduction of 80% of our carbon footprint by 2050 [1–3]. Although the capacity for renewable
energy is increasing, there are situations where renewable energy sources are not applicable or not practical.
To overcome this, the UK government has taken positive steps to a shift towards nuclear energy with the
small modular reactor (SMR) competition [4] and opening up key sites for large nuclear investments [5].
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This shift towards nuclear energy has placed the UK in a strong position for future nuclear
development, with reputable companies such as Rolls-Royce, Nu-Scale and Westinghouse [5–7] all
showing interest in proving SMR designs for the UK. However, these companies offer mainly similar
technology in their light water reactor (LWR) designs, which are very similar to the traditional reactors
already operating globally. This is encouraging in some respects, due to the in-depth knowledge of
their behaviour and they are well known by the UK regulator, however, this does not provide any
benefits for further technological developments towards generation IV. As a member of the Generation
IV International Forum, countries such as the UK are required to be actively contributing towards
Generation IV reactor designs, with SMRs being a good opportunity to gain experience in these
fields [8]. Another, less known, consortium of UK based companies has put forward an innovative
design called the U-Battery towards the SMR competition [9].

The U-Battery is a high temperature reactor (HTR) which is based on a comparable technology, the
high temperature engineering test reactor (HTTR) which has been operating since 1990 in Japan [10].
The HTR operates at a slightly lower outlet temperature to that of the Generation IV very high
temperature reactor, so advances in this field could be used in Generation IV designs. The basis for this
technology is already well known as the UK has already operated an HTR in the form of the DRAGON
reactor in the 1960s, a review of other HTR projects can be found in the literature [11]. in addition,
the UKs existing fleet of nuclear reactors are all graphite based, gas cooled reactors. This puts the UKs
knowledge base in a good position to develop their own HTR. The U-Battery also opens a different
type of market to that of the SMR competition, with the capacity only being 10 MWth, this reactor aims
for remote location deployment, with the versatility to produce high temperature steam for chemical
processes of desalination [12]. Due to the desired function of remote location, the current design suffers
from excess reactivity to reach the maximum fuel lifecycle possible.

One of the key aspects of HTRs is their ability to be designed to be “meltdown proof” [13,14],
implying that beyond basic design accidents, under no circumstances, will the reactor core’s structural
integrity be compromised due to excessive temperatures, thus eliminating the risk of radioactive
substances being released from the fuel. This is due to the nature of the HTR fuel which uses carefully
designed Tristructural-isotropic (TRISO) particles to withhold fission products [15] in combination
with a sufficient surface to volume ratio of the core. The particles do not degrade up to an maximum
temperature of around 1900 ◦C [13] at which point they will release fission products. Designing the
core so that this temperature won’t be reached under the worse accidental condition allows for this
“meltdown proof” conditions to be met. This has been achieved in the HTR-10 a research reactor
produced for the Chinese pebble bed HTR programme [13,16].

In general, the control of the excess reactivity has implications on safety (possible accident initiation)
and operation (distortion of the power distribution). In the case of prismatic HTRs, this reactivity control
is typically accomplished in the form of fixed burnable poisons (FBPs) while no explicit excess reactivity
control is required in pebble bed type HTRs due to the online fuelling function, allows the reactivity to
be controlled. In the case of the HTTR the reactivity control mainly relies on the sixteen control rods.
During start up, there are thirty pairs of 50 cm fixed burnable poison rods which are inserted into the top
of the core, where the fuel is at the maximum enrichment as shown in Figure 1 [17].

Energies 2017, 10, x FOR PEER REVIEW 2 of 12 

 

technology in their light water reactor (LWR) designs, which are very similar to the traditional 
reactors already operating globally. This is encouraging in some respects, due to the in-depth 
knowledge of their behaviour and they are well known by the UK regulator, however, this does not 
provide any benefits for further technological developments towards generation IV. As a member of 
the Generation IV International Forum, countries such as the UK are required to be actively 
contributing towards Generation IV reactor designs, with SMRs being a good opportunity to gain 
experience in these fields [8]. Another, less known, consortium of UK based companies has put 
forward an innovative design called the U-Battery towards the SMR competition [9]. 

The U-Battery is a high temperature reactor (HTR) which is based on a comparable technology, 
the high temperature engineering test reactor (HTTR) which has been operating since 1990 in Japan 
[10]. The HTR operates at a slightly lower outlet temperature to that of the Generation IV very high 
temperature reactor, so advances in this field could be used in Generation IV designs. The basis for 
this technology is already well known as the UK has already operated an HTR in the form of the 
DRAGON reactor in the 1960s, a review of other HTR projects can be found in the literature [11]. in 
addition, the UKs existing fleet of nuclear reactors are all graphite based, gas cooled reactors. This 
puts the UKs knowledge base in a good position to develop their own HTR. The U-Battery also opens 
a different type of market to that of the SMR competition, with the capacity only being 10 MWth, this 
reactor aims for remote location deployment, with the versatility to produce high temperature steam 
for chemical processes of desalination [12]. Due to the desired function of remote location, the current 
design suffers from excess reactivity to reach the maximum fuel lifecycle possible. 

One of the key aspects of HTRs is their ability to be designed to be “meltdown proof” [13,14], 
implying that beyond basic design accidents, under no circumstances, will the reactor core’s 
structural integrity be compromised due to excessive temperatures, thus eliminating the risk of 
radioactive substances being released from the fuel. This is due to the nature of the HTR fuel which 
uses carefully designed Tristructural-isotropic (TRISO) particles to withhold fission products [15] in 
combination with a sufficient surface to volume ratio of the core. The particles do not degrade up to 
an maximum temperature of around 1900 °C [13] at which point they will release fission products. 
Designing the core so that this temperature won’t be reached under the worse accidental condition 
allows for this “meltdown proof” conditions to be met. This has been achieved in the HTR-10 a 
research reactor produced for the Chinese pebble bed HTR programme [13,16]. 

In general, the control of the excess reactivity has implications on safety (possible accident 
initiation) and operation (distortion of the power distribution). In the case of prismatic HTRs, this 
reactivity control is typically accomplished in the form of fixed burnable poisons (FBPs) while no 
explicit excess reactivity control is required in pebble bed type HTRs due to the online fuelling 
function, allows the reactivity to be controlled. In the case of the HTTR the reactivity control mainly 
relies on the sixteen control rods. During start up, there are thirty pairs of 50 cm fixed burnable poison 
rods which are inserted into the top of the core, where the fuel is at the maximum enrichment as 
shown in Figure 1 [17]. 

 
Figure 1. Reactivity control in the HTTR. 

Figure 1. Reactivity control in the HTTR.



Energies 2018, 11, 1897 3 of 12

One of the major drawbacks, common for both reactivity control methods, is the loss of neutrons
from the poisons which results in reduced core lifetime. This poses the question, is there a method
to reduce the excess reactivity, without reducing the core lifetime in the process. In this paper,
we investigate the option of reducing neutron moderation across the system. By reducing the
moderation, the reactivity of the core will be significantly reduced, due to the lower number of
thermal neutrons within the system. In addition to this, with a less thermal system, the 238U has a
higher probability of producing 239Pu which can later be re-moderated and utilised for fission once
again. This trade off acts as a potential ‘pseudo’ neutron storage system, where when the neutrons are
not required, they can be used for breeding and then regained through the bred fissile material.

2. Design Concept

The design chosen to test the new approach is the U-Battery [9], a prismatic HTR SMR based on
the prismatic core design. The U-Battery consortium has decided to focus on their 10 MWth design
version, so an imitation model has been created as a starting point. The side reflector has been switched
to a graphite over a beryllium core due to the ease of deployment and additional benefits witnessed
previously [18], as shown in Figure 2. The change from graphite is technologically favourable due to
the UK’s leading position with the operation of graphite moderated HTRs. The final design dimensions
are also available in the appendices in Tables A1–A3.
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3. Methodology

Due to the U-Battery’s small size, the peak fluxes as well as the resulting power distribution are
all heavily dependent on the central reflector (CenRef) of the annular core design. The central reflector
block is made solely of graphite, to aid the neutron moderation, this aspect can be utilised by removing
the moderation to reduce the criticality by spectral hardening. A similar approach is used during
the operation in the boiling water reactor [19], where the reduced coolant flow allows for reduced
moderation due to additional void content and thus changes the spectrum to reduce the criticality.

However, graphite is undergoing an altering process which changes physical its conditions during
irradiation [20,21]. This implies that graphite needs to be handled carefully over time, so the concept
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of moving the whole hexagonal block seems to be unrealistic due to the difficulties of mechanical
deformation of the material and the structural integrity of the core itself. It is proposed to maintain
structural integrity over time by keeping the outside structure of the hexagonal graphite block, only a
26 cm diameter column is cut out of the centre of the central hexagon as depicted in Figure 3. This first
approach can be optimised as soon as the first structural integrity evaluation is made available.

We believe, in the case of such a small core, that the removal of a singular volume of graphite is
more beneficial than multiple moderator rods. This is due to the simplicity of the control system and
the benefits of maintaining a symmetrical flux profile. It should be noted that for additional benefits,
the central reflector is not limited to graphite and could be made of more advanced moderating
materials such as yttrium hydride.
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When considering the task of reactivity control, the requirement for exceptional safety critical
systems is paramount. The IAEA safety guide [22] contains regulations that require control rods to be
fitted with an interlock to allow the system to be not triggered in unwanted situations. While moving
the central reflector block, a similar amount of safety confidence will be required, as the insertion at
the wrong time could cause the core to become supercritical. In addition, a fail-safe design system will
be essential, it is therefore suggested that the central reflector is inserted from the bottom of the core
upwards, this eliminates the risk of the central reflector of entering the core under accidental scenarios.

The control of a central column must be qualified to a similar degree as a control rod drive to pass
regulatory standards. This could be achieved in a similar affect as a mechanical jack, where each rotation
of the jack is limited to a single turn for the operators input to be limited and controlled. This would
provide a high safety factor and remove the potential hazard of unwanted criticality insertions.

There are several important aspects which must be investigated, when changing the system in
this manner to create a deeper understanding of the relevant effects. The first is the overall benefit
in reactivity control which can be gained from the procedure by producing a fuel lifecycle criticality
experiment. This experiment takes place by using an un-poisoned version of the U-Battery and the
three CenRef material positional arrangements conditions shown Table 1. During the removal of the
CenRef the gap left is modelled using helium to represent the coolant in the system.
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Table 1. CenRef positions considered.

Central Reflector Position Height of Central Reflector (m)

Fully inserted 3.2
Half inserted 1.6

Removed 0

At the point of 1.02 criticality, the central reflector is the directly re-inserted to determine the
long-term behaviour of the core and maximum lifetime.

The second test is to determine the effect on the power distribution due to the removal of the
central reflector and of the re-insertion. The central compacts are expected to deliver the highest
power, so removing the moderation will have most probably a positive influence on the overall power
distribution in the core the effect will be changed when the moderator is re-inserted. The changes
could lead to additional power peaking which could cause overheating.

All neutronic results presented are simulated through a Monte Carlo simulation routine using
the Serpent 2.1.27 [23], using data libraries JEFF 3.11 as shown in Figure 4. The simulations are
performed using a 100k neutron population with 25 inactive cycles and 25 active cycles to allow for
suitable flux convergence. The burnup procedure was produced using Serpent’s Chebyshev Rational
Approximation Method (CRAM) [24] burnup procedure with a maximum burnup step of 31 days to
reduce errors during the burnup steps.
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4. Results and Discussion

The initial test determines the overall criticality changes of the system over the period of the
possible reactor operation. This experiment models the total criticality without poisons with the
column in, out and half out. At the point in when the criticality is at 1.02, the column is reinserted to
determine the overall lifetime achievable.

Figures 5 and 6 show the initial criticality is dropped by 0.032 and 0.014 with the CenRef
withdrawal at full and half, with respect to the base model. From the consideration of HTR operation,
this is the point at which the reactivity control mechanism would have been activated to accommodate
this criticality drop to limit the excess reactivity in the core. There is still a significant distance until
reaching unity, which would have to be accommodated in a real design by a combination using FBPs
and control rods. However, the applied method of withdrawal of a part of the CenRef has shown a
clear drop-in criticality at initial start-up. At day 920 and 1085, the two withdrawn pieces of the central
reflector must be reinserted into the centre to keep the criticality above the considered limit level of
1.02. Both models show after reinsertion of the central moderator a slightly higher criticality than the
reference case.
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The slightly increased criticality is likely due to an increased build-up on 239Pu as hypothesised
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compared to the base model.

To analyse the 239Pu build up dependent on the position on the central moderator piece, a single
10 cm section at the centre of the axial fuel height was monitored to determine the overall 239Pu content
over the burnup of the core. The fuel compact is identified in Figure 7.
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At the beginning of the life of the core, there is zero content in 239Pu since 239Pu is not a content in
UO2 fuel. Plutonium is bred time as neutrons are captured in the 238U atom which is transmuted via
Neptunium into 239Pu. The development of the atomic densities of the 239Pu is recorded over burnup
and compared between the three systems in Figure 8.
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Figure 8. 239Pu build up over time with the different central reflector arrangements in the monitored
central pin.

The positioning of the observed piece of fuel used to monitor the material composition is important
as the system with half the reflector in is still partly benefitting from a large thermal spectrum across it
since it is close to the upper surface of the movable moderator block. This is shown by the similarities
to the base case in the system. When inserting the central reflector again, the half in system provided
minimal variation due to the position. In the case of the fully removed central reflector, the re-insertion
provides an immediate bend in the curve of the 239Pu concentration build up. Once the central reflector
is re-inserted more 239Pu is consumed than new build. This is an effect of the higher capture cross
section of 239Pu within the thermal energy range. This result reaffirms the conclusion that the additional
criticality is granted from the breeding of additional fissile material and answers the hypothesis that
the stored neutrons are capable of being re-deployed at a later stage.

The second step is to investigate the power distribution in the compacts of the fuel assembly at
the start-up of the reactor to see the effect of the absence of a major piece of the central reflector on
the power distribution in the fuel assembly. The following figures represent the powers production in
the fuel compacts based on the reaction rates across one half of the eastern fuel block with withdrawn
moderator piece and the reference undisturbed case as shown in Figure 9.
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Both figures show a pronounced power distribution with a reduced power production in the
centre of the fuel assembly and a clear increase of the power production in the compacts close to the
central and the outer reflector. This characteristic power distribution in an HTR fuel block can be
explained with the self-shielding of the fuel against the thermal neutron flux which is created in the
pure moderator regions. Highly thermalized neutrons are created in the graphite reflector which has
an extremely low absorption cross section for neutrons. As soon as the thermal neutrons are re-entering
the fuel block, there is a high probability to cause fission reactions, thus the thermal neutrons have a
low probability to reach the centre of the fuel assembly and cause fissions there. A close comparison
of the power production in the innermost row of Figure 9 indicates that the removal of a part of the
central moderator reduces the power production in the part of the fuel assembly close to the centre of
the core. The detailed analysis of the deviation of the power production between the reference case
and the case with extracted central moderator piece, given in Figure 10 shows a general power shift
away from the centre of the core as a part of the moderator is removed. This is important due to the
highest power pin being in the centre of the core which leads to a significant load reduction as the
power is shifted across the core to the fuel pins close to the side reflector. In addition, the control of
the reactivity must be assisted using burnable poisons and control rods. In most of the proposed fuel
block designs for block type HTRs, the burnable poisons are in the corner compacts of the hexagons,
since these are the positions which are exposed to the highest thermal neutron flux due to the location
close to the reflectors while the control rods are in the side reflector.
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Figure 10. The change in power (Central reflector out- central reflector in).

Figure 10 emphasises the drop-in power on the central pins, with an overall power drop of ~30%
during the full removal of the central reflector and a power increase of ~7.5% in the pins close to the
side reflector.

Axial power distribution is shown in Figure 11 for the operational point just before and after the
insertion of the central reflector piece. It is obvious that the total power is significantly reduced in the
central pins. The removal of the central reflector completely changes the power production in the pin
in Figure 7. Only the top and bottom of the pins produce identical power which could be explained by
the effect of the axial reflectors.
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5. Conclusions

This paper has briefly investigated a new type of reactivity control mechanism for a conceptually
design SMR HTR. The concept touches on the ability to preserve some neutrons during high reactivity
periods, for them to be utilised at a period later in the fuel cycle. This is achieved by breeding 239Pu
at a higher rate than would be normally active in the fuel cycle by reducing the neutron moderation.
This hypothesis was demonstrated that ~30% higher 239Pu production was witnessed at the point
before the moderator is re-inserted. The 239Pu concentration depleted once the central reflector was
reintroduced and this provided a large reactivity increase. This additional reactivity provided an
increase of full power days of the reactor by approximately 31 days which corresponds to a 2.5% longer
core lifecycle. It should be noted, that the present article demonstrates the concept of the moveable
moderator reactivity control. The design of the moveable moderator can be further optimised, such as
introducing the moveable moderator into the graphite reflector regions, concentric rings of graphite
in the central reflector to allow for more precise reactivity control. The drawback comes with adding
complexity into the control design, with the method demonstrated here focusing on the most simplistic
method available.

The second test tried to identify any possible penalties with the fuel power loading within the
core. In the case with the reflector removed, the overall power dropped by 30% within the highest
loading pins which must be recognised as a positive effect. The power was shifted gradually across
the core to the pins by the side reflector, which do not suffer from such high power as well as high
burnups. Thus, we have identified a significant advantage when considering the power and resulting
burnup distribution as the pins with the highest loading have had their power significantly reduced
without the aid of neutron poisons.

In conclusion, the overall effect of changing the moderation within the centre of the core provides
a two-fold benefit, initially with longer fuel life cycles and secondly with a better power distribution.

Author Contributions: S.A. implemented the system and performed the experiments. B.M. managed the project.
D.L assisted with the idea development.
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Appendix A

The original U-Battery report [9] stated that a five year fuel lifecycle could be achieved in the
core configuration in Figure 2. The initial aims investigated replicating these results by using the data
provided in the U-Battery manual, these values are represented in Tables A1–A3.

Table A1. Left: Radial dimensions and Right: Axial dimensions.

Radial Dimensions Axial Dimensions

Part Material Radius (cm) Part Material Height (cm)

Side reflector BeO 68 Side reflector BeO 370
Thermal insulation SiC 73 Thermal insulation SiC 370

Barrel Steel 75 Barrel Steel 370
Airgap Helium 80 Airgap Helium 370

RPV Steel 90 RPV Steel 678.058
Top helium Helium 183.158

Bottom helium Helium 96.9

Table A2. TRISO layers dimensions.

TRISO Layers Radius (cm)

Fuel 0.025
Buffer 0.034
PyCi 0.038
SiC 0.0415

PyCo 0.0455

Table A3. Material compositions.

Part Material Composition Mass Fraction Temperature (k) Density (g/cm3)

Side reflector BeO
Be 9 0.360

873.15 2.8O 16 0.640

Thermal insulation SiC
Si 28 0.500

973.5 3.2C 12 0.500

Barrel/RPV Steel

Ni 58 0.107

673.5 8

Ni 59 0.043
Ni 60 0.002
Cr 52 0.002
Mo 96 0.260
Fe 56 0.151
Si 28 0.076

Mn 55 0.149
C 12 0.032
P 31 0.084
S 32 0.171

Airgap/Top/Bottom
Helium Helium H 4 1.000 600 0.002

Fuel block/Central
reflector Carbon C 12 1.000 973.15 1.8

Fuel UO2

U235 0.176
1023.15 10.5U238 0.705

O 16 0.119

Buffer layer Carbon C 12 1.000 1023.15 1

SiC layer SiC
Si 28 0.500

1023.15 3.2C 12 0.500

Pyrolitic carbon inside Carbon C 12 1.000 1023.15 1.9

Pyrolitic carbon outside Carbon C 12 1.000 1023.15 1.87

Compact matrix Carbon C 12 1.000 1023.15 1.745
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