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Abstract: This study is focused on two areas: the design of a Battery Energy Storage System (BESS) for
a grid-connected DC Microgrid and the power management of that microgrid. The power management is
performed by a Microgrid Central Controller (MGCC). A Microgrid operator provides daily information
to the MGCC about the photovoltaic generation profile, the load demand profile, and the real-time prices
of the electricity in order to plan the power interchange between the BESS and the main grid, establishing
the desired state of charge (SOC) of the batteries at any time. The main goals of the power management
strategy under study are to minimize the cost of the electricity that is imported from the grid and to
maximize battery life by means of an adequate charging procedure, which sets the charging rate as
a function of the MG state. Experimental and simulation results in many realistic scenarios demonstrate
that the proposed methodology achieves a proper power management of the DC microgrid.

Keywords: DC microgrid; battery energy storage system; battery management system

1. Introduction

Nowadays, the increasing demand for electricity has encouraged the production of local energy
by means of the integration of Microgrids (MGs) into the main grid [1]. The MGs are low power
distribution systems which have distributed generation (DG), energy storage systems (ESSs) and a variety
of loads. The DG is mainly composed by Renewable Energy Sources (RESs) such as PV systems, wind
turbines, biomass, etc., whose intermittent nature produces strong power imbalances in the MG that can be
compensated by the main grid or by the ESSs operating in the MG. A MG example is shown in Figure 1a,
where the term PCC stands for the Point of Common Coupling with the main grid.

ESSs are a fundamental part of MGs, because they allow for a better utilization of the RESs,
contributing to the MGs stability and reliability [1,2]. The DC microgrid under study in this work
is depicted in Figure 1b. The Battery Energy Storage System (BESS) is formed of: (i) a battery bank,
(ii) a Battery Management System (BMS) [3] and (iii) a DC/DC converter. It is important to point out
that batteries are considered among the best energy storage devices, due to their quick technological
evolution in smart grids and electric vehicles [4]. The essential characteristics of a battery are: the energy
storage capacity, the efficiency, the lifetime (expressed in the number of cycles) and the operation
temperature. The kind of batteries that are most commonly used in MGs for energy storage applications
are Lead Acid (LA) or Valve regulated lead acid (VRLA) and lithium-ion (Li-ion) batteries [5–8]. In [6],
a study was carried out on the most relevant characteristics in the selection process of the suitable
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battery technology for different applications. The main characteristics of the most widely used battery
technologies in MGs are described in Table 1. LA batteries are widely used in MGs, because their
implementation cost is the lowest among all usual technologies. In addition, this kind of batteries
provides an acceptable performance and a great robustness. Nevertheless, their main drawback is their
relatively short cycle life (1500–9000 charge/discharge cycles). On the contrary, Li-ion batteries have
a long cycle life (>10,000 cycles) and their efficiency is approximately 95%, but their implementation
cost is high (>USD 350/kW·h) [9] Moreover, the BMS of Li-ion batteries is more complex than that
of VRLA batteries, due to the need for inner cell protections against overcharges and cell voltage
equalization circuits [7,10,11].
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Figure 1. MG with central controller: (a) MG control system and intercommunication network; (b) DC
Microgrid under study.

Table 1. Main characteristics of the most widely used battery technologies in MGs.

Battery Type Power Rating
(MW) Discharge Time Life Time

(Years)
Cycle Life
(Cycles)

Reliability and
Efficiency (%)

Cost
(USD/kW·h)

Flooded Lead
Acid, VRLA 0–20 Seconds–hours 5–15 1500–9000 70–90% 180–300

Lithium ion 0–0.1 Minutes–hours 5–15 >10,000 Close to 100% 350–1100

Regarding the power management in the MGs, one of the crucial challenges is to keep the power
balance between the generation and the demand. The power imbalance is a common scenario in
MGs, being caused by the discontinuity in the energy generation or by the changes in the power
demand. Nowadays, adequate strategies have been developed to manage the power dispatch in the
MGs, which can be: centralized, decentralized or distributed [12–21].

In the decentralized and distributed control strategies the power management and control are
integrated in the local controllers of the DGs and ESSs, so that in the case of malfunction of any device,
the MG can properly operate after the disconnection of the faulty unit. According to [1], some decentralized
control strategies based on the droop method [20] do not need the implementation of a communications
system and provide the plug and play function of DG units. Nevertheless, a communication system is
necessary for monitoring the power dispatch in the MG so that the power dispatch can be optimized and
the status of each power unit can be known [17]. The main limitation of distributed control strategies takes
place in environments with large communication delays and measurement errors, which brings about
problems in the convergence speed and stability margins of the controls [1,17,18].

Centralized control eases the optimization of the power distribution in the MG by coordinating
the power devices by means of a smart centralized system operating through a communication system.
A Microgrid Central Controller (MGCC) acquires system data and sets the power to be managed by
each of the converters under operation, broadcasting power references to all the power devices in the
MG, such as DGs, loads, ESSs, etc. [21].
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Centralized control is suitable for small-scale microgrids with a low number of DGs an ESSs [1,21].
In this paper a MGCC performs the power management algorithms which can run on microcontrollers
which provide simple communications [22].

This study is focused on two areas: the design of a Battery Energy Storage System (BESS)
for a grid-connected DC microgrid and the power management of that MG. The goals of the grid
connected MGs power management have been studied in previous works [16–23]. For optimizing the
management of the energy generation and consumption, data like electricity tariffs, weather forecast or
energy demand are used [23]. Recently, price schemes have been used in the literature to optimize the
economic benefits of producers and consumers [24–28]. An industrial application of optimal operating
strategies was presented in [27]. In [24], an optimal management model for residential facilities with
Vehicle-to-grid (V2G) systems was presented. In those management systems battery wear and energy
costs were considered. In [25], a home power management system was proposed to minimize electricity
cost and reduce high peak demand while maintaining user comfort. The algorithm that is presented
in [28] finds an appropriate time of charging with low cost for electrical vehicles based on prediction
of energy prices during the charging period. Most techniques optimize the power consumption over
a single day, but in [27] a monthly bill was considered, for performing a multi-day optimization.

The main contribution of this work is the development of a power management strategy implemented
in an MGCC for minimizing the cost of electricity in a grid connected DC microgrid and maximizing battery
life. The MGCC receives from the MG operator the daily information about the prices of the electricity and
the expected profiles of photovoltaic generation and load demand. The MGCC establishes the desired state
of charge (SOC) in the BESS during the whole day. The proposed strategy takes advantage from the RESs
and adjusts the battery energy storage through a suitable charging procedure. A BESS specially designed
for DC microgrids is studied, whose BMS performs a charging procedure according to DIN 41773 [29,30]
whenever it’s possible. The BMS guarantees the proper operating conditions of the batteries, as specified
by the manufacturer [29,30]. This approach maximizes the lifetime of the batteries and, consequently,
minimizes the costs of their replacement [3,11]. The goal of the BMS is to charge the batteries with the excess
of renewable generation and from the grid when the electricity tariff is low. If the SOC is below a certain
minimum value and the renewable generation cannot charge the batteries alone, the extra power needed
to charge the batteries will be imported from the grid with a value lower than or equal to the contracted
power, no matter the electricity tariff. If the power which can be imported from the grid is enough to charge
the batteries according to a DIN 41773 procedure, the batteries are charge accordingly. If not, the batteries
are charged with a lower power.

This strategy allows to charge the batteries during off-peak hours, when kW·h is cheaper, and selling
their energy to the main grid during peak hours. The charging rates and the available power for charging
the batteries are adjusted based on a target SOC that is defined for several time intervals during a day,
i.e., the BMS adjusts the charging rates based on the MG state. Furthermore, the modeling of the BESS by
means of an accurate electrical second order model of the batteries is presented.

This paper consists of six sections. In Section 2 a brief overview of the Battery Management Systems is
performed. Subsequently, a BESS specific design proposal for DC microgrids is described in Section 3. Then,
all the concepts related to the proposed power management algorithm are explained in Section 4. Simulations
and experimental results are described in Section 5. Finally, Section 6 draws the conclusions of this paper.

2. Overview of Battery Management System in MGs

The main goals of a BMS that allow for an adequate operation of the batteries and to extend their
service life are: (i) to operate the batteries according to an adequate SOC; (ii) to control the maximum
charging/discharging current and voltage [3], as specified by the manufacturer; and (iii) to set a proper
depth of discharge (DOD) of the batteries [3–31]. In this work the maximum allowed value of the DOD is
65%, which is slightly smaller than the maximum recommended value for VLRA batteries (70%), which can
be found in literature [8].
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The BMS should implement an appropriate charge/discharge procedure of batteries that
guarantees their operational conditions, as specified by the manufacturer. These procedures can
be: charging batteries at constant current (CC) or constant voltage (CV). However, the RESs of the
MGs may have power fluctuations that cause sudden variations in the available power for charging
the batteries. Those sudden variations increase the BMS complexity and require the use of advanced
techniques to manage the battery charging process [31–34]. In [32,33], some battery charging algorithms
and their limitations have been reported. Other parameters that increase the BMS complexity are the
kind of battery used and the estimation techniques of both the SOC and the state of life (SOL) [11].
Nevertheless, the battery life time is complex, because it depends on temperature variation, corrosion
and maximum charge/discharge currents [4,6], etc. A comparative summary about some BMSs
reported in the literature for diverse applications is shown in Table 2.

The SOC represents the available charge that is stored in the battery compared with the rated
capacity charge of the battery. The SOC cannot be directly measured from the batteries and it is
used to determine the power that can be extracted from them. In the literature, different methods
to estimate the SOC are presented: the Ampere-hour integral or Coulomb counting method [35],
the open-circuit voltage method [36], the electrochemical impedance spectroscopy method [37],
machine learning-based methods [38], kalman-filter based methods [39], sliding mode observer
methods [40], and the adaptive-gain nonlinear observer method [41], among others. The first four
methods do not need to establish the battery model, so that they are called Non-model based methods.
These methods cannot correct errors caused by the SOC incorrect initialization and the external
perturbations [42]. The BMS proposed in this work has the following subsystems:

• Battery monitoring: This subsystem includes voltage, current, impedance and temperature
measurements. The monitoring allows for calculating the battery parameters: SOC, SOL, DOD
and State of Health (SOH), yielding an estimation of the battery model. The SOH represents
an estimation of the capacity of the battery to store and deliver energy, compared with a new
battery [43]. The SOL is similar to the SOH. However, the SOL is defined in literature as the
remaining time until the battery needs to be replaced [11]. It is possible to estimate the SOL,
saving the data corresponding to the DOD values and the temperatures at which the batteries have
been exposed [44]. The BMS of this paper uses the SOH concept. In order to estimate the SOH
of the batteries, some studies [35] consider the following expression: SOH (%) = (QMAX/QRated)
100%; where QRated is the rated capacity and QMAX is the maximum releasable capacity when the
battery is fully charged, which will decline with the used time.

• Battery protection: Protection can be implemented in both the hardware and the software.
This includes protection and diagnosis in the following situations: high temperature, overcharge,
overcurrent and the communication loss with the system.

• Battery control: This subsystem is responsible for the battery charging procedure. Its goal is to
extend the service time of batteries and to allow for a proper energy management in the system.

• Communication system: This subsystem informs a central controller about the parameters of
the batteries in order to manage the power dispatch of the MG. These communications allow for
an interface with the user and the interaction with the power management in the MG.

In this paper, the design of a BESS for a DC microgrid is presented. The BESS is based on a BMS that
optimizes the energy storage and implements an adequate charge procedure, which changes the charging
rate and plans the SOC of the battery depending on the MG scenarios. The BMS has all the elements
summarized in Table 2 [45–59]. A battery electrical model is described, which allows for determining all
the static and dynamic characteristics of the battery. This model is necessary to design the control loops
of the power converter of the BESS taking into account all the involved variables. Overall, the batteries
can be approximated to a voltage source in series with RC elements (Resistor-Capacitor), where each one
represents a specific dynamics for every charging condition [41,60,61].
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Table 2. Comparative table of some battery charging systems.
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– (1) • – – – – – – – • Uninterruptible
power supplies [45]

• • – – • • • • • • DC Microgrid [46]

– • – • • • • – – • Uninterruptible
power supplies [47]

– • – • • • – • • – Portable electronic
devices [48]

• – • – • • – – – – Motorcycles, cars,
wheelchairs, UPS [49]

– – – • • • – – – • Portable
electronics devices [50]

– – • • • • – • • • Portable
electronics devices [51]

– • • • • • – • • – Hybrid electric
vehicles [52]

– – – • • • – • • • Portable
applications [53]

• • – – • • – • • • DC Microgrid [54]

– • – • • • – – – – Electric vehicles [55]

– • – • • • – • • – Motorcycles, cars,
wheelchairs [56]

• • – • • • – – – – Photovoltaic
systems [57]

– • – – • • – – – –
Hybrid electric

vehicles and
Electric vehicles

[58]

– • – • • • – – – – Photovoltaic
systems [59]

(1) A (•) indicates that it falls in the category specified in the column heading; a (–) indicates that it does not.

3. Design of the Battery Energy Storage System

The BESS keeps the power balance at the DC bus of the MG. The BESS is composed by: (i) a battery
bank, (ii) a BMS and (iii) a DC/DC converter. In this Section, all the power conversion processes have
been modeled. The battery model, the BMS and a description of the converter control are shown in the
following Subsections.

3.1. Selection of the Battery Bank

The capacity of the battery bank is selected to fulfill the following criteria: (i) batteries can be
discharged if the available power on the DC bus is lower than that necessary at the MG or when
the electricity tariff is high; (ii) batteries must be charged during off-peak times with the surplus of
energy which is available from the RES if there is such a surplus. If not, some power from the main
grid will be imported for charging the batteries; (iii) the batteries initial cost must be low. However,
there’s a trade-off between saving money from the electricity tariff, which requires a big battery bank,
and obtaining a low cost of the battery system. In order to make both of the goals compatible, a low
cost battery technology has been chosen. Furthermore, a value of the DOD (DOD = 65%) close to the
maximum recommended [8,29] one has been aimed in the proposed BMS, in order to get a reasonable
size of the battery bank. For this study, the power profile of the photovoltaic generation (PPV

Profile),
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the power consumed by the loads (PLoad
DC_Profile) and the tariff costs according to the time of use (TOU) of

electricity are taken as reference. This is shown in Figure 2a.
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The PV generation decreases from 16:00 h to 19:00 h, as can be seen in Figure 2a. At this time, the power
demand is higher than PV generation and the TOU price is on peak. At this point, the batteries should have
stored enough energy to fulfill the power demand of the MG. Equations (1) and (2) allow for determining
the number of batteries that is needed to accomplish this last objective. In (1) and (2), PBat

Available stands for the
available power that the batteries should supply during a time interval ∆t, supposing that they have been
fully charged to a value SOC > 95% before. The time instant when the battery discharge interval starts is
called to. VBattery

Selected is the rated voltage of the battery.
In this work, a VRLA battery has been selected, model: SUN POWER VRM 12V105 (HOPPECKE,

Brilon, Germany). Its characteristics are shown in Table 3 [62]. As it can be seen in Figure 2a,
the average power consumed by the load from 16:00 h to 24:00 h (to = 16 h, ∆t = 8 h) is 2.7 kW and
this average power should be provided by the batteries. PBat

Available
∼= 2.7 kW during that time interval,

∆t. The number of batteries of the battery bank is obtained from Equation (2). It is composed of
18 batteries of 12 V connected in series, with a battery bank rated voltage of VBat

Rated = 216 V. The battery
bank is charged/discharged from/to the DC bus of the MG by means of a 3 kW bidirectional
half-bridge DC/DC converter, as shown in Figure 2b. The LC output filter of the DC/DC converter
has an inductance value, LBat, which has been calculated taking into consideration: (i) the maximum
ripple current allowed by the batteries, and (ii) the ripple current through LBat, ∆IBat

L , should guarantee
the continuous current conduction mode if the current is higher than 10% of the maximum current.
The value of LBat is calculated from Equation (3), where VDC is the DC bus voltage and Fsw is the
switching frequency of the converter [49]. The values of the input and output capacitances, Ci and Co,
can be calculated from (4) and (5), respectively.

PBat
Available =

1
∆t·DOD

·
∫ to+∆t

to
(PPV

Pro f ile − PLoad
DC_Pro f ile)·dt (1)

NumberBatteries =

∣∣PBat
Available

∣∣·∆t

QRated·V
Battery
Selected

(2)

LBat ≥
VBat

Rated
4·∆IBat

L ·FSW
(3)
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Ci ≥
PBESS

HB−Rated
2·VDC·∆VDC·FSW

(4)

Co ≥
IBat
Max

2·∆VBat
Max·FSW

(5)

Table 3. BESS specifications.

DC/DC Converter
Battery Specifications Battery Bank Parameters

for Complying DIN 41773Sun Power VRM 12V105

PBESS
HB_Rated = 3 kW VBattery

Selected = 12 V −10 ◦C < TBat < 45 ◦C
Fsw = 16 kHz IBat

MAX = 20 A VBat
Min = 194 V

Ci = 1 mF VBat
Rated = 216 V VBat

MAX = 260 V
Co = 1 mF QRated = 105 A·h IBat

tail = 1 A
LBat = 5.4 mH Q100 = 101 A·h tCh < 48 h
ηBESS = 0.97 ∆VBat

MAX = 0.02·VBat
Rated IC5 ∼= 20A

VDC = 400 V ± ∆VDC ∆IBat
L = 0.1·IBat

MAX IC20 ∼= 5A
∆VDC = 20 V DOD = 65%

3.2. Modeling of Battery Bank

The electric model of the battery bank used in this study is similar to that developed in [61], being shown
in Figure 3. It has an open-circuit voltage source depending on the SOC, VBat

OCV (SOC), connected in series
with a resistor and a second-order R-C circuit that represents the transient response of battery. The impedance
of the battery bank is represented by Equation (6) and the battery voltage by Equation (7).

ZBat(s) = RBat
Serie +

RTransient
Fast

s·RTransient
Fast ·CTransient

Fast + 1
+

RTransient
Slow

s·RTransient
Slow ·CTransient

Slow + 1
(6)

VBat(s) = VBat
OCV(SOC)− IBat·ZBat(s) (7)

The electric parameters of the chosen VRLA battery bank are shown by Equations (8) to (13)
and have been obtained with an identical procedure to that shown in [60,61]. Those Equations are
valid for SOC > 0.1. Taking into account that SOC in this work is kept higher or equal than 0.35,
Equations (8) to (13) are valid in this study.

VBat
OCV(SOC) = 202.52 + 16.29·SOC − 6.36·SOC2 + 24.19·SOC3 − 55.67·e−35·SOC (8)

RBat
Serie = 8.4348·e−24.37·SOC + 2.0208 (9)

RTransient
Fast = 17.3232·e−29.14·SOC + 2.5212 (10)

CTransient
Fast = −14.1278·e−13.51·SOC + 13.0296 (11)

RTransient
Slow = 356.562·e−155.2·SOC + 2.6913 (12)

CTransient
Slow = −112.1481·e−13.51·SOC + 82.8704 (13)
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Figure 3. Second order model of the battery bank.

3.3. Small-Signal Model of the BESS

The small-signal model of the bidirectional half-bridge DC/DC converter is shown in Figure 4.
That model has been derived from an averaged model where any electrical value x has a static term
at the operation point, X, and a small-signal dynamic term, x̃, being: x = X + x̃. When the batteries
are being charged with a charge current IBat

L(Ch), the converter works as a Buck converter, as depicted

in Figure 4a. When the batteries are being discharged with a discharge current IBat
L(Dis), the converter

works as a Boost converter, see Figure 4b. The transfer functions in Equations (14) and (15) are obtained
from Figure 4. They are used to design the controllers in charge mode (Ch) or discharge mode (Dis) of
the battery bank.

ĩBat
L(Ch/Dis)

d̃
(s)

∣∣∣∣∣∣
ṽDC=ṽBat

OCV(SOC)=0

=
VDC

s·LBat + 1
s·Co+ 1

ZBat(s)

(14)

ṽBat

ĩBat
L(Ch)

(s)

∣∣∣∣∣∣
ṽDC=ṽBat

OCV(SOC)=0

=
1

s·Co + 1
ZBat(s)

(15)
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Figure 4. Small-signal model of the half-bridge DC/DC converter: (a) Buck small-signal model, charge
mode (Ch); (b) Boost small-signal model, discharge mode (Dis).
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3.4. Control Loops Design of the BESS

The BESS works from a BMS that sets either the charge of the batteries at constant current (CC)
or constant voltage (CV), or the discharge of the batteries at a constant current. The block diagram
of the current control loop and of the voltage control loop of the BESS are shown in Figure 5. GBat

IL (s)
and GBat

V (s) blocks represent, respectively, the transfer functions of the current and voltage regulators.
Fm is the gain of the PWM modulator. TBat

IL(Ch/Dis)(s) is the transfer function of the open loop gain of

the current loop, either in charge (Ch) or in discharge (Dis) mode. TBat
V (s) is the transfer function of the

open loop gain of the voltage loop in battery charge mode.
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The Bode plots of the current loop TBat
IL(Ch/Dis)(s) for different values of the DC-bus voltage, VDC,

are shown in Figure 6a. The controller was designed in the analog domain, taking into account
a digital delay of a sampling period, Td = Tsamp, and discretized in the Z domain by using the Tustin
transformation. The sampling frequency was Fsamp = 16 kHz = 1/Tsamp, which agrees with the switching
frequency, FSw. The current regulator, GBat

IL (s), is adjusted to get a crossover frequency of the current
loop: Fci = 500 Hz < FSw/20, with a phase margin around 60 deg. The Bode plots of the voltage loop,
TBat

V (s), for different values of the SOC are shown in Figure 6b. The voltage regulator GBat
V (s) has been

adjusted to get a crossover frequency of the voltage loop: Fcv = 12.6 Hz < Fci/20, with a phase margin
around 90 deg. The transfer functions of the regulators are summarized in Table 4. The BESS control
loops are robust to any change in the battery charge/discharge currents, SOC, battery voltage and
changes of the DC bus voltage, because the battery model is practically constant when the SOC is
higher than 10%, which is a suitable working range for the batteries.
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Table 4. Transfer functions of the BESS controllers and loop gains.

Description Transfer Function

Low Pass Filter LPF(s) = 1
1.09·10−9·s2+9.91·10−5·s+1

PWM Modulator gain Fm = 1
VPP

= 1
Battery Current-loop regulator GBat

IL (s) = 0.0453·(1+s·0.018)
s·0.018

Battery Voltage-loop regulator GBat
V (s) = 0.0806·(1+s·0.0041)

s·0.0041

Current Charge/Discharge-loop gain TBat
IL(Ch/Dis)(s) = GBat

IL (s)·e−Td·s·Fm·
ĩBat
L(Ch/Dis)

d (s)·LPF(s)

Voltage-loop gain TBat
V (s) = GBat

V (s)·
TBat

IL(Ch/Dis)(s)
TBat

IL(Ch/Dis)(s)·LPF(s)+1 ·
ṽBat

ĩBat
L(Ch)

(s)·LPF(s)

3.5. Design of the BMS

The BMS is designed to fulfill the following objectives: (i) To broadcast the SOC of the batteries
to the MGCC (ii) To coordinate the charging/discharging of the batteries depending on the power
management strategies that are established by the MGCC and (iii) To adjust the parameters of the
battery charge procedure depending on the MG state. The proposed BMS structure for the DC
microgrid is shown in Figure 7.

The BMS has the following subsystems:
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• Battery Monitoring: It measures the battery parameters: current, voltage and temperature of
the battery bank (IBat, VBat y TBat). The initial SOC, DOD and SOH are estimated. A data table
is stored corresponding to the amount of charge/discharge cycles, the battery model and its
initial impedance.

• Battery Protection: The batteries are protected against overcharge, overcurrent, high temperature,
communication loss and connection loss. The BMS sets the maximum charging/discharging
current, the advisable SOC, the battery voltage and the maximum temperature.

• Battery Communication: The communication allows for the optimization of the battery
charging/discharging process. In charge mode, the MGCC sends to the BESS information about
the available power to charge batteries (PBESS

ref ) and the time (tref) in which the BESS keeps this
power. In addition, the MGCC sends the desired SOC (SOCref) of the batteries, to be reached in
a time tref. The BESS informs the MGCC about the current SOC and the absorbed/injected power
from/to the DC bus by the BESS.

• Battery control: The current/voltage vs. time curves of the charge procedure of the battery bank
are shown on the right side of Figure 7. First, the batteries are charged to a constant current (CC)
until a maximum charging voltage is reached. At this point, the control is changed to constant
voltage (CV) in the batteries. The procedure is based on adjusting the current and voltage charging
parameters of the batteries as a function of the MG state and complying with the DIN 41773
specifications [29] at the same time. The charge procedure is done by adjusting the battery current
and voltage according to the temperature of the batteries and to the available power at the DC bus.
In addition, the batteries can be charged or discharged depending on the cost of the electricity
tariff and on the power availability at the RESs of the MG.
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Figure 7. Proposed Battery Management System.

Battery Management Algorithm:
The battery management algorithm implemented in the BMS is shown in Figure 8 and it is

described in the following.
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Figure 8. Battery charging algorithm.

The BMS receives three control parameters from the MGCC through RS485 serial communications.
These parameters are: (i) the target SOC (SOCref); (ii) the available/necessary power for
discharging/charging the batteries (PBESS

ref ) to/from the DC bus; and (iii) the time interval tref, during
which the BESS must reach SOCref with the available power at the DC bus.



Energies 2018, 11, 1889 13 of 31

The BMS has three inputs that are produced by sensors: the signals from the battery current
sensor, from the battery voltage sensor and from the battery temperature sensor, corresponding to IBat,
VBat and TBat, respectively.

The SOC of the batteries can be calculated from Equation (16), where a positive (negative) value of
IBat represents a charging (discharging) current of the battery bank. QRated stands for the rated battery
bank capacity in A·h. QDis(Ch), expressed by Equation (17), is the expected dis (charge) capacity in A·h,
which depends on the dis (charge) rate. ηDis(Ch) is the dis (charge) efficiency [10]. The value of QDis(Ch)
can be obtained by means of a linear interpolation of the curves of the battery capacity provided by
the manufacturer [62].

SOC(t) = SOC(0) + ηDis·
∫ t

0

IBat(t)
QRated

·dt where ηDis(Ch) =
QDis(Ch)

QRated
(16)

QDis = 104.6654 − 1.6456·
∣∣∣IBat

∣∣∣ (17)

The battery bank charge power is given by the Equation (18) and the power absorbed by the BESS
from the DC bus is represented by (19).

PBat = IBat·VBat (18)

PBESS =
PBat

ηBESS
(19)

Taking into account that PBESS
ref stands for the power setpoint to charge the batteries sent by the

MGCC to the BESS, the operating mode of the BESS is set as follows: If PBEES_ref > 0, the BESS will
work in charge mode (‘Mode = 0’), otherwise, the BESS will operate in discharge mode (‘Mode = 1’).

Note from Figure 8 that there is a ramp function expressed by Equation (20) that changes the
value of PBESS

ref inside the BESS, PBESS
ref (k), progressively from an initial value PBESS

ref (k−1) until it reaches the

value PBESS
ref set by the MGCC, so that soft power transitions are performed. PBESS

ref (k) can be expressed
by Equation (21). In (20) and (21), the variable “t” represents the time, while “k” represents the index
of the last calculated sample of the power reference. When the value of k increases from (k − 1) to
k, the resulting time step is 100 ms. During the 100 ms span, 100 different intermediate values of the
power reference are used to ramp between PBESS

ref (k−1) and PBESS
ref (k) each intermediate value is kept during

1 ms (∆tRAMP). Other stepsize values are possible, but the chosen values have provided good practical
results. Thus, the BESS avoids fluctuations in the DC bus due to abrupt bidirectional changes in the
power setpoint, PBESS

ref .

r(t) =
t

100·∆tRAMP
, (0 ≤ t ≤ 100 ms) (20)

PBESS
re f (k) = PBESS

re f (k−1) + (PBESS
re f − PBESS

re f (k−1))·r(t) (21)

If ‘Mode = 1’ (discharge mode). On the contrary, if ‘Mode = 0’, the BMS calculates the power
required (PBat

Required) to reach the target SOC in the time interval tref. PBat
Required is given by Equation (22).

The charging procedure DIN41773 is carried out. The batteries are charged at CC until a maximum
charging voltage is reached. If PBat

Required < PBESS
ref (k), the batteries will be charged with current IBat

(Ch)
calculated from Equation (23) and the SOCref will be reached in the specified time tref. Otherwise,
the batteries will be charged with a current IBat

(Ch) given by Equation (24) and the SOCref will not be
reached in the desired time, because the current available power is not enough.

When the maximum charging voltage VBat
(Ch) is reached, the batteries are charged at constant voltage.

The value of VBat
(Ch) depends both on the temperature and on the charging current of batteries. The current

dependence, VBat
(Ch) (IBat

(Ch)), and the temperature dependence, VBat
(Ch) (TBat), are shown by Equations (25) and

(26), respectively. Equation (25) provides VBat
(Ch) for charging the battery at a given current according to
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the charge procedure that was recommended by the manufacturer [62]. The recommended value of VBat
(Ch)

may be lower because of the battery temperature (26). Finally, the value of VBat
(Ch) is given by Equation (27).

The minimum and maximum values of the charging current suggested by the manufacturer of the chosen
batteries are: IC20 = 5 A and IC5 = 20 A, being C20 and C5 the specified battery capacity (measured in A·h)
for a discharge time of 20 h and 5 h, respectively.

PBat
Required =

(SOCre f − SOC)·QRated·VBat
Rated

100%·tre f ·ηDis
where SOCre f > SOC (22)

IBat
Ch = MIN

[
PBESS

HB−Rated·ηBESS

VBat
Rated

,
PBat

Required

VBat
Rated

]
(23)

IBat
Ch = MIN

[
PBESS

HB−Rated·ηBESS

VBat
Rated

,
PBESS

re f (k)·ηBESS

VBat
Rated

]
(24)

VBat
Ch (IBat

Ch ) =
(VBat

Max − VBat
Min)·IBat

Ch
IC5 − IC20

+ 249.2 V (25)

VBat
Ch (TBat) = 267.7 − (0.49·TBat + 3.8·TBat2 − 0.67·TBat3 + 0.01·TBat4)· 10−3 (26)

VBat
Ch = MIN

[
VBat

Ch (IBat
Ch ), VBat

Ch (TBat)
]

(27)

Once the current that was absorbed by the batteries is lower than a pre-set tail current (IBat
tail ) or

after a certain charging time (tCh) has elapsed, the battery voltage is kept at a floating voltage value
(VBat

Float) that is expressed by Equation (28). This Equation is obtained from the polynomial interpolation
of the floating voltage curves which were provided by the manufacturer [62]. It can be observed that
the value of VBat

Float depends on the battery temperature.

VBat
Float(T

Bat) = 253.5 − (0.62·TBat − 3.1·TBat2 + 0.41·TBat3) ·10−3 (28)

If ‘Mode = 1’ (discharge mode), the BESS operation switches to discharge mode and the discharge
current is calculated from Equation (29).

IBat
Dis = −MIN

 PBESS
HB−Rated

ηBESS·VBat
Rated

,

∣∣∣PBESS
re f (k)

∣∣∣
ηBESS·VBat

Rated

 (29)

4. Centralized Power Management Algorithm of the DC Microgrid Tied to the Main Grid

In this Section a centralized power management algorithm for the grid-connected DC Microgrid is
described. The DC microgrid consists of: (a) a MGCC; (b) an interlinking converter (ILC) connected to
the main grid which regulates the DC bus voltage; (c) two DC/DC converters operating as controlled
current sources interchanging their power with the DC bus; (d) four DC loads with their respective
electronic switches; (e) an RS485 serial communication system and (f) the MG operator. Figure 9a
depicts the placement of the power converters operating in the DC microgrid.

The MGCC receives the information from the MG operator about of the prices of the electricity,
of the photovoltaic generation and of the load demand. The MGCC extracts the minimum possible
power from the grid to the MG to reduce the electricity bill. If there is an excess of available power
at the PV generation and if the SOC of the batteries is adequate, the surplus power can be injected
from the MG to the grid under the limit which was determined by the MG operator. As a last resort,
the MGCC depending on the SOC, can implement a load shedding functionality to decrease the power
which is absorbed from the grid and avoid the batteries undercharging.
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The Power Management Algorithm of the MG

The parameters broadcasted among the power converters, MG operator and the MGCC are shown
in Table 5. The MGCC establishes the daily planning of the power dispatch in the MG, depending on
the reference profiles sent by the MG operator to the MGCC. The evolution in time during a day of the
reference profiles (PPV

Profile, PLoad
DC_Profile, PMAX

Grid−to−MG, PMAX
MG−to−Grid and TOU) is shown in Figure 9b. PPV

Profile

is the PV power profile, PLoad
DC_Profile is the profile of the power consumed by the DC loads. PMAX

Grid−to−MG is

the maximum power that can be imported from the grid to the MG and PMAX
MG−to−Grid is the maximum

power that can be exported from the MG to the grid.Energies 2018, 11, x FOR PEER REVIEW  15 of 31 
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microgrid; (b) Graphics of the power profiles and of the charge process of the batteries (Case 0).
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Table 5. Parameters broadcasted between the power converters of the DC microgrid and the MGCC.

MGCC MG Operator
Power Converters

ILC BESS PV DC Load

Output
reference values (1) VDC_ref

PBESS
ref

SOCref tref
PPV

Lim_ref
Swref = {Sw1ref,

Sw2ref, Sw3ref, Sw4ref}

Input

Reference Profiles Input measurement (2)

PMAX
Grid−to−MG,

PMAX
MG−to−Grid

TOU, PPV
Profile,

PLoad
DC_Profile

PGrid
SOC

PBESS Po
PV PDC

Load

(1) Control references sent by the MGCC. (2) PGrid is the power injected from the MG to Grid; Po
PV is the PV generated

power and PDC
Load is the power consumed by the DC loads.

The power management algorithm of the MG is shown in Figure 10 and it is executed every 1 s (1 Hz),
performing the request of the measurements of PBESS, PDC

Load, Po
PV, PILC

AC and SOC, and transmitting the
references to the MG devices. The MGCC selects one of six possible power management cases during the
whole day and calculates the reference values, which are transmitted to all the power converters under
operation. The cases depend on the scenarios of the MG and are summarized in Table 6. The daily power
management is carried out according to the following time intervals:

0 < time < 0.4 h
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Figure 10. Power management algorithm implemented.

Case 0: At the beginning of each day, case 0 is applied. In the Case 0, the MGCC requests to the
MG operator the daily reference profiles, which are stored in a data table. Based on this information
the MGCC plans the power dispatch at the MG. The maximum powers extracted/injected from/to the
grid to/from the MG are established by Equations (30) and (31), respectively. The maximum powers
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injected/extracted from/to the DC bus to/from the grid by the ILC are calculated by Equations (32)
and (33) respectively. ∣∣P̂Grid

∣∣ ≤ PMAX
Grid−to−MG (30)

P̂Grid ≤ PMAX
MG−to−Grid (31)

P̂ILC
DC ≤ MIN

(
PILC

rated,
PMAX

MG−to−Grid
ηILC

)
(32)

∣∣∣P̂ILC
DC

∣∣∣ ≤ MIN

(
PILC

rated,
PMAX

Grid−to−MG
ηILC

)
(33)

As it can be seen in Figure 9b, the BESS works in charge mode during off-peak hours (TOU is
off-peak), when kW·h is cheaper and when the PV power profile is enough to energize all the DC loads
(PAvailable

DC_Profile > 0). The available power profile (PAvailable
DC_Profile) at the DC bus is given by Equation (34).

Table 6. Summary of the cases applied set by the MGCC.

PV

BESS

DC Load Output References
Mode Charging

Procedure

C
as

e
0 Case 0 is applied at the beginning of each day. The MGCC performs the daily planning of the power dispatch at the MG.

To perform this, it uses the data of the power profiles and TOU sent from the MG operator.

C
as

e
1

PV = Off Charge mode CC-CV based on
Equation (46)

Load shedding
funtionality

PBESS
ref =Equation (46), SOCref = 100%

tref = tinitial, Swref = {0 or 1}

Case 1 indicates that the power management profile predicted for the day has not been correctly fulfilled. This case is
applied when there is not power available at the DC bus, the SOC is less than 90% or when the case 0 has failed. In this
case, the MGCC complies with the power limit established by the MG operator, without taking into account the electricity
tariff in the power management of the MG. The BESS will operate in charge mode, but won’t be able to assure the
DIN41773 charge procedure.

C
as

e
2

PV = Off Charge mode DIN41773 All Loads
Connected

PBESS
ref = Equation (38), SOCref = Equation (37)

tref = tinitial, Swref = {1, 1, 1, 1}

Case 2 is applied when there is not PV generation, the SOC is less than 90% and the TOU is off-peak. The MGCC
establishes the target SOC (SOCref = Equation (37)) at the time interval tinitial and with a constant power to charge the
batteries. In this case, the BESS can fulfill the DIN41773 charge procedure.

C
as

e
3

PV = On
On MPPT Charge mode DIN41773 All Loads

Connected
PBESS

ref =Equation (36), SOCref= 100%
tref = tfinal − tinitial, Swref = {1, 1, 1, 1}

Case 3 is applied when the PV power is enough to energize all the DC loads, the SOC is less than 90% and the TOU is
off-peak. The MGCC sets the value of SOCref at its maximum possible value (SOCref = 100%) at the time interval tfinal −
tinitial with a constant power PBESS

ref = Equation (36) to charge the batteries. In this case, the BESS can fulfill the DIN41773
charge procedure.

C
as

e
4

PV = On
Off MPPT Charge mode CC-CV based on

Equation (47)
All Loads
Connected

PBESS
ref = Equation (47), SOCref = 100%
tref = tfinal − tinitial, Swref = {1, 1, 1, 1}

PPV
Lim_ref = Equation (43)

In case 4 a surplus of energy is available from the PV generation and the SOC is less than 90%. The DC loads and the
batteries cannot absorb the excess of power at the DC bus and the Maximum Power Point Tracking is disabled
(Off-MPPT). Power is injected into the grid below the limit imposed by the MG operator. The MGCC sets the target SOC
to 100% (SOCref = 100%) in the time interval tfinal − tinitial and the batteries are charged at a power PBESS

ref according to
Equation (47).

C
as

e
5

PV = Off Discharge - All Loads
Connected

PBESS
ref = Equation (40), Swref = {1, 1, 1, 1}

Case 5 is applied when there is not PV generation, TOU is on-peak and SOC is greater than 90%. The BESS must supply
power to the DC bus from the batteries. The discharge power of the batteries Equation (40) is determined to avoid a SOC
lower than 35%.

C
as

e
6 PV = Off Discharge - All Loads

Connected
PBESS

ref = Equation (41) Swref = {1, 1, 1, 1}

Case 6 is applied when there is not PV generation and the TOU is on-peak. This case prevents discharge the batteries to
a SOC lower than SOCMIN. The batteries are discharged with a maximum power PBESS

ref given by Equation (41).
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When the value of PAvailable
DC_Profile starts to be positive, the initial time is detected (tinitial). The final

time (tfinal) is detected once that PAvailable
DC_Profile changes from positive to negative. With the time interval

(tinitial < time < tfinal) the value of PAvailable
RES is calculated. PAvailable

RES is the available power from the RES
for charging the batteries during the time interval (tinitial < time < tfinal), expressed by the Equation
(35). PBESS

ref is calculated from Equation (36) and the desired SOC (SOCref) which should be reached at

tinitial is calculated from Equation (37). When PAvailable
DC_Profile < 0 and the TOU is off-peak, the value of PBESS

ref
is calculated from Equation (38).

PAvailable
DC_Pro f ile = PPV

Pro f ile − PLoad
DC_Pro f ile (34)

PAvailable
RES =

1
(t f inal − tinitial)

·
∫ t f inal

tinitial

PAvailable
DC_Pro f ile·dt where PAvailable

DC_Pro f ile > 0 (35)

PBESS
re f = MIN(PBESS

HB−rated, PAvailable
RES ) (36)

SOCre f = SOC −
PAvailable

RES ·100%·tre f ·ηDis

CT ·VBat
Rated

where tre f = (t f inal − tinitial) (37)

PBESS
re f = MIN(PBESS

HB−rated,
∣∣∣P̂ILC

DC

∣∣∣− PLoad
DC_Pro f ile) (38)

If PAvailable
DC_Profile < 0 and the TOU is on-peak, the BESS must supply power to the DC bus from the

batteries. The discharge power of the batteries for the time interval (tref) is calculated according to
Equation (39). PBESS

Dis determines the maximum discharge power to avoid battery discharges leading
to values of SOC lower than 35%. If PBESS

Dis > |PAvailable
DC_Profile|, the PBESS

ref is calculated by Equation (40);
otherwise, it is calculated by Equation (41).

PBESS
Dis =

∣∣∣∣∣ (SOCMIN − SOC)·QRated·VBat
Rated

100%·tre f ·ηDis

∣∣∣∣∣ where tre f = (24 h − t f inal) (39)

PBESS
re f = −MIN(PBESS

HB−rated,
∣∣∣PAvailable

RES

∣∣∣) (40)

PBESS
re f = −MIN(PBESS

HB−rated, PBESS
Dis ) (41)

0.4 h < time < tinitial

The MGCC begins to execute the strategic planning of case 0 and verifies its compliance. Thus,
the MGCC calculates the power flow in the MG every second. The MGCC establishes the PV power
limit (PPV

Lim_ref ) by means of Equation (42). Note that in Figure 9a, PDC
Load stands for the power consumed

by the DC loads. Swref is a vector with binary variables {0, 1}, indicating which DC loads are connected
{1} or disconnected {0}. PDC

Load is calculated by Equation (43). Equation (44) stands for the available
power at the DC bus (PAvailable

DC ) without taking into account the power absorbed from the main grid.
PAvailable

DC−Total is the total available power at the DC bus and is given by Equation (45).

PPV
Lim_re f =

∣∣∣P̂ILC
DC

∣∣∣+ PLoad
DC + PBESS (42)

PLoad
DC = VDC.

4

∑
i=1

ILoad
DC (i)·Sw(i)re f (43)

PAvailable
DC = PoPV − PLoad

DC (44)

PAvailable
DC−total =

∣∣∣P̂ILC
DC

∣∣∣+ PoPV − PLoad
DC (45)
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If SOC < SOCMIN, the MGCC activates the fault flag and applies Case 1. Case 1 indicates that
the power management profile predicted for the day has not been correctly fulfilled. In this case,
if the reference profiles do not fit the power measurements, the MGCC will detect that the power
generation predicted for the day is not achieved. In that case, if the SOC of the batteries is lower than
35%, the MGCC will establish that the power limit established by the MG operator is imported from
the grid, no matter the value of the electricity tariff. If even in that situation the SOC tends to decrease
below 35%, the MGCC will set the load shedding functionality. The BESS will operate in charge mode,
but will not be able to assure the DIN41773 charge procedure. The batteries are charged at a power
according to Equation (46).

PBESS
re f = MIN(PBESS

HB−rated, PAvailable
DC−total) (46)

If SOC > SOCMIN and the current time of the day is lower than tinitial, the MGCC applies case 2.
Case 2 is applied at the hours of the day where there is not PV generation and the TOU is off-peak.
The MGCC establishes the target SOC (SOCref = Equation (37)) at the time interval (tref = tinitial) and
with a constant power (PBESS

ref = Equation (38)) to charge the batteries. In this case, the BESS can fulfill
the DIN41773 charge procedure.

tinitial < time < tfinal

During this time interval the batteries will be charged only with the available power at the
PV system (PAvailable

DC ). If PAvailable
DC is inside the range PAvailable

DC_Profile ± 10%, the MGCC applies case 3.
The MGCC sets the value of SOCref at its maximum possible value (SOCref = 100%) at the time interval
tref = tfinal − tinitial with a constant power PBESS

ref = Equation (36) to charge the batteries. In this case,
the BESS can fulfill the DIN41773 charge procedure.

If PAvailable
DC is outside the range PAvailable

DC_Profile ± 10%, it means that the MGCC cannot perform the

initial planning. If PAvailable
DC > 0, then case 4 is applied. On the contrary (PAvailable

DC < 0), case 1 is applied.
In case 4, a surplus of energy is available from the PV generation. Power is injected to the grid

below the limit imposed by the MG operator. The Maximum Power Point Tracking is off (Off-MPPT).
The MGCC sets the target SOC to 100% (SOCref = 100%) in the time interval tref = tfinal − tinitial and the
batteries are charged at a power PBESS

ref according to Equation (47).

tfinal < time < 24 h

During this time interval the BESS should supply the necessary power to the DC bus, because the
TOU is on-peak and the PV power is not enough to feed all the DC loads. If SOC < 90%, the MGCC
activates the fault flag and applies case 1.

Otherwise, if SOC >90%, it means that MGCC can perform the initial planning.
If PBESS

Dis < |PAvailable
DC |, then case 5 is applied. In case 5 the batteries are discharged with a power

PBESS
ref given by Equation (40). In the opposite case, if PBESS

Dis > |PAvailable
DC |, case 6 is applied, because the

necessary power at the DC bus is higher than the maximum available discharge power at the batteries.
Case 6 avoids discharging the batteries to a SOC lower than SOCMIN. The batteries are discharged
with a maximum power PBESS

ref given by Equation (41).

PBESS
re f = MIN(PBESS

HB−rated, PAvailable
DC ) (47)

5. Experimental and Simulation Results

Figure 11a and b show a block diagram and a picture of the power converters operating
in the experimental DC microgrid, respectively. The power converters specifications are shown
in Table 7. First, several microgrid scenarios have been studied by means of the of the PSIM™
simulator [63]. After that, the proposed power management algorithm and the BESS have been tested
in an experimental MG and compared with the simulated results. The proposed battery charging
procedure shown in Section 3 has been verified by simulation #1 and by experiment #1. This procedure
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has been executed four times, each time with a different charging current: IBat
(Ch) = 15 A, 12 A, 10 A and

5 A. The power management of the MG described in Section 4 has been validated by simulation #2
and by experiment #2. In experiment #3 the response of the MG to an abrupt change of the power
flow between the MG and the main grid is studied. Finally, the communication delays between
a measurement request from the MGCC and the response of the BESS are shown in experiment #4.Energies 2018, 11, x FOR PEER REVIEW  20 of 31 
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Figure 11. Experimental DC microgrid: (a) Block diagram of the experimental DC microgrid (b) Picture
of the power converters operating in the experimental DC microgrid.

5.1. Simulation #1

The DIN41773 compatible charging procedure has been verified by simulation #1, whose results
are shown in Figure 12. It is worth pointing out that, in order to check the charging procedure with
several values of the charge current in a short simulation time, the value of QRated was downscaled in
simulations #1 and #2 to 2 A·h.

Table 7. Specifications of the power converters operating in the DC microgrid.

ILC BESS PV

PILC
Rated = 10 kW PBESS

HB_Rated = 3 kW PPV
Rated = 2.5 kW

VGrid = 230 V and FGrid = 50 Hz VBat = 216 V VPV = 306 V
VDC = 400 V Fsw_BESS = 16 kHz Fsw_PV = 16 kHz

Fsw_ILC = 12.8 kHz TBat = 25 ◦C, QRated = 2 A·h PV Panel: Atersa A-250P GSE

The batteries are initially charged at CC with several values of IBat
(Ch) (15 A, 12 A, 10 A and 5 A)

until a maximum charging voltage (VBat
(Ch)) is reached. When VBat

(Ch) is reached, the batteries are charged

at CV at that value of VBat
(Ch). The value of VBat

(Ch) depends on the temperature and on the charging current

value. VBat
(Ch) is given by Equation (27). A value of TBat = 25 ◦C has been considered.

Finally, once the current absorbed by the batteries is lower than a pre-set tail current value (IBat
tail = 1 A),

then the battery voltage is set at a constant floating voltage value (VBat
Float) that is given by Equation (28).
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5.2. Simulation #2

In order to check the proposed power management algorithm described in Section 4, different
scenarios with a short simulation time have been analyzed. In order to avoid too long simulation
times, the reference profiles were adjusted in this study to a whole equivalent ‘daily’ period of 2400 s,
where 100 s corresponds to one hour of the day. The value of QRated was downscaled for performing
the tests #1 and #2 to 2 A·h. The reference profiles that were used to plan the power dispatch in the
MG are shown in Table 8. Figure 13 shows the simulation waveforms of the power flow at the DC
bus of the MG in one equivalent day. The scenarios under study are: (i) Different values of the TOU
tariffs, (ii) variations of the available PV power and (iii) variations of the power consumed by the
loads connected to the DC bus. Those variations can be observed in Figure 13, being labeled as TOU,
Po

PV and PDC
Load, respectively. The evolution of the power flow (PAvailable

DC , PILC
DC , PBESS), the SOC and the

batteries current (IBat), can be observed in the lower part of Figure 13.
The analysis has been performed according to the following time intervals:

Interval 1 (0 < time < 40 s)

At t = 0 s, it is assumed that the batteries have been discharged the previous day to SOC = 38%.
During the duration of the time interval corresponding to case 0, the power dispatch in the MG is
done. Depending on the reference profiles of Table 8, the MGCC detects the time intervals where the
batteries will be charged only with the available PV power and when the TOU is off-peak. The time
values are: tinitial = 900 s, tfinal = 1520 s.
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Interval 2 (40 s < time < 900 s)

This time interval represents the hours of the night and the early hours of the day when the PV
power is not enough to energize all the loads and the TOU is off-peak. The MGCC applies case 2. The
MGCC sends to the BESS the target SOC, SOCref = 68% at tref = 900 s and the reference of the available
power at the DC bus to charge the batteries, PBESS

ref = Equation (38). However, the BESS only uses the

power needed, PBESS = 0.9 kW, to reach the target SOC, which is lower than the power available at the
DC bus, PBESS

ref
∼= 3 kW. In this case, the MGCC orders the transfer of the power needed at the DC bus

from the grid through the ILC, with a value below the limit imposed by Equation (33). At t = 700 s the
value of the power imported from the grid by the ILC is: PILC

DC = −3 kW. Note that at this time interval
PBESS takes a constant value (0.9 kW). The BESS complies with the DIN41773 charging procedure.

Table 8. Reference profiles sent to the MGCC for the power dispatch planning in the MG.

Time(s)

0 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2200 2300

PPV
Profile (kW)

0 0 0 0.05 0.5 1 2 2.5 2.5 2.5 2.5 2 1 0.5 0.3 0.1 0 0

PLoad
DC_Profile (kW)

0.2 0.2 0.6 2 2 1 0.5 0.5 0.5 0.5 1.2 1.8 2 2.5 2.5 3.2 3 2.8

TOU (€/kW·s)

0.08 0.16

Power dispatch limits established by the electric company

PMAX
Grid−to−MG = 10 kW and PMAX

MG−to−Grid = 4 kW

Interval 3 (900 s < time < 1520 s)

This time interval represents the hours of the day when the PV power is enough to energize all
the loads. The MGCC applies case 3. The MGCC sends to the BESS the target SOC, SOCref = 100%,
at tref = 620 s, and the reference of the available power at the DC bus to charge the batteries calculated
initially during case 0, PBESS ∼= 1.56 kW (Equation (36)). In this case, the MGCC can export the excess
power from the DC bus to the grid through the ILC. Note that the batteries have reached a value SOC
= 97.2% at t = 1520 s.

Interval 4 (1520 s < time < 2400 s)

This time interval represents the hours of the day when the TOU is on-peak and the PV power
is not enough to energize all the loads. Taking into account that the BESS is charged (SOC ≥ 80%),
the MGCC transfers the needed power from the battery bank to the DC bus through the BESS.
This interval is divided into three subintervals.
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1520 s < time < 1800 s: The MGCC applies case 5. In this case, the MGCC sends to the BESS the
power reference, PBESS

ref = Equation (40) and the target SOC, SOCref = 35%, at tref = 880 s. The MGCC
orders to import the minimum possible power from the grid.

2000 s < time < 2300 s: The MGCC applies case 6. In this case, the needed power at the DC bus is
higher than the maximum available discharge power at the batteries. The MGCC sends to the BESS
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the power reference, PBESS
ref = Equation (41). The MGCC orders to import the minimum possible power

from the grid.
2300 s < time < 2400 s: The MGCC applies case 5. In this case, the MGCC sends to the BESS the

power reference, PBESS
ref = Equation (40). The MGCC orders to import the minimum possible power

from the grid.

5.3. Experiment #1

A 3 kW bidirectional BESS a 2.5 kW PV system and a single-phase 10 kW ILC, have been built
and connected to the experimental DC microgrid. Each power converter has its own TMS320F28335
DSP controller to perform its primary control and its serial RS485 communication system. The power
converters specifications are the same as those shown in Table 7. All the experimental waveforms
have been obtained by means of a Yokogawa DLM4038, 8-channel oscilloscope (Yokogawa Iberia
S.A., Madrid, Spain). The batteries have been emulated by a 20 kW bidirectional DC source/battery
emulator model TC.GSS-Bidirectional-DC-PSU from Regatron AG (Rorschach, Switzerland). The PV
array has been emulated by means of a 10 kW PV array simulator TerraSAS ETS1000/10 from Ametek
(San Diego, CA, USA). LabVIEW software (National Instruments Spain, Madrid, Spain) has been used
for emulating the MG operator.

The DIN41773 compatible battery charging procedure has been verified in experiment #1.
The procedure was tested with four different values of the charging current: IBat

(Ch) = 15 A, 12 A,
10 A and 5 A, corresponding to Figure 14a–d, respectively. As it can be observed from Figure 14,
the reference value (VBat

(Ch)) of the voltage control loop is properly adjusted depending on the values of

IBat
(Ch) and of the temperature. VBat

(Ch) is given by Equation (27). A value of TBat around 25 ◦C has been
obtained during this experiment.
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Figure 14. Experiment #1. Waveforms of the implemented charging procedure for different values of
the charging current: (a) IBat

(Ch) = 15 A; (b) IBat
(Ch) = 12 A; (c) IBat

(Ch) = 10 A and (d) IBat
(Ch) = 5 A.

5.4. Experiment #2

The evolution of the powers (Po
PV, PBESS, PDC

Load, PILC
DC ), currents (IBat, IPV), SOC and voltages (VBat,

VPV) of the DC micrigrid can be observed in Figure 15. Initially, the MGCC applies case 0 and calculates
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the time intervals where the batteries will be only charged with the power available at the PV system,
being the TOU is off-peak, yielding the values: tinitial = 420 s, tfinal = 1300 s. The analysis is performed
according to the following time intervals:

Interval 1 (0 < time < 420 s)

During this time interval the PV power (Po
PV) is not enough to energize all the loads (PDC

Load) and
the TOU is off-peak. The MGCC applies case 2. The MGCC sends to the BESS the target SOC value,
SOCref = 50%, during the time interval tref = 420 s. It also sends the reference of the available power
at the DC bus to charge the batteries, PBESS

ref = 3 kW. However, the BESS only uses the power needed

(PBESS = Equation (12) = 0.4 kW) to reach the target SOC, SOCref = 50%. In this case, the MGCC orders
to import the power needed at the DC bus from the grid through the ILC. At t = 100 s, the values are:
Po

PV > 0, SOC = 40% and PILC
DC = −1.2 kW.
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Interval 2 (420 s < time < 1300 s)

During this time interval, the PV power is enough to energize all the loads. At t = 420 s the MGCC
applies case 3. The MGCC sends to the BESS the new power reference, PBESS

ref = Equation (36) = 1.7 kW
and the target SOC, SOCref

∼= 100%, during a time interval tref = 880 s. In this case, the MGCC only charges
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the batteries with the available power at the PV system and imports the minimum power from the grid
through the ILC. At t = 420 s the power managed by the ILC is: PILC

DC
∼=−0.3 kW. The DIN41773 charging

procedure is verified in this time interval. At t = 800 s, the BESS changes from CC mode to CV mode with
VBat
(Ch) = 255 V. Note that the batteries have reached SOC = 94% at t = 1300 s.

Interval 3 (1300 s < time < 2000 s)

At t = 1300 s the TOU changes from off-peak (0.08 €/kW·s) to on-peak (0.16 €/kW·s). This time
interval represents the hours of the day when the TOU is on-peak and the PV power is not enough
to energize all the loads. Taking into account that the BESS is charged, SOC ≥ 80% (at t = 1300 s,
SOC = 94%), the MGCC transfers the necessary power from the battery bank to the DC bus through
the BESS. This interval is divided into two subintervals.

1300 s < time < 1780 s: The MGCC applies case 6. In this case, the MGCC calculates the maximum
discharge power of the batteries (PBESS

Dis ) to discharge the batteries to a level which is higher than SOCMIN,
being SOCref > 35% at tref = 700 s. The MGCC sends the power reference to the BESS, PBESS

ref = Equation (41),
and orders to import the needed power from the grid.

1780 s < time < 2000 s: The MGCC applies case 5. In this case, the MGCC sends to the BESS the new
power reference, PBESS

ref = Equation (40), ordering to import the minimum possible power from the grid.

5.5. Experiment #3

The ILC regulates the voltage of the DC bus in grid connected mode, and performs the
synchronization with the main grid. To verify the stability of the DC bus during heavy transients,
an abrupt change from −0.8 kW to 1.9 kW (2.7 kW step at t = 9.3 s) of the power flow from the DC
bus to the main grid is forced. The experimental waveforms when the MG changes from exporting to
importing power to/from the main grid are shown in Figure 16.
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Figure 16. Experiment #3. Experimental results of the abrupt change in power flow from the DC bus to
the main grid.

As it can be seen in ZOOM 1 of Figure 16, the DC bus voltage is stable and a small transient
deviation occurs of ∆VDC = 38 V, i.e., less of 10% of the DC bus voltage. A low distortion of IGrid can be
observed in the transition from exporting to importing power to/from the AC grid.



Energies 2018, 11, 1889 27 of 31

5.6. Experiment #4

In this work, RS485 serial communications are used with the MODBUS protocol. This protocol allows
for the exchange of information between the MGCC and the different devices connected to the MG with
an adequate performance in MG. The implemented RS485 communications allow for the calculation of
the power values in several points of the MG quickly and accurately. The communications delay of the
receiving (RX) and transmitting (TX) signals between the MGCC and the BESS can be observed in Figure 17.
The RS485 communication bus baud rate is 9600 bps. The time difference between a MGCC request and the
BESS response is 18 ms. The proposed power management algorithm is running every second in the MG
under study, so that the communication delays are not critical.
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6. Conclusions

In this paper it has been shown the design and operation of a BESS for a grid-connected DC
Microgrid with PV generation. The bidirectional power converter conforming the BESS has been
modeled and verified according to any change of the battery charge/discharge currents, the SOC,
the battery voltage and variations of the DC bus voltage. The BESS has a BMS that maximizes the
battery life time, being compatible with a DIN41773 battery charging procedure and complying with
the manufacturer specifications at the same time. The proposed procedure changes the charging
parameters of the batteries depending on the MG states.

A MGCC has been used for the power management of the DC microgrid. The MGCC estimates the
available power at the DC bus to charge the batteries and a target SOC in the batteries at different hours
of the day. The MGCC daily plans the power dispatch in the MG and complies with two objectives:
(i) to import the minimum possible power from the grid, and (ii) to charge the batteries during off-peak
times and with the surplus of energy is available from the PV resources. These strategies allow for
reducing the electricity bill.

The experimental and simulation results show that the implemented method allows for
properly planning the power dispatch at the DC microgrid, fulfilling the battery charging procedure
recommended by the manufacturer at the same time, expanding battery life.
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Abbreviations

Po
PV Power supplied by the PV arrays seen from the DC bus

PLoad
DC Overall power consumed by the DC loads

PGrid Power injected from the DC microgrid to the grid
PILC

AC Power injected from the DC bus to the grid by the ILC, measured at the AC side of the ILC
PILC

DC Power injected from the DC bus to the grid by the ILC, measured at the DC side of the ILC
PBESS Battery charge power seen from the DC bus
PBat Battery charge power
PAvailable

DC Power available at the DC bus
IGrid RMS Current injected from the DC microgrid to the grid
VGrid RMS value of the grid voltage
VDC DC bus voltage
SOC State of charge of the battery bank
IBat Battery bank charge current
VBat Battery bank voltage
IPV Current supplied by the PV array
ILoad
DC Overall current consumed by the DC loads

VBat
(Ch) Reference of the charging voltage

IBat
(Ch) Reference of the charging current

PMAX
Grid−to−MG Maximum power that can be extracted from the main grid to the MG

PMAX
MG−to−Grid Maximum power that can be injected from the MG to the main grid

TOU Time of use of electricity
PPV

Profile Reference profiles of PV generation
PLoad

DC_Profile Reference profiles of power consumed by the loads
PAvailable

DC_Profile The available power profile at the DC bus
SOCref Desired SOC in the batteries
PBESS

ref Reference power for charging/discharging the batteries from/to DC bus

tref Time interval in which BESS must reach the target SOC with PBESS
ref

VDC_ref Reference of the DC bus voltage
PPV

Lim_ref Maximum power that should be extracted from the PV sources
Swref Reference of the DC load switches (load 1 to 4)
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1. Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part I: A Review of Control Strategies
and Stabilization Techniques. IEEE Trans. Power Electron. 2016, 31, 4876–4891.

2. Baek, J.; Choi, W.; Chae, S. Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC
Microgrid. Energies 2017, 10, 373. [CrossRef]

3. Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery Management System: An Overview of Its
Application in the Smart Grid and Electric Vehicles. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [CrossRef]

4. Sujitha, N.; Krithiga, S. RES based EV battery charging system: A review. Renew. Sustain. Energy Rev. 2017,
75, 978–988. [CrossRef]

5. Renewables 2017 Global Status Report. Available online: http://www.ren21.net/wp-content/uploads/
2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf (accessed on 5 July 2018).

6. Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical
review. Prog. Nat. Sci. 2009, 19, 291–312. [CrossRef]

7. May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage
2018, 15, 145–157. [CrossRef]

8. Joseph, A.; Shahidehpour, M. Battery storage systems in electric power systems. In Proceedings of the 2006
IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 8.

9. IRENA. Available online: http://www.irena.org/eventdocs/Battery%20storage%20June%201%202017%
20MICHAEL%20TAYLOR%20PDF%20version.pdf (accessed on 3 February 2018).

http://dx.doi.org/10.3390/en10030373
http://dx.doi.org/10.1109/MIE.2013.2250351
http://dx.doi.org/10.1016/j.rser.2016.11.078
http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf
http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf
http://dx.doi.org/10.1016/j.pnsc.2008.07.014
http://dx.doi.org/10.1016/j.est.2017.11.008
http://www.irena.org/eventdocs/Battery%20storage%20June%201%202017%20MICHAEL%20TAYLOR%20PDF%20version.pdf
http://www.irena.org/eventdocs/Battery%20storage%20June%201%202017%20MICHAEL%20TAYLOR%20PDF%20version.pdf


Energies 2018, 11, 1889 29 of 31

10. Hussein, A.A.; Fardoun, A.A. Design considerations and performance evaluation of outdoor PV battery
chargers. Renew. Energy 2015, 82, 85–91. [CrossRef]

11. Xing, Y.; Ma, E.W.M.; Tsui, K.L.; Pecht, M. Battery Management Systems in Electric and Hybrid Vehicles.
Energies 2011, 4, 1840–1857. [CrossRef]

12. Wu, D.; Tang, F.; Dragicevic, T.; Guerrero, J.M.; Vasquez, J.C. Coordinated Control Based on Bus-Signaling
and Virtual Inertia for Islanded DC Microgrids. IEEE Trans. Smart Grid 2015, 6, 2627–2638. [CrossRef]

13. Dou, C.; Zhang, Z.; Yue, D.; Zheng, Y. MAS-Based Hierarchical Distributed Coordinate Control Strategy of
Virtual Power Source Voltage in Low-Voltage Microgrid. IEEE Access 2017, 5, 11381–11390. [CrossRef]

14. Bracale, A.; Caramia, P.; Carpinelli, G.; Mancini, E.; Mottola, F. Optimal control strategy of a DC micro grid.
Int. J. Electr. Power Energy Syst. 2015, 67, 25–38. [CrossRef]

15. Yue, J.; Hu, Z.; Li, C.; Vasquez, J.C.; Guerrero, J.M. Economic Power Schedule and Transactive Energy
through an Intelligent Centralized Energy Management System for a DC Residential Distribution System.
Energies 2017, 10, 916. [CrossRef]

16. Gao, L.; Liu, Y.; Ren, H.; Guerrero, J.M. A DC Microgrid Coordinated Control Strategy Based on Integrator
Current-Sharing. Energies 2017, 10, 1116. [CrossRef]

17. Unamuno, E.; Barrena, J.A. Hybrid AC/DC microgrids—Part II: Review and classification of control
strategies. Renew. Sustain. Energy Rev. 2015, 52, 1123–1134. [CrossRef]

18. Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on
methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [CrossRef]

19. Feng, X.; Shekhar, A.; Yang, F.E.; Hebner, R.; Bauer, P. Comparison of Hierarchical Control and Distributed
Control for Microgrid. Electr. Power Compon. Syst. 2017, 45, 1043–1056. [CrossRef]

20. De Brabandere, K.; Bolsens, B.; van den Keybus, J.; Woyte, A.; Driesen, J.; Belmans, R. A Voltage and
Frequency Droop Control Method for Parallel Inverters. IEEE Trans. Power Electron. 2007, 22, 1107–1115.
[CrossRef]

21. Kaur, A.; Kaushal, J.; Basak, P. A review on microgrid central controller. Renew. Sustain. Energy Rev. 2016, 55,
338–345. [CrossRef]

22. Marzal, S.; González-Medina, R.; Salas-Puente, R.; Figueres, E.; Garcerá, G. A Novel Locality Algorithm
and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids.
Energies 2017, 10, 1275. [CrossRef]

23. Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning:
A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [CrossRef]

24. Li, W.; Logenthiran, T.; Woo, W.L.; Phan, V.T.; Srinivasan, D. Implementation of demand side management
of a smart home using multi-agent system. In Proceedings of the 2016 IEEE Congress on Evolutionary
Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2028–2035.

25. Joo, I.Y.; Choi, D.H. Optimal household appliance scheduling considering consumer's electricity bill target.
IEEE Trans. Consum. Electron. 2017, 63, 19–27. [CrossRef]

26. Roozbehani, M.; Dahleh, M.A.; Mitter, S.K. Volatility of power grids under real-time pricing. IEEE Trans.
Power Syst. 2012, 27, 1926–1940. [CrossRef]

27. Carpinelli, G.; Khormali, S.; Mottola, F.; Proto, D. Optimal operation of electrical energy storage systems
for industrial applications. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting,
Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.

28. Erol-Kantarci, M.; Hussein, T.M. Prediction-based charging of PHEVs from the smart grid with dynamic
pricing. In Proceedings of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14 October
2010; pp. 1032–1039.

29. Hooppecke. Operating Instructions Valve Regulated Stationary Lead-Acid Batteries. Available online:
http://www.hoppecke-us.com/tl_files/hoppecke/Documents/HO-US/Operating_Instructions_sealed_
stationary_lead_acid_batteries_en1111.pdfaccessed on 13 October 2017).

30. TAB Batteries. Available online: http://www.tabspain.com/wp-content/uploads/informacion-tecnica/
renovables/curvas-y-tablas/din-41773-y-din-41774-para-baterias-pzs.pdf (accessed on 13 October 2017).

31. Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in
electric vehicles. J. Power Sources 2013, 226, 272–288. [CrossRef]

32. Hussein, A.A.; Batarseh, I. A Review of Charging Algorithms for Nickel and Lithium Battery Chargers.
IEEE Trans. Veh. Technol. 2011, 60, 830–838. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2014.08.063
http://dx.doi.org/10.3390/en4111840
http://dx.doi.org/10.1109/TSG.2014.2387357
http://dx.doi.org/10.1109/ACCESS.2017.2717493
http://dx.doi.org/10.1016/j.ijepes.2014.11.003
http://dx.doi.org/10.3390/en10070916
http://dx.doi.org/10.3390/en10081116
http://dx.doi.org/10.1016/j.rser.2015.07.186
http://dx.doi.org/10.1016/j.apenergy.2018.04.103
http://dx.doi.org/10.1080/15325008.2017.1318982
http://dx.doi.org/10.1109/TPEL.2007.900456
http://dx.doi.org/10.1016/j.rser.2015.10.141
http://dx.doi.org/10.3390/en10091275
http://dx.doi.org/10.1016/j.rser.2015.04.025
http://dx.doi.org/10.1109/TCE.2017.014666
http://dx.doi.org/10.1109/TPWRS.2012.2195037
(
(
http://www.tabspain.com/wp-content/uploads/informacion -tecnica/renovables/curvas-y-tablas/din-41773-y-din-41774-para-baterias-pzs.pdf
http://www.tabspain.com/wp-content/uploads/informacion -tecnica/renovables/curvas-y-tablas/din-41773-y-din-41774-para-baterias-pzs.pdf
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
http://dx.doi.org/10.1109/TVT.2011.2106527


Energies 2018, 11, 1889 30 of 31

33. Shen, W.; Vo, T.T.; Kapoor, A. Charging algorithms of lithium-ion batteries: An overview. In Proceedings of
the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012;
pp. 1567–1572.

34. Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of
Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017,
10, 2107. [CrossRef]

35. Analog Devices. Available online: http://www.analog.com/media/en/technical-documentation/technical-
articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf (accessed on
1 February 2018).

36. Fathoni, G.; Widayat, S.A.; Topan, P.A.; Jalil, A.; Cahyadi, A.I.; Wahyunggoro, O. Comparison of
State-of-Charge (SOC) estimation performance based on three popular methods: Coulomb counting, open
circuit voltage, and Kalman filter. In Proceedings of the 2017 2nd International Conference on Automation,
Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT),
Jakarta, Indonesia, 23–24 October 2017; pp. 70–74.

37. Lyu, C.; Cong, W.; Liu, H.; Zhang, L. A novel parameters acquisition method based on electrochemical
impedance spectroscopy mathematical model in lithium ion cell. In Proceedings of the 2017 Prognostics and
System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–8.

38. Hu, X.; Li, S.E.; Yang, Y. Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in
Electric Vehicles. IEEE Trans. Transp. Electrification 2016, 2, 140–149. [CrossRef]

39. Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources
2001, 96, 113–120. [CrossRef]

40. Kim, D.; Goh, T.; Park, M.; Kim, S.W. Fuzzy Sliding Mode Observer with Grey Prediction for the Estimation
of the State-of-Charge of a Lithium-Ion Battery. Energies 2015, 8, 12409–12428. [CrossRef]

41. Tian, Y.; Li, D.; Tian, J.; Xia, B. State of charge estimation of lithium-ion batteries using an optimal adaptive
gain nonlinear observer. Electrochim. Acta 2017, 225, 225–234. [CrossRef]

42. Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC Estimation for Lithium-ion
Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [CrossRef]

43. Kozlowski, J.D. Electrochemical Cell Prognostics Using Online Impedance Measurements and Model-Based
Data Fusion Techniques. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 8–15 March 2003;
Volume 7, pp. 3257–3270.

44. Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical Review on the Battery State of Charge Estimation Methods
for Electric Vehicles. IEEE Access 2018, 6, 1832–1843. [CrossRef]

45. Lin, C.H.; Wang, C.-M.; Lin, W.-J. A SOC-based intelligent charger with multi-charging mode. In Proceedings
of the 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan,
1–4 November 2015; pp. 1–6.

46. Oliveira, T.R.; Gonçalves Silva, W.W.A.; Donoso-Garcia, P.F. Distributed Secondary Level Control for Energy
Storage Management in DC Microgrids. IEEE Trans. Smart Grid 2017, 8, 2597–2607. [CrossRef]

47. Velho, R.; Beirão, M.; Calado, M.R.; Pombo, J.; Fermeiro, J.; Mariano, S. Management System for Large Li-Ion
Battery Packs with a New Adaptive Multistage Charging Method. Energies 2017, 10, 605. [CrossRef]

48. Xue, F.; Ling, Z.; Yang, Y.; Miao, X. Design and Implementation of Novel Smart Battery Management System
for FPGA Based Portable Electronic Devices. Energies 2017, 10, 264. [CrossRef]

49. Doan, V.T.; Vu, V.B.; Vu, H.N.; Tran, D.H.; Choi, W. Intelligent charger with online battery diagnosis function.
In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE
Asia), Seoul, Korea, 1–5 June 2015; pp. 1644–1649.

50. Diaz, J.; Martin-Ramos, J.A.; Pernia, A.M.; Nuno, F.; Linera, F.F. Intelligent and universal fast charger for
Ni-Cd and Ni-MH batteries in portable applications. IEEE Trans. Ind. Electron. 2004, 51, 857–863. [CrossRef]

51. Mundra, T.S.; Kumar, A. An Innovative Battery Charger for Safe Charging of NiMH/NiCd Batteries.
IEEE Trans. Consum. Electron. 2007, 53, 1044–1052. [CrossRef]

52. Hu, X.; Martinez, C.M.; Yang, Y. Charging, Power management, and battery degradation mitigation in
plug-in hybrid electric vehicles: A unified cost-optimal approach. Mech. Syst. Signal Process. 2017, 87, 4–16.
[CrossRef]

http://dx.doi.org/10.3390/en10122107
http://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf
http://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf
http://dx.doi.org/10.1109/TTE.2015.2512237
http://dx.doi.org/10.1016/S0378-7753(01)00560-2
http://dx.doi.org/10.3390/en81112327
http://dx.doi.org/10.1016/j.electacta.2016.12.119
http://dx.doi.org/10.3390/electronics6040102
http://dx.doi.org/10.1109/ACCESS.2017.2780258
http://dx.doi.org/10.1109/TSG.2016.2531503
http://dx.doi.org/10.3390/en10050605
http://dx.doi.org/10.3390/en10030264
http://dx.doi.org/10.1109/TIE.2004.831740
http://dx.doi.org/10.1109/TCE.2007.4341584
http://dx.doi.org/10.1016/j.ymssp.2016.03.004


Energies 2018, 11, 1889 31 of 31

53. Yong, S.O.; Rahim, N.A. Development of on-off duty cycle control with zero computational algorithm for
CC-CV Li ion battery charger. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology
(CEAT), Lankgkawi, Malaysia, 18–20 November 2013; pp. 422–426.

54. Salas-Puente, R.; Marzal, S.; González-Medina, R.; Figueres, E.; Garcera, G. Experimental Study of
a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode. Energies 2017, 10, 1627.
[CrossRef]

55. Monteiro, V.; Ferreira, J.C.; Melendez, A.A.; Couto, C.; Afonso, J.L. Experimental Validation of a Novel
Architecture Based on a Dual-Stage Converter for Off-Board Fast Battery Chargers of Electric Vehicles.
IEEE Trans. Veh. Technol. 2017, 67, 1000–1011. [CrossRef]

56. Bhatt, M.; Hurley, W.G.; Wolfle, W.H. A new approach to intermittent charging of valve-regulated lead-acid
batteries in standby applications. IEEE Trans. Ind. Electron. 2005, 52, 1337–1342. [CrossRef]

57. Hussein, A.A.H.; Pepper, M.; Harb, A.; Batarseh, I. An efficient solar charging algorithm for different battery
chemistries. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA,
7–10 September 2009; pp. 188–193.

58. Gallardo-Lozano, J.; Milanés-Montero, M.I.; Guerrero-Martínez, M.A.; Romero-Cadaval, E. Electric vehicle
battery charger for smart grids. Electr. Power Syst. Res. 2012, 90, 18–29. [CrossRef]

59. López, J.; Seleme, S.I.; Donoso, P.F.; Morais, L.M.F.; Cortizo, P.C.; Severo, M.A. Digital control strategy for
a buck converter operating as a battery charger for stand-alone photovoltaic systems. Sol. Energy 2016, 140,
171–187. [CrossRef]
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