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Abstract: The central shaft is an important and indispensable part of a small scale urban vertical
axis wind turbines (VAWTs). Normally, it is often operated at the same angular velocity as the wind
turbine. The shedding vortices released by the rotating shaft have a negative effect on the blades
passing the wake of the wind shaft. The objective of this study is to explore the influence of the
wake of rotating shaft on the performance of the VAWT under different operational and physical
parameters. The results show that when the ratio of the shaft diameter to the wind turbine diameter
(α) is 9%, the power loss of the wind turbine in one revolution increases from 0% to 25% relative
to that of no-shaft wind turbine (this is a numerical experiment for which the shaft of the VAWT is
removed in order to study the interactions between the shaft and blade). When the downstream
blades pass through the wake of the shaft, the pressure gradient of the suction side and pressure
side is changed, and an adverse effect is also exerted on the lift generation in the blades. In addition,
α = 5% is a critical value for the rotating shaft wind turbine (the lift-drag ratio trend of the shaft
changes differently). In order to figure out the impacts of four factors; namely, tip speed ratios (TSRs),
α, turbulence intensity (TI), and the relative surface roughness value (ks/ds) on the performance
of a VAWT system, the Taguchi method is employed in this study. The influence strength order of
these factors is featured by TSRs > ks/ds > α > TI. Furthermore, within the range we have analyzed
in this study, the optimal power coefficient (Cp) occurred under the condition of TSR = 4, α = 5%,
ks/ds = 1 × 10−2, and TI = 8%.

Keywords: vertical axis wind turbine (VAWT); rotating shaft; shedding vortices; Taguchi method;
influence strength order

1. Introduction

Wind turbines can be categorized into horizontal axis wind turbines (HAWTs) and vertical axis
wind turbines (VAWTs) [1,2]. The HAWTs have been extensively employed in the large scale wind farm
far away from urban areas due to the loading noise that is created by the large rotors [3,4]. In order
to increase the power of the HAWTs, the size of the turbine is getting larger than before and this
brings difficulties to the maintenance of the wind farm [5]. In contrast to HAWTs, VAWTs have less
commercial applications; the power generation capacity of VAWTs is less than that of HAWTs [6–8].
However, VAWTs also have some noteworthy advantages, for instance, the VAWTs can capture
unstable and turbulent wind energy from any direction, and they also produce less noise. In addition,
the manufacturing and maintenance of VAWTs are much easier [9–12]. Therefore, the VAWTs are
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more suitable for urban environment relative to traditional HAWTs. In recent years, the amount of
relevant studies on small scale urban VAWTs are increasing. Overall, a review of recent studies on
VAWTs reveals that the research directions with regard to VAWTs can be divided into four directions:
the studies of a single airfoil profile, a single turbine, a pair of wind turbines, and multiple turbines.
For the study of airfoil profile, most researches are devoted to propose a new design method to reduce
the unsteady aerodynamic phenomenon of dynamic stall in order to improve the lift-drag ratio of the
airfoil. For example, Zhong et al. [13] added a cylinder at the front of leading edge of the airfoil in
order to delay the dynamic stall angle, and the lift-drag ratio can be also increased by 30.7%. For the
research of a single wind turbine, although there is only a single VAWT in the flow field and there are
no interactions between the wind turbine and other wind turbines in the process of research, the flow
phenomenon in these researches is also complex, for instance, the phenomenon of dynamic stall during
the operation of the wind turbine. Most of these researches apply the improved blade profile to the
wind turbine, and they investigate power output and the variation of lift and drag coefficient of each
blade in the wind turbine. Zamani et al. [14] investigated the variations of power coefficient of a VAWT
with new J-shaped blade by three-dimensional (3D) CFD (Computational fluid dynamics) method,
and compared the results to the transitional wind turbine with normal symmetrical airfoil. For a pair
of wind turbines, in order to find the condition of optimal power output of the dual turbine system,
the Taguchi method was employed in the research of Chen et al. [15]. They found that the power
coefficient of the dual turbine system will be enhanced by 9.97% when compared to the single wind
turbine when the wind turbine operated under the optimal condition, as summarized by the Taguchi
method, which is an analysis method of combination of experiment and data statistic developed by
Genichi Taguchi [16]. For multiple turbines, in order to increase the production of energy in existing
wind farms, Xie et al. [17] conducted a 3D numerical simulation, where 20 small VAWTs were added
around each large HAWT in a traditional wind farm. They found that the modified vertically staggered
wind farm produced up to 32% increment of power as compared to a traditional wind farm.

The attention of the effect of the tower shadow on the performance of the large wind turbine
was paid in the previous studies [18–20]. Besides, lots of previous studies on large scale VAWTs, the
ratio of the shaft diameter to turbine diameter is very small, so that the effect of the shaft can be
negligible. However, for the small scale urban VAWTs, the ratio of the shaft diameter to the turbine
diameter is relative large. There will be significant effect acting on the downstream blades, due to
the blades passing through the wake of the shaft. Rezaeiha et al. [21] find that the air flow passing
around the central shaft of the VAWT produces shedding vortices, which exert significant impact on
the downstream blades. In addition, the influences of the wake of the shaft on the downstream blades
are also studied by Chigliaro [22]. According to research results of Rezaeiha [21] and Chigliaro [22],
many factors, including the tip speed ratios (TSRs) of the operational wind turbine, the turbulence
intensity (TI) of the flow, and the ratio of the shaft diameter to the wind turbine diameter (α) all can
affect the wake of the central rotating shaft of the VAWT. Besides the relative surface roughness value
(ks/ds) of the shaft is also an important influencing factor to the power output of a wind turbine.

In this paper, the research objectives of this current study mainly include the following points:

i. Analyze the reasons for power coefficient of wind turbines decrease as the ratio of the shaft
diameter to the wind turbine diameter (α) increase from 0% to 9% quantitatively.

ii. Investigate the vortex variations behind the rotating shaft of the VAWT and the variations of
the boundary separation point as α increase from 0% to 9%.

iii. Explore the wind velocity distribution ruler of the flow field when the vertical axis wind turbine
operates under different operating conditions (including TI and TSRs) and physical parameters
(including α and ks/ds).

iv. Many factors can have impacts on the wake effect of the rotating central shaft on the
performance of urban VAWTs, for instance, α, TSRs, ks/ds, and TI. One of the purposes of this
research is to figure out the influence strength order of these factors, and to find out an optimal
operational condition for the VAWT.
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The outline of this present study obeys the following order: detail description of wind turbine
model, grid generation method, boundary conditions, and verifications for both central cylinder
and wind turbine are presented in Section 2. In Section 3.1, the variations of power coefficient are
investigated in detail when α increases from 0% to 9%. The flow characteristics around the rotating
shaft and the variations of the boundary separation point are discussed in Sections 3.2–3.4 present a
quantitative analysis to investigate the wind velocity distribution at the different downstream positions
behind the rotating shaft and the pressure variations on the both sides of the blade surface. In Section 4,
the performance analysis of the VAWT is presented with the Taguchi method. Besides, the influence
strength order of α, TSRs, ks/ds, and TI is also found out in Section 4.1, and an optimal operational
condition for the VAWT is suggested in Section 4.2.

2. Numerical Model

2.1. Model Geometry

To investigate the impact of the rotating shaft on the aerodynamic performance, a three-bladed
H-type VAWT equipped with symmetric NACA0022 airfoils is used; the chord length (C) of the blade
is 0.04 m. The VAWT has a diameter (D) of 0.7 m and the diameter of the wind turbine’s shaft (ds)
is 27 mm, meanwhile, ds is the characteristic value of the diameter-based Reynolds number (Res).
The blade length (H) of the VAWT is 0.6 m. The detail features of the VAWT are summarized in Table 1.
The experimental power coefficient of this VAWT can be found in the previous study of Danao [23].
In order to investigate the influence of the ratio of the shaft diameter to the wind turbine diameter (α)
on the aerodynamic performance of VAWT, five different values are chosen for α, as follows: α = 3.9%,
α = 5%, α = 6%, α = 7%, and α = 9%, respectively. As α increases from 3.9% to 9%, the Res increases
from 1.31 × 104 to 2.9 × 104.

Table 1. Geometrical characteristics of vertical axis wind turbines (VAWT) and computational domain.

Parameter Value

Airfoil NACA0022
Number of blades, n 3

Chord length, (m) 0.04
Height of blade, (m) 0.6

Diameter of turbine, (m) 0.7
Diameter of shaft, (m) 0.027

Domain width, (m) 14
Domain length, (m) 14

Inner region diameter, (m) 1.05

The initial positions and serial numbers of the three blades are shown in Figure 1. θ represents
the azimuth angle of the blade. The position of blade 1 is defined as an initial position of one cycle. In
this study, this initial position is corresponding to θ = 0◦.
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Figure 1. Schematic of different mesh zones in two-dimensional (2D) computational domain. 
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the rotation of the VAWT, the two regions are connected by an interface boundary condition and the 
inside rotating region enables the rotation of the VAWT. In order to ensure the continuity of air flow 
during the simulation process, the diameter of the rotating region is set to 1.5D [24,25]. 

Grid generation is a critical part of the numerical simulation. Good grid quality can improve the 
accuracy of wind turbine simulation. Accordingly, a structured O-grid of quadrilateral elements is 
generated around the three blades of the VAWT to ensure the quality of the mesh around the blade 
and a structured grid is chosen for the inner rotating region and the outer stationary domain in all 
cases. As shown in Figure 2, in order to clearly observe the influence of existence of the shaft on the 
performance of the VAWT obviously, we generate another grid without a shaft for comparison 
calculation. In addition, the accuracy of the simulation with Transition SST turbulence model in this 
study are related to the dimensionless wall distance y+ of blade surface and shaft surface [26,27], and 
the y+ can be defined as y+ = ρuτy/μ, where ρ is density, uτ is the friction velocity, y is the boundary 
layer length, and μ is dynamic viscosity. In order to adapt to the requirements of the turbulence model 
and to ensure the accuracy of simulation, the boundary layer grid is employed on the shaft surface 
and the surface of the airfoil, while the heights of the first layer grid of the shaft and airfoil are 10−4D 
and 10−5C, respectively, in order to ensure that y+ < 1 [13,26]. 

Figure 1. Schematic of different mesh zones in two-dimensional (2D) computational domain.

2.2. Computational Domain and Mesh Generation

The two dimensional computational domain is employed for the simulation, as shown in Figure 1,
the width of the computational domain is 20D (D is the rotating diameter of the VAWT). In order to
minimize the effects of blockage on the simulation results, the rotor axis distance from both the inlet
and outlet side are 10D [24]. The whole computational domain consists of a rotating region where the
wind turbine is located and a stationary outside region surrounding the rotating region. To simulate
the rotation of the VAWT, the two regions are connected by an interface boundary condition and the
inside rotating region enables the rotation of the VAWT. In order to ensure the continuity of air flow
during the simulation process, the diameter of the rotating region is set to 1.5D [24,25].

Grid generation is a critical part of the numerical simulation. Good grid quality can improve the
accuracy of wind turbine simulation. Accordingly, a structured O-grid of quadrilateral elements is
generated around the three blades of the VAWT to ensure the quality of the mesh around the blade
and a structured grid is chosen for the inner rotating region and the outer stationary domain in all
cases. As shown in Figure 2, in order to clearly observe the influence of existence of the shaft on
the performance of the VAWT obviously, we generate another grid without a shaft for comparison
calculation. In addition, the accuracy of the simulation with Transition SST turbulence model in
this study are related to the dimensionless wall distance y+ of blade surface and shaft surface [26,27],
and the y+ can be defined as y+ = ρuτy/µ, where ρ is density, uτ is the friction velocity, y is the boundary
layer length, and µ is dynamic viscosity. In order to adapt to the requirements of the turbulence model
and to ensure the accuracy of simulation, the boundary layer grid is employed on the shaft surface
and the surface of the airfoil, while the heights of the first layer grid of the shaft and airfoil are 10−4D
and 10−5C, respectively, in order to ensure that y+ < 1 [13,26].
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2.3. Boundary Conditions and Numerical Settings

To ensure the accuracy of the simulation results, the setting of boundary conditions and the
methods used in the solution are based on a previous experiment that was reported by Danao [23].
In this study, the left side of the computational domain is the velocity-inlet boundary (V = 7 m/s) with
turbulent intensity of 8% and the turbulence viscosity ratio is set to 14, the turbulence parameters
in the velocity-inlet boundary are set according to the experiment measure reported by Danao [23].
The right side of the domain is the pressure-outlet and the gauge pressure is zero. The upper and lower
edges of the stationary domain are defined as the symmetry boundary conditions. No-slip boundary
condition is specified at surfaces of the shaft and airfoil.

In ANSYS Fluent, The SIMPLE algorithm is employed for the coupling of pressure and velocity.
Second-order implicit transient formulation is used and second-order upwind spatial discretization
is employed in the pressure, momentum, and turbulence equations. The under relaxation factors for
the turbulent kinetic energy, specific dissipation rate, intermittency, and turbulent viscosity are set to
0.8, 0.8, 0.8, 1. During the solution process, the convergence criteria are set to 10−5. In the simulation
conducted as part of this study, we considered that the wind turbine performed a rotation of 30 cycles,
in all cases. When the monitoring parameters changed periodically, we investigated the last revolution.

According to previous research, for the wind turbine model in this study, the results of the
simulation using the four-equation transition SST turbulence model are more accurate in comparison
to using the k-ω SST turbulence model [28,29]. The transition SST turbulence model is a very effective
tool for simulating the various transition processes that were proposed by Menter [30]. The transition
SST model consists of two additional transport equations and two k-ω SST transport equations.
Therefore, we also use the four-equation transition SST turbulence model in order to simulate all the
cases in this study [31,32].
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2.4. Validation Study of Central Cylinder

A two-dimensional (2D) computational domain is employed to the validation study of central
cylinder, as shown in Figure 3a, the width of the computational domain is 20d (d is the cylinder
diameter, d = 0.027 m) and the cylinder distances from both the inlet and outlet side are 10d and 15d,
respectively. A structured O-grid of quadrilateral elements is generated around the cylinder. Moreover,
the first layer grid of the cylinder is 10−5 d in order to ensure that y+ < 1. The overall grid diagram and
the cylinder grid enlargement diagram are shown in Figure 3b. The parameter settings in the CFD
simulation are the same as that in Section 2.3.
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To ensure the simulation results, the effectiveness of the mesh generation method and the
rationality of parameter setting in solving process are reliable, the flow field around a two-dimensional
smooth cylinder with a Reynolds number (Re) of 1.32 × 104 is simulated. The simulation results of
cylinder are compared against the previous published experimental results by Okamoto and Yagita [33]
and Norberg [34] and the simulation results by Prsic [35]. Besides, the Strouhal number (St) is chosen
as the measuring standard to test the accuracy of simulation. The Strouhal number is expressed as the
following Equation,

St =
d f
U∞

(1)

where d is the diameter of the cylinder, f is the frequency of shedding vortex, and U∞ is free wind
velocity. In this study, the frequency of the shedding vortex can be obtained from the spectral analysis
of the lift force fluctuation; the f in this study is 55.79 Hz. We can calculate that St is equal to 0.2152.

The comparison results are shown in Table 2. By observing Table 2, we can find that the present
simulation result shows a good agreement with the previous experiment and simulation results. The St
calculated from the present simulation is only 2.5% and 7.6% higher than that of the experiment result
of Okamoto [33] and Norberg [34]. It can be found by comparing with the previous research results
that the simulation result in the present study is accurate and reliable.
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Table 2. Comparisons of Strouhal number between present simulation and experimental research.

Case St Errors Relative to Previous
Experiment or Simulation

Present simulation, Re = 1.32 × 104 0.2152 -

Experiment of Okamoto [33], Re = 1.33 × 104 0.21 2.5%

Experiment of Norberg [34], Re = 1.30 × 104 0.20 7.6%

Simulation of Prsic [35], Re = 1.31 × 104 0.20 7.6%

In this study, the numerical model of equivalent sand is used to simulate the different central
rotating shaft’s surface roughness. This model simulates that there are some sand particles with
different diameters on the cylinder surface. As shown in Figure 4, ks represents the diameter of the
sand model and ks/ds is the relative surface roughness value, where ds is the smooth shaft diameter of
the VAWT [36,37].
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2.5. Grid Independence and Numerical Validation

In order to ensure the accuracy of simulation in this study, the boundary conditions and the
solution parameters are all setting according to the previous experiment reported by Danao [23] with
a wind velocity of 7 m/s. Appropriate CFD numerical simulation validation investigation has been
carried out in this section.

First, in order to complete the verification of grid independence, three different mesh systems,
including coarse, medium, and fine meshes have been considered in this section. The detailed
descriptions of the characteristic sizes of the three different quality grids are presented in Table 3.
We mainly compare the power coefficient to the experimental power coefficient of the wind turbine for
the three grid resolutions at TSR = 4. The tip speed ratio (TSR) is defined as

TSR =
ωR
U∞

(2)

where ω is the rotor angular velocity of the VAWT, R is the rotating radius of VAWT, and U∞ is the
free wind velocity.

Table 3. Main detail sizes of three different grid resolutions.

Details of the Node Setup and Metrics Coarse Medium Fine

Number of cells on the blade 110 190 390
Number of cells on the interface 100 160 320

Number of cells on the inlet boundary 100 200 400
Total number of grid 69,782 153,561 242,315

Power coefficient of turbine 0.2615 0.2797 0.2802
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According to the results, when the grid quality is coarse, the power coefficient of the simulation
prediction is not accurate. The simulation results are similar for the medium and fine grids; therefore,
for the sake of independency of the solution to the meshes, the medium mesh can be chosen as the
most suitable grid in the further simulations.

To investigate the effect of the time step on the simulation results of the VAWT, three different
time steps are considered, as listed in Table 4. Then, simulation validation is performed using these
three different time steps. Thirty revolutions are simulated for the VAWT at TSR = 4 and the last
revolution is chosen to analyze the instantaneous torque coefficient (Cm) of blade 1 of the wind turbine.
The instantaneous torque coefficient Cm can be defined as [38]

Cm =
T

0.5ρRAU2
∞

(3)

where T is the torque of blade, A is the project area of VAWT (A = RH, H is the blade length), ρ is the
air density, R is the rotor radius of VAWT, and U∞ is the free wind velocity.

Table 4. Different time steps for verification.

Azimuthal angle of blade in one time step (◦) 0.25 0.5 1
Time step (milliseconds) 0.054541 0.109018 0.21817

Number of time steps in one revolution 1440 720 360
Power coefficient 0.2791 0.2797 0.2778

As can be seen in Figure 5, when the time step size is 0.109018 milliseconds (corresponds to the
time of wind turbine rotates 0.5◦ at a time), the maximum value of Cm is 0.0022 higher than that of the
simulation results that were obtained from the time step size of 0.21817 milliseconds (corresponds to
the time of wind turbine rotates 1◦ at a time), and it is only 0.0011 lower than that of the simulation
results that were obtained from the time step size of 0.054541 milliseconds (corresponds to the time of
wind turbine rotates 0.25◦ at a time). This also results the power coefficient Cp of the calculated result
of time step of 0.109018 milliseconds is 0.7% and 0.21% higher than that of the calculated result of time
step of 0.21817 milliseconds and 0.054541 milliseconds. The power coefficient Cp can be defined as

Cp = Cm × TSR (4)
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The calculation methods of TSR and Cm can be found in Equations (2) and (3).
Due to the Cp calculated by the time step size of 0.109018 milliseconds is only 0.7% and 0.21%

higher than that of time step size of 0.21817 and 0.05451 milliseconds, the differences between the
three different time step sizes are small. This simulation results are in good agreement with the
experimental and simulated results of Danao [23], as shown in Figure 6 (in order to change the TSRs,
the simulations and the experiments all keep the wind speed constant and change the angular velocity).
To ensure that the simulation data were adequate, and to reduce the time that is required for the
calculation, we chose the time step of 0.109018 milliseconds with respect to an azimuthal angle of 0.5◦.
The results of investigating the time step are in good agreement with the results of Rezaeiha [24,39].
It can be observed from Figure 6 that when the TSR < 4, the simulation results are in good agreement
with the results of experiment both in overall trend and the value of Cp. However, when TSR = 4,
the deviation of simulation prediction results show an increasing trend, the prediction Cp of simulation
is 33.2% higher than that of the experiment. There is an obvious difference between the results of
experiment and the simulation at the range of 4 < TSR < 5. For the aspects of optimal value prediction,
the maximum Cp for the experimental results is 0.21 occurred at TSR = 4, however, the maximum Cp of
the present simulation is 0.321 when TSR = 4.5, and this brings a deviation of 52.8% for the prediction
of maximum Cp.
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The possible reasons for the simulation error when the TSRs are in the range of 1 to 5 are concluded,
as follows:

(1) In the process of measuring the experimental data, a method of spin down tests is used, it leads
the actual wind speed acted on the wind turbine is lower than the set wind speed as the presence
of blockage effects. Therefore, the measured results will still be small, although some corrections
are made during the subsequent data processing.

(2) Since a simplified 2D geometrical model is employed in the simulation and the influence of
the blade span and junctions connected the blades and the shaft also not considered in the
process of simulating, a deviation might be existed between the experimental results and the
simulation results. It is noteworthy that for high TSRs (4 < TSRs < 5), there is a mass of drag
can be produced by the junctions connected the blades and the shaft in the actual operation
of the VAWT. In addition, the shedding vortices that are generated by the internal junctions
during the operation of the VAWT have not been accurately simulated with a 2D simplified
model. These reasons have great influence on the prediction results of numerical simulation
under high TSRs.
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(3) In the course of numerical calculation, the accuracy of using simplified 2D unsteady
Reynolds-average Navier-Stokes (URANS) to solve the 3D problem with complex flow
characteristics is limited [40]. Especially for the study of blade-wake interactions in this paper.
This is also one of the possible reasons for the differences between the simulated predicted results
and experimental measurements.

2.6. Taguchi Method

The Taguchi method is widely used in engineering practice, and it is a combination of a statistical
approach and experimental design [16,41]. The Taguchi method can not only analyze the optimization
scheme for a product or a production process, but it can also find out the influence strength order of
the influent factors in the process of the analysis [42].

When compared to the traditional statistical method, the Taguchi method has the following
advantages: the Taguchi method emphasizes the employment of loss functions, it can also help
researchers to understand the relationships between each response and the factors preferably.
In addition, due to the Taguchi method assuming that there are no interactions among the control
factors, this leads researcher can investigate more influences of control factors during a small number
of experiments. Simultaneously, since a data statistical method of orthogonal array is employed
to the factors, the experiment cost can be decreased. The disadvantages of Taguchi method are as
follows: only the optimal scheme can be found by Taguchi method from the specified parameter
level combinations, so the feasible solution space will be constrained once the parameter levels are
determined. Besides, the Taguchi method cannot find the optimal solution when the variable of process
parameters is continuous [43].

The following steps should be followed when using the Taguchi method for researches [44]:

(a) The quality characteristics and control factors need explicit.
(b) Identify the number of levels for the control factors and the interactions between the factors.
(c) List the table of orthogonal array according to the numbers of factors and the levels of each factor.
(d) Implement the experiments based on the arrangement of orthogonal array.
(e) Analyze the experimental results with the signal-to-noise ratio.
(f) Obtain the effect strength order of each influent factor.
(g) Select the optimal levels of each control factor.

To apply the Taguchi method in this study, a simulation scheme of the L9 (34) orthogonal array is
created firstly (including four factors, four levels are considered in each factor). Calculate the Cp and
the signal-noise ratio (S/N ratio) of the VAWT system of each combination in the orthogonal array
scheme. Typically, the employment of the S/N ratio is to evaluate the quality characteristics deviating
from the desired value. The mean S/N ratios of the four factors are further calculated to investigate the
influence strength order for the four factors. Furthermore, the profiles of the mean S/N ratio will be
further analyzed to find out the optimal combination within the range of values that we have studied.

There are many possible factors that can have impact on the wake effect of the rotating shaft.
According to previous studies, four alternative factors are investigated and analyzed, namely, tip speed
ratios (TSRs), shaft diameter to wind turbine diameter ratios (α), the turbulent intensity of incoming
flow (TI), and the relative surface roughness of value of the shaft. [21,45].

The Taguchi method is widely used for optimizing industrial processes, it is also a reasonable
tool to investigate and optimize the power output of the VAWT’s system [15,46]. The method is based
on the orthogonal array of the control factors, and measure the loss of the product quality quantify
through the concept of the loss function, in addition, the signal-noise ratio (S/N ratio) is employed to
analyze the quality characteristics of the product or process parameters [47,48]. The loss function can
be defined as the following quadratic form:

L(y) = K(y− T)2 (5)
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where L is the loss value, K is a constant which depends on the magnitude of the characteristic, and T
is the target response.

There are three different kinds of S/N ratio, nominal-the better (NB), the larger-the-better (LB),
and the small-the-better (SB), are defined in the Taguchi method. For the present study, the larger S/N
ratio will correspond to a better wind turbine performance, therefore the LB S/N ratio is calculated
based on the following function [15,49],

S/N = −10 log[(y− T)2] (6)

In the present study, we use power coefficient to measure the performance of VAWT, the higher
the power coefficient means the better the single VAWT system. Accordingly, in Equation (6), T is the
highest value of a single VAWT and its value is 0.593 [50], while y is the predicted value of the power
coefficient of simulation.

3. Results and Discussion

3.1. Influence of Ratio of the Shaft Diameter to the Wind Turbine Diameter on Wind Turbine Performance

To analyze the influence of the wake effect that is caused by the central rotating shaft of the VAWT
on the power coefficient of the blade, we compare the instantaneous power coefficient of blade 1 of
different α from 3.9% to 9% in one rotation, to a wind turbine under a hypothetical no-shaft condition,
as shown in Figure 7. It can be seen that the power coefficient of the blade fluctuates fiercely when the
azimuthal angle is between 250◦ and 290◦. The instantaneous power coefficient of the blades obviously
declines in the vicinity of an azimuthal angle of 270◦, due to the effect of the central rotating shaft
wake vortex. Then, the instantaneous power coefficient of the blades returns to normal after they
pass through the region that influenced by the shaft wake. However, the azimuthal angle of lowest
point of instantaneous power coefficient of blade 1 goes slightly backwards when α > 7%. In order to
further study the reason why the instantaneous power of blade 1 declines obviously in the vicinity of
an azimuthal angle of 270◦, the instantaneous contours of velocity is observed in Figure 8 to investigate
the state of the wake at this moment. However, it is important to emphasize that the state of the wake is
dependent on the frequency of the shedding vortices. When the VAWT operates to the next revolution,
the frequency of the shedding vortices is substantially different from that of the current revolution.
Therefore, the wake of the rotating shaft in this revolution is not same as the next revolution. As can be
seen in Figure 8, the existence of the central rotating shaft increases the low speed area near the blade,
while the large velocity change on the pressure side of the blade results in the change of the blade’s
power coefficient. As the diameter of the wind turbine’s central rotating shaft increases, it can be seen
that a large-scale vortex struck the surface of the blade. After α ≥ 7%, a large scale vortex appears due
to the violent wake effect that is exerted by the central rotating shaft. Consequently, the large-scale
vortex does not hit the downstream blades at an azimuthal angle of 270◦. Therefore, at that moment,
the lowest point of the instantaneous power coefficient curve of blade 1 is pushed backwards when α
≥ 7%. When the diameter of the central rotating shaft increases again, the scale of the vortex shedding
is observed to be larger, and it results in the significant backward shift of the power coefficient curve’s
minimum point when α = 9%. The change of power coefficients of these VAWTs with the increase of α
is shown in Figure 9. It can be seen that the wind turbine’s power coefficient exhibits a downward
trend as α increases. When α increases to 3.9%, the power coefficient of the wind turbine decreases
intensively. As α increase from 0% to 9%, the power loss of the wind turbine increased from 0% to 25%.
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3.2. Analysis of the Flow Characteristics around the Rotating Shaft

As shown in Figure 7, for α < 7%, the minimum power coefficient occurs when the blade operates
at the vicinity of azimuthal angle of 270◦. However, in the case of α ≥ 7%, the minimum value of the
power coefficient moves backwards, it appears at the vicinity of azimuthal angle of 280◦. A partially
enlarged view of the time-averaged streamlines near shaft (for the last 10 operating revolutions of
VAWT) and the instantaneous vortices shedding process of the shaft are shown in Figure 10. As shown
in Figure 10, for α = 3.9%, the top and bottom surface flows of the central rotating shaft are symmetrical
and without any clear boundary layer separation. Furthermore, the top and bottom surfaces of the
central rotating shaft alternate the periodic release of shedding vortices. However, the spacing between
the front and back vortices that are produced by the shaft is relatively small, and the vortex intensity is
weak, otherwise, the average lift coefficient is approximately zero. When α starts to increase to 5%,
the flow become asymmetrical, the separation of the boundary layer on the top surface of the central
rotating shaft is apparent, and the wake vortex intensity also become stronger. The range of the effect
on the downstream wind turbine blades increases, and the average lift coefficient becomes negative.
As α increase, the separation of the boundary layer becomes more obvious, while the separation point
keeps moving forward. For α = 9%, the angle between the two separation points is almost close to
180◦ and this led to the gradual reduction of the average lift coefficient. The shedding vortex intensity
of the central rotating shaft increases gradually, and it exerts a wider effect on the downstream blades
of the wind.

Energies 2018, 11, x 13 of 24 

 

3.2. Analysis of the Flow Characteristics around the Rotating Shaft 

As shown in Figure 7, for α < 7%, the minimum power coefficient occurs when the blade operates 
at the vicinity of azimuthal angle of 270°. However, in the case of α ≥ 7%, the minimum value of the 
power coefficient moves backwards, it appears at the vicinity of azimuthal angle of 280°. A partially 
enlarged view of the time-averaged streamlines near shaft (for the last 10 operating revolutions of 
VAWT) and the instantaneous vortices shedding process of the shaft are shown in Figure 10. As 
shown in Figure 10, for α = 3.9%, the top and bottom surface flows of the central rotating shaft are 
symmetrical and without any clear boundary layer separation. Furthermore, the top and bottom 
surfaces of the central rotating shaft alternate the periodic release of shedding vortices. However, the 
spacing between the front and back vortices that are produced by the shaft is relatively small, and 
the vortex intensity is weak, otherwise, the average lift coefficient is approximately zero. When α 
starts to increase to 5%, the flow become asymmetrical, the separation of the boundary layer on the 
top surface of the central rotating shaft is apparent, and the wake vortex intensity also become 
stronger. The range of the effect on the downstream wind turbine blades increases, and the average 
lift coefficient becomes negative. As α increase, the separation of the boundary layer becomes more 
obvious, while the separation point keeps moving forward. For α = 9%, the angle between the two 
separation points is almost close to 180° and this led to the gradual reduction of the average lift 
coefficient. The shedding vortex intensity of the central rotating shaft increases gradually, and it 
exerts a wider effect on the downstream blades of the wind. 

 

Figure 10. Instantaneous vortices contours of central rotating shaft and the time-averaged streamlines 
for the last 10 operating revolutions of VAWT with respect to different values of α. 

The drag and lift fluctuation amplitude variation curves of the shaft in one wind turbine 
revolution are shown in Figure 11, to further evaluate the wake effect of the wind turbine’s central 
rotating shaft. The calculation methods of drag and lift fluctuation amplitude are as follows. 
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The drag and lift fluctuation amplitude variation curves of the shaft in one wind turbine revolution
are shown in Figure 11, to further evaluate the wake effect of the wind turbine’s central rotating shaft.
The calculation methods of drag and lift fluctuation amplitude are as follows.



Energies 2018, 11, 1870 14 of 25
Energies 2018, 11, x 14 of 24 

 

 
Figure 11. Comparison of central rotating shaft fluctuation amplitude with respect to different values 
of α. 

The lift and drag coefficients of the shaft of VAWT are defined as [51], 

20.5
l

l
s

F
C

d Uρ ∞

=  (7) 

20.5
d

d
s

F
C

d Uρ ∞

=  (8) 

where the Fl and Fd are the lift and drag forces, respectively, and ds is the diameter of the shaft. 
The amplitudes in the fluctuation of the shaft are defined, respectively, as [52] 

,max ,min'

2
l l

l

C C
C

−
=  (9) 

,max ,min'

2
d d

d

C C
C

−
=  (10) 

By examining the vortices’ contours of the central rotating shaft shown in Figure 10, it can be 
observed that the sequential shedding vortices that are released alternately from the top and bottom 
surfaces of the central rotating shaft at α = 3.9%, and the vortex intensity, are both weak. The intensity 
of the shedding vortices releases from the wind turbine’s central rotating shaft became stronger from 
the point of α = 5%. Several main vortices are formed and shed backwards one by one. The distance 
between the two main anteroposterior vortices is large. Moreover, as shown in Figure 11, during the 
increase of α from 3.9% to 5%, the amplitude of the lift coefficient changes significantly, and it then 
remains almost unchanged. The amplitude of the drag coefficient is also obvious during the process 
of α increasing from 3.9% to 5%. The amplitude curve of the drag coefficient increases slowly. 
Therefore, α = 5% is assessed as a critical state. The changes in the average lift and drag coefficient 
ratio are shown in Figure 12. Additionally, it can be confirmed that the ratio of the average lift 
coefficient to the average drag coefficient reaches the maximum value at the critical value. When α > 5%, 
the large scale shedding vortices exerts a wider effect on the downstream blades. Moreover, the shedding 
vortex intensity is large, which exerted a significant influence on the instantaneous power coefficient 
of the wind turbine’s downstream blades. 

Figure 11. Comparison of central rotating shaft fluctuation amplitude with respect to different values
of α.

The lift and drag coefficients of the shaft of VAWT are defined as [51],
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where the Fl and Fd are the lift and drag forces, respectively, and ds is the diameter of the shaft.
The amplitudes in the fluctuation of the shaft are defined, respectively, as [52]
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By examining the vortices’ contours of the central rotating shaft shown in Figure 10, it can be
observed that the sequential shedding vortices that are released alternately from the top and bottom
surfaces of the central rotating shaft at α = 3.9%, and the vortex intensity, are both weak. The intensity
of the shedding vortices releases from the wind turbine’s central rotating shaft became stronger from
the point of α = 5%. Several main vortices are formed and shed backwards one by one. The distance
between the two main anteroposterior vortices is large. Moreover, as shown in Figure 11, during the
increase of α from 3.9% to 5%, the amplitude of the lift coefficient changes significantly, and it then
remains almost unchanged. The amplitude of the drag coefficient is also obvious during the process of
α increasing from 3.9% to 5%. The amplitude curve of the drag coefficient increases slowly. Therefore,
α = 5% is assessed as a critical state. The changes in the average lift and drag coefficient ratio are
shown in Figure 12. Additionally, it can be confirmed that the ratio of the average lift coefficient to the
average drag coefficient reaches the maximum value at the critical value. When α > 5%, the large scale
shedding vortices exerts a wider effect on the downstream blades. Moreover, the shedding vortex
intensity is large, which exerted a significant influence on the instantaneous power coefficient of the
wind turbine’s downstream blades.
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3.3. The Influence of Rotating Central Shaft on the Flow Field inside the Wind Turbine

In order to analyze the variations of velocity inside the wind turbine under different α, the velocity
profile at four different positions has been analyzed, as shown in Figure 13. Figure 13a provides a
diagram of the four positions located at x/R = 0.2, 0.4, 0.6, and 0.8. In Figure 13b–e, the variations of the
velocity inside the wind turbine are investigated in detail. Besides, the velocities and lateral position
are non-dimensionalised by the inlet velocity, U∞, and the rotor radius R, respectively. The influence of
different α is investigated in Figure 13b when TSR = 4, TI = 8%, and the shaft is smooth at this time, α is
increased from 3.9% to 9%. The influence of surface roughness is discussed in Figure 13c when α = 5%,
TSR = 4 and TI = 8%, the ks/ds changes from 10−4 to 10−2. Under the condition of α = 5%, TSR = 4, and the
shaft is smooth, we study the effects of TI by changing values of TI from 4% to 12%, the comparison results
are shown in Figure 13d. In Figure 13e, the influence of TSRs is shown when α = 5%, TI = 8%, the shaft
of wind turbine is smooth; the values of TSRs are 2, 3, and 4, respectively. For a single VAWT system,
the factors affecting the power coefficient of the VAWT include the TSRs of the VAWT, shaft diameter to
wind turbine diameter ratios (α), the surface roughness of the central shaft, and the turbulent intensity of
incoming flow (TI). Therefore, four factors and three levels are considered in the simulations to account
for their impacts on the performance of the urban VAWT. Furthermore, the optimum operating conditions
of the VAWT for maximizing the performance are obtained by Taguchi method in Section 4. It can be
observed from Figure 13b that when α = 3.9% and α = 5%, the impact of rotating central shaft on flow
field inside the wind turbine is almost the same. From Figure 13c–e, we can see that the surface roughness,
turbulence intensity of incoming flow, and TSRs all have an effect on the downstream flow field of the
VAWT. The TSRs have a great impact, the TI has a weak influence, and the surface roughness of the
central shaft only influences the wake of the shaft and affects the downstream velocity field. The specific
effects of these factors on power output of the VAWT will also be discussed in Section 4.
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Figure 13. (a) The four measured positions of wind velocity inside the wind turbine; (b) fluctuation
of wind velocity in downstream region of x/R = 0.2, 0.4, 0.6, 0.8 at different α; (c) fluctuation of wind
velocity in downstream region of x/R = 0.2, 0.4, 0.6, 0.8 at different ks/ds; (d) fluctuation of wind
velocity in downstream region of x/R = 0.2, 0.4, 0.6, 0.8 at different turbulence intensity (TI); and,
(e) fluctuation of wind velocity in downstream region of x/R = 0.2, 0.4, 0.6, 0.8 at different tip speed
ratios (TSRs).

3.4. Influence of Central Rotating Shaft on Flow Field near Blade

In order to illustrate the wake effect of the wind turbine’s central rotating shaft on the blades,
we observe the speed variations of in the downstream position of x/R = 1, as shown in Figure 14a.
The comparison results are shown in Figure 14b,c, where it can be seen that the velocity and distance
are normalized by the inlet velocity U∞ and wind turbine rotation radius R, respectively. As shown
in Figure 14b, we assume that there is no-shaft in the wind turbine, the speed variations near the
pressure surface of the blade change slightly. As α increase, the wake of the central rotating shaft exerts
increasing influence on the downstream blades. When α > 5%, two peaks appear in the speed curve.
As shown in Figure 14c, when α increase to 7%, the blade rotates at an azimuthal angle of 280◦, and the
influence that is caused by the intersection of the blade trajectory and shaft wake is also very drastic.
When α = 9%, the same phenomenon occur. The velocity variations near pressure surface of the blade
at an azimuthal angle of 270◦ and 280◦ also explains the phenomenon where the instantaneous power
of the blade occur a minimum (phenomenon in Figure 7).
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The pressure coefficient (CoP) distribution of the wind turbine’s blade surface is observed in order
to further analyze the effect of the power coefficient of wind turbine blades. The pressure coefficient
CoP is defined by,

CoP =
P

0.5ρU2
∞

(11)

where P is the pressure of the blade surface, ρ is the air density, and U∞ is the free wind velocity.
Figure 15a shows that when α < 7% and the blade rotates at an azimuthal angle of 270◦, a pressure

gradient reversal occurs at the trailing edge of the blade. This has negative impact on the blade’s lift
coefficient. As α increase, the overall variations of the blade’s pressure gradient exhibit a decreasing
tendency, which leads to the instantaneous power coefficient exhibiting a decreasing trend when the
blade rotates to the vicinity of an azimuthal angle of 270◦, as shown in Figure 7. Similarly, as shown
in Figure 15b, when α = 9%, the instantaneous power coefficient is much less than that of the blade
when α = 7%, due to the blade surface pressure reversing in advance, and because the overall pressure
gradient of the blade only changes slightly.
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4. Performance Analysis of the VAWT with Taguchi Method

4.1. Power Coefficients of VAWT in Taguchi Approach

Details of factors, control parameters, and levels are shown in Table 5. If all cases are taken into
account, a total of 34 (=81) runs are required. The Taguchi method uses an L9 (34) orthogonal array
to analyze the performance of a single VAWT system where only nine runs are needed, as shown in
Table 6. The predicted values of Cp and S/N ratio are shown in Table 7. The higher the value of Cp,
the higher the S/N ratio corresponds to a better performance of VAWT. The maximum value of Cp is
0.26224, which occurs at Run 7, whereas the minimum value of −0.1359 is found at Run 1, the S/N
ratios of Run 7 and Run 1 are 9.610 and 2.747, respectively. These results clearly demonstrate that
the combination of factors and levels in Run 7 is beneficial to the performance of VAWT, and the
combination of factors and levels also play an important role in terms of improving the power output
of the VAWT.

Table 5. Factors, control parameter, and levels.

Factor Control Parameter Notation Level

1 2 3

A Tip speed ratio TSR 2 3 4
B Shaft diameter to wind turbine diameter ratios α 5% 7% 9%
C Relative surface roughness value of the shaft ks/ds 1 × 10−4 1 × 10−3 1 × 10−2

D Turbulent intensity of incoming flow TI 4% 8% 12%

Table 6. Level combination of designed experiments in L9 (34) orthogonal array.

Run Factor

A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 7. Predicted results of Cp and signal-to-noise (S/N) ratio in L9 (34) orthogonal array.

Run Cp S/N Ratio

1 −0.1359 2.747
2 −0.1248 2.879
3 −0.1278 2.844
4 0.07698 5.747
5 0.07965 5.792
6 0.06566 5.558
7 0.26224 9.610
8 0.23032 8.810
9 0.22933 8.786

According to the values of the S/N ratios that were obtained in Table 7, the profiles of the mean
S/N ratios of the four factors are shown in Figure 16a. The value of the mean S/N ratio at Factor A
and Level 1 can be calculated by the values of the S/N ratio from the three Level 1 values of Factor A
in Table 6 (Runs 1 to 3), namely, the mean S/N ratios of Factor A and Level 1 can be calculated by the
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average of 2.747, 2.879, and 2.844. For another instance, in order to calculate the value of the mean
S/N ratio at Factor B and Level 2, as shown in Table 6, the mean S/N ratios of Factor B and Level
2 can be calculated by the average of 2.879, 5.792, and 8.810. The mean S/N ratios of other Factors
and Levels are also calculated as the same method. In order to investigate the degree of influences
on the performance of VAWT of different factors, the effect value of the each factor is calculated by
the maximum mean S/N ratio minus the minimum mean S/N ratio. The effect values of the four
factors are shown in Figure 16b. We can infer from Figure 16b that the influence strength of the effect
of rotating shaft on the performance of VAWT is ranked as: TSRs > ks/ds > α > TI.
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As shown in Figure 16b, the effect value of Factor A is much higher than that of other factors.
This means that as the influence of TSRs act on the whole process of operation of VAWT, the TSRs
play an important role in the power output of VAWT, the similar conclusion can be also found in
the literature [53], for VAWT, there is a strong dependence on for TSRs. In addition, the effect value
of Factor C is also higher than that of Factor B and D. This is mainly because the boundary layer
separation point can be delayed by increasing the ks/ds, and this results in the downstream blades
being less affected by the shedding vortices. However, the influence of ks/ds and α only act on the
rotating shaft primarily, so the changes of these two factors mainly affect the flow field behind the
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shaft. Therefore, the influence strength of these two factors is relatively lower when compared to the
influence of TSRs. The effect value of Factor D is the lowest among the four factors. It has also been
reported [54] that the effect of TI on the performance of VAWT is weak at low TSRs, but the influence
is more evident at higher TSRs. This may be the reason why the TSRs play the most important role on
Cp of VAWT, and it is insensitive to Factor D. According to the calculations of factor effect value and
the previous research results, it can be seen that the rank of influence strength of these factors in this
section is precise and reasonable.

4.2. Optimum Operation

In order to find the optimum operation of the VAWT in the range of the data we studied in this
study, and minimize the negative impact of the rotating shaft on the downstream blades, the profiles
of the mean S/N ratio will be further analyzed. Figure 16a reflects that the combination of A3, B1, C3,
and D2 is able to maximize the power coefficient of the VAWT within the range that we have studied
in Section 4.1, and this combination corresponds to the optimal combination is TSR = 4, α = 5%, ks/ds

= 1 × 10−2, and TI = 8%. Based on the optimal combination, the value of the power coefficient is 0.262.

5. Conclusions

In the present study, the effects of the wake of the rotating shaft on the wind turbine performance
are investigated numerically. Dynamic analysis of the VAWT is carried out by the method of
Computational Fluid Dynamics (CFD). The computational results are obtained by solving the 2D
unsteady Navier-Stokes equations using the Transition SST turbulence model. The results are also
validated with the experimental results. Moreover, the validation study is also carried out to verify the
accuracy of central cylinder simulation. The influence factors, including the tip speed ratios (TSRs) of
the operational wind turbine, the turbulence intensity (TI) of the flow, the ratio of the shaft diameter
to the wind turbine diameter (α), and the relative surface roughness value ks/ds, are comprehensive
considered and studied in detail in this current study. The main conclusions of this current study can
be summarized, as follows:

• A minimum instantaneous power coefficient value appears when the wind turbine blade operates
at the vicinity of an azimuthal angle of 270◦, which indicates that the occurrence of the wake
effect that is generated by the central rotating shaft. As α increases to 9%, the wind turbine has
a minimum power coefficient value, and the power loss of the wind turbine in one revolution
increased from 0% to 25%, relative to that of the no-shaft wind turbine.

• The influence of the wake effect on the downstream velocity field is very strong during the VAWT
operation of VAWT. The effect of the shedding vortex, which is exerted by the wind turbine’s
rotating shaft, becomes stronger and decreases the pressure gradient between the suction side
and pressure side. In addition, the lift that is produced by the blades can be also reduced, and this
results in the reduction of the Cp of the wind turbine in one revolution.

• As the value of α increase, the phenomenon of boundary layer separation will become increasingly
evident. For the wind turbine model in the present study, α = 5% is a critical point, the shedding
vortex released by the rotating shaft alternates periodically when α < 5%. The phenomenon is
that the distance between the two vortices at the front and back is small. Subsequently, the front
shedding vortex exerts a small effect on the back vortex, and the intensity of the vortices is weak.
The shedding vortices released by the central rotating shaft are mostly a single main vortex when
α > 5%. The distance between the two vortices in the front and back is large, while the influence
exertion on each other is weak.

• In order to investigate the influence strength order of four factors (TSRs, α, TI, and ks/ds) to
the wake effect of central rotating shaft on the performance of VAWT, the Taguchi method has
been employed in this study, the analyses of signal-to-noise ratios (S/N ratios) suggest that the
influence strength order of the factors is: TSRs > ks/ds > α > TI. In addition, the analysis of the S/N
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ratios also report that, within the range that we have analyzed in this current study, the operating
conditions of TSR = 4, α = 5%, ks/ds = 1× 10−2, and TI = 8% can maximize the power coefficient of
VAWT and the negative effect produced by the rotating shaft will be minimized. This conclusion
provides reference for the optimum operating conditions of small VAWT in urban environment.
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Nomenclature

A Swept area of wind turbine (m2)
C Length of chord line (m)
Cm Instantaneous moment coefficient (-)
Cp Power coefficient (-)
CoP Pressure coefficient (-)
C′L Fluctuation amplitude of lift coefficient of central shaft (-)
C′D Fluctuation amplitude of drag coefficient of central shaft (-)
CL/CD lift-drag coefficient ratio of central shaft (-)
D Diameter of wind turbine (m)
d Cylinder diameter (m)
ds Diameter of shaft (m)
Fl Lift forces of central shaft (N)
Fd Drag forces of central shaft (N)
H Height of blade (m)
ks Roughness height of the shaft (m)
n Number of blades (-)
R Radius of wind turbine (m)
Res Shaft diameter-based Reynolds number (-)
S/N ratio Signal-noise ratio (-)
TI Turbulence intensity (%)
U∞ Free wind velocity [m/s]
y+ Dimensionless wall distance (-)
α Ratio of the shaft diameter to the wind turbine diameter (-)
θ Azimuthal angle [◦]
ω Rotor angular velocity of the wind turbine (rad/s)
ρ Air density (kg/m3)
CFD Computational fluid dynamics
HAWT Horizontal axis wind turbine
SST Shear stress transport
TSR Tip speed ratio
VAWT Vertical axis wind turbine
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