
energies

Article

An Iterative Reduced KPCA Hidden Markov Model
for Gas Turbine Performance Fault Diagnosis

Feng Lu 1,* ID , Jipeng Jiang 1, Jinquan Huang 1 and Xiaojie Qiu 2

1 Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 15605182922@163.com (J.J.);
jhuang@nuaa.edu.cn (J.H.)

2 Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi 214063, China;
grjuly@163.com

* Correspondence: lfaann@nuaa.edu.cn

Received: 5 June 2018; Accepted: 5 July 2018; Published: 10 July 2018
����������
�������

Abstract: To improve gas-path performance fault pattern recognition for aircraft engines, a new
data-driven diagnostic method based on hidden Markov model (HMM) is proposed. A redundant
sensor somewhat interferes with fault diagnostic results of the HMM, and it also increases
the computational burden. The contribution of this paper is to develop an iterative reduced
kernel principal component analysis (IRKPCA) algorithm to extract fault features from original
high-dimension observation without large additional calculation load and combine it with the
HMM for engine gas-path fault diagnosis. The optimal kernel features are obtained by iterative
sequential forward selection of the IRKPCA, and the features with lower dimensions are contracted
through a trade-off between the fault information and modeling data scale in reduced kernel space.
The similarity degree is designed to simplify the HMM modeling data using fault kernel features.
Test results show that the proposed methodology brings a significant improvement in diagnostic
confidence and computational efforts in the applications of a turbofan engine fault diagnosis during
its steady and dynamic process.

Keywords: gas turbine; fault diagnosis; hidden Markov model; kernel principal component analysis;
feature extraction

1. Introduction

The gas turbine engine is the power source of aircraft, and its reliability directly affects aircraft
safety and performance [1]. The engine is an easy-fault piece of machinery since it has complex
structure and runs in harsh operating conditions. During the course of an engine’s life, various
physical failures might happen, such as corrosion, erosion, fouling, and foreign object damage [2,3].
These failures lead to gas-path performance degradation, either gradually or abruptly, which is
recognized as engine gas-path fault and is greatly harmful to flight safety [4,5]. For the purpose of
enhancing operating reliability and reducing maintenance costs of aircraft propulsion systems, engine
gas-path fault diagnosis technology has attracted interest.

Generally speaking, gas turbine fault diagnosis approaches are divided into model-based and
data-driven ones [6,7]. Variants of Kalman filters are the typical model-based diagnostic methods for
gas turbine engines [8,9]. It requires a reliable engine model, which relies on physical characteristics
and aero-thermodynamic theory. The engine modeling uncertainties and operation non-linearity
during the transient process negatively affects the performance of model-based technologies [10].
Engine-to-engine variation makes it difficult for the general engine model to represent every individual
engine. In addition, the observability of general Kalman filters relates to the number of sensor
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measurements and their types, and it cannot recognize fault patterns as available sensors less than
health parameters.

The data-driven approach is another important method of fault diagnosis for complex non-linear
systems, especially in the rich data circumstance [11–13]. It depends on the collected data of fault modes
but not an accurate mathematical model of a gas turbine engine. It is particularly suitable to a complex
strong non-linear system, and it is not limited to the sensor measurement number. In the data-driven
field, much attention has been paid to neural network approaches, which are theoretically developed
from empirical risk minimization with simple mathematical expressions [8]. Bartolini applied neural
networks to micro gas turbines, and then Amozegar developed an ensemble of dynamic neural
network identifiers for engine fault detection and isolation [14,15]. The desirable topological structure
of a neural network is usually selected by experience, and the diagnostic performance by a neural
network easily fluctuates with stochastic measurement noise.

Different from the neural network approaches, the hidden Markov model (HMM) is a classic
data-driven fault diagnosis for non-linear stochastic systems [16]. The HMM has rigorous theoretical
deduction and definite model structure [17]. HMM statistical characteristics in modeling and
classification makes it outperform fault pattern recognition for a mechanical system with clear
randomness and uncertainties [18]. However, it is noted that the HMM’s computational cost increases
dramatically when the measurement dimension increases. The sensor data from various operating
cross-sections for engine gas-path fault diagnosis is usually complex and physically correlative in
transient process in the flight envelope. Consequently, it is necessary to extract fault features from raw
measurement sequences to decrease test data dimensions and simplify the HMM structure.

Principal component analysis (PCA) is introduced into the HMM to extract fault features
to reduce computational effort. PCA is achieved by projecting the linear data matrix onto an
uncorrelated subspace with less information loss, but its performance is reduced in the plant with
strong non-linearity. Kernel-PCA (KPCA) is developed to overcome shortcomings of conventional
PCA-to-linear issues [19,20]. Provided a kernel matrix (an n × n matrix where n is the number of
the dataset) to map an original dataset into the feature space, the KPCA computational complexity is
O(n3) in the principal component feature extraction. Taouali proposed a novel RKPCA to improve the
sparsity capability [21], but it is difficult to balance the useful information capacity and data scale to
reach the appropriate sample number.

To improve fault diagnostic confidence and computational efforts, a novel fault diagnostic
approach is proposed using the combination of iterative reduced KPCA and HMM for engine gas-path
fault diagnosis. In this paper, the IRKPCA is developed with a sample-reduction mechanism, which is
designed to decline the redundant information in the initial observation sequences for gas-path fault
feature extraction. The similarity degree and forward kernel inverse are employed to simplify the
sample data, and then the kernel fault feature by the IRKPCA is used by the HMM to perform gas-path
fault pattern recognition. The systematical tests are carried out to evaluate fault diagnosis performance
of the proposed methodology, and it runs on a two-spool turbofan engine simulation in the steady and
transient process at various cycle numbers during its life. The results indicate the superiority of the
IRKPCA-HMM, and it supports our viewpoints.

The remainder of paper is organized as follows. The IRKPCA is developed from the basic KPCA,
and the comparisons of the involved KPCAs are followed by feature extraction performance using
benchmark datasets in Section 2. In Section 3, the IRKPCA-HMM is presented by the combination
of IRKPCA and HMM to simplify the fault diagnostic model using reduced-kernel fault features.
Simulation and analysis are given on a turbofan engine in dynamics for gas-path fault diagnosis in
Section 4. Section 5 draws a conclusion and discusses future research directions.
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2. IRKPCA-Based Feature Extraction Algorithm

2.1. KPCA

As the non-linear extension of PCA, KPCA has been applied to various engineering fields
and exhibited satisfactory performance in complicated non-linear systems [19,22]. The kernel
transformation of the KPCA maps the measured data space to higher-dimension feature space.
Given a set of N mean-variance scaled training data, X{xi}, i = 1, · · · , N, xi∈RL, ∑N

i=1 xi = 0, and L is
the original dimension of training measurement. The covariance matrix in the feature space F is

C =
1
N

N

∑
i=1

φ(xi)φ(xi)
T (1)

where transformation matrix φ( ) : RL → RH is a non-linear map from input vector into
H-dimensional feature space F. Non-zero eigenvectors γ of the covariance matrix C is calculated
by eigenvalue decomposition

Cγ = λγ = 1
N

N
∑

i=1
〈φ(xi), γ〉φ(xi)

γ =
N
∑

i=1
εiφ(xi)

(2)

where λ is the eigenvalues of C in feature space. Combine two expressions in Equation (2) and multiply
the kernel matrix φ(xk) in both sides, and we can obtain

λ
N

∑
i=1

εi〈φ(xi), φ(xk)〉 =
1
N

N

∑
j=1

N

∑
i=1

εi
〈
φ(xi), φ

(
xj
)〉〈

φ
(
xj
)
, φ(xk)

〉
(3)

Then, a kernel matrix K = {kij} with the dimension of N × N is introduced to achieve the inner
product in non-linear feature space

kij =
〈
φ(xi), φ(xj)

〉
= k(xi, xj) (4)

A radial basis kernel k(xi, xj) = exp(−(1/2σ2)‖xi − xj‖2) is used for Kernel transformation,
and σ is a dispersion factor. The kernel matrix K is centralized before kernel transformation

K ← K − 1
N

I·K − K· 1
N

I +
1
N

I·K· 1
N

I (5)

where I is an identity matrix with the size of N × N. Then, Equation (3) is specified as

Kε = Nλε (6)

The kernel principal components are selected as the p largest positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λp > 0, and their eigenvectors ε1, . . . , εp form the kernel principal component set. The projection
parameter of a new data xnew onto the eigenvectors in the principal component set is called the
KPCA-transformed feature variable. The i-th feature zi for xnew is expressed

zi = γi
Tφ(xnew) =

N
∑

j=1
εi,jk(xj, xnew) j = 1, . . . , p (7)

From Equation (7), the kernel matrix is computed to obtain the feature vector for each sample in
training dataset. The burden of computation and storage would be dramatically serious for drawing
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fault features as the increase of kernel matrix calculation number and the sample data accumulation.
For these purposes, an iterative reduced KPCA (IRKPCA) is developed from the KPCA algorithm.

2.2. IRKPCA

Given the selected samples set from the training dataset Xs{xi}, i = 1, · · · , Ns, Ns means the
selected sample number. The base vectors in feature subspace Φ = {φ(x1), . . . , φ(xs)} related to
the selected samples are sufficient to express the whole transformed data in feature space. Thus,
the mapping estimate of any sample vector xi can be represented by a linear combination of these base
vectors Xs

φ̂(xi) = Φ·ai (8)

where ai is the coefficient vector on the feature subspace basis denoted as ai = [ai,1, ai,2, . . . , ai,Ns ]
T .

A new objective function to find these coefficients is designed, and it includes two minimization
elements: the estimated mapping errors and coefficient vector norm. The objective function is
expressed as

min Ji = ‖φ(xi)− φ̂(xi)‖
2
+ ρ‖ai‖2 (9)

where ρ is the regularization parameter to weight off the estimation error and coefficient scales.
The former part indicates that the modeling-variable mapping is as close as possible to the real
mapping, and the latter one compacts the scales. Let (∂Ji/∂ai) = 0, we have

∂Ji
∂ai

=
∂
(
(φ(xi)−Φai)

T(φ(xi)−Φai)+ρai
T ai

)
∂ai

=
∂
(

ai
TKssai−2φ(xi)

TΦai+φ(xi)
Tφ(xi)+ρai

T ai

)
∂ai

= 0

⇒ 2Kssai − 2Ksi + 2ρai = 0⇒ ai = (Kss + ρIs)
−1Ksi

(10)

where Is is an identity matrix of the size of s × s. Combining Equations (9) and (10), the solution of
minimization Ji can be rewritten

minJi = KT
si(Kss + ρI)−1Kss(Kss + ρI)−1Ksi − 2KT

si(Kss + ρI)−1Ksi + 1 + ρKT
si(Kss + ρI)−1 I(Kss + ρI)Ksi

= 1− Ksi(Kss + ρIs)
−1Ksi

(11)

where Kss represents the kernel matrix of the selected vectors, and Ksi is the dot product between xi and
the selected base vectors, Ksi = [k(x1,xi), . . . , k(xs,xi)]T. Since the calculation procedure of objective
function is treated to each sample in the training dataset, the overall objective function is defined by

J = min
s
( ∑

xi∈XN

{
1− Ksi(Kss + ρIs)

−1Ksi

}
) (12)

Equation (12) can be rewritten as

J∗ = max
s

( ∑
xi∈XN

{
Ksi(Kss + ρIs)

−1Ksi

}
) (13)

The sample reduction procedure is an iterative sequential forward process. The sample chooses
preforms from the training dataset at each step of the procedure, which are combined with the prior
selected ones to generate the optimal objective function of Equation (13). The procedure stops as the
mean of overall objective is no longer increasing clearly when the sample is added. The mean residual
is given by

∆ = mean
s+1

(J∗)−mean
s

(J∗) (14)
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To reduce the number of training sample, the similarity degree is used. The similarity degree
between a new sample xi and the selected samples xj is

cos(xi, xj) =
φT(xi)φ(xj)√

φT(xi)φ(xi)
√

φT(xj)φ(xj)
j = 1, . . . , s (15)

Kernel matrix inverse is calculated when a new training sample is selected during the iteration.
It is very time-consuming to repeatedly calculate the Kss inverse. The forward kernel inverse strategy
is used to compute the (s + 1)-th sample given base vectors Xs and Rs = (Kss+ ρIs)−1

Rs+1 =

[
Kss + ρIs Ksi

KT
si kii + ρ

]−1

(16)

Provided an invertible matrix A, and matrices D, V , U, we have[
A U
V D

]−1

=

[
A−1 + A−1U(D− VA−1U)

−1VA−1 −A−1U(D− VA−1U)
−1

−(D− VA−1U)
−1VA−1 (D− VA−1U)

−1

]
(17)

Since the matrix Rs has been obtained at the s-th iteration, Rs can be directly acquired by applying
Equation (17) to Equation (16) for the matrix inversion

Rs+1 =

[
Rs 0
0 0

]
+ τ

[
β

−1

][
βT − 1

]
(18)

where β = RsKsi, τ = (kii − KT
siβ), and the kernel inverse number becomes 1 as a new training

sample is considered. The reduction scheme of IRKPCA training sample is developed by simplifying
training data number for fault feature extraction. In the IRKPCA, the sample similarity degree is
checked in advance, and the sample is such that the similarity index larger than its threshold is deleted.
The forward kernel inverse strategy is employed to produce the matrix Rs+1 with respect to new
training data.

2.3. Feature Extraction Performance Test

The benchmark datasets from UCI Machine Learning [23] are used to validate feature extraction
performance of the basic KPCA and proposed IRKPCA. The six datasets include Iris, Wine, Glass,
E.coli, Balance and Vehicle. The feature number (#Feature), the number of classes (#Class) and sample
number (#SN) of each dataset are listed in Table 1.

Table 1. Specification of these benchmark datasets.

Datasets Feature Class SN

Iris 4 3 150
Wine 13 3 178
Glass 10 6 214
E.coli 7 5 336

Balance 4 3 625
Vehicle 18 4 846

The comparisons of basic KPCA and IRKPCA are investigated from reduced features,
discriminative power, sparsity, and reduced time in Table 2. The reduced feature number depicts the
principal component size after feature extraction by the KPCA. Discriminative power contains the
mean correct classification ratio and standard errors using the reduced features in the transformed
space. Sparsity is expressed by 2-norm/1-norm (L2/L1), and the larger L2/L1 value is more in
favor of classification [24,25]. The reduced-dimension time gives the computational efforts of dataset
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transformation from the original measurement space to feature space. The regularization parameter ρ

and kernel parameter σ are yielded separately from the bound of [2–3, 23] and [20, 210] by the interval
2 times.

Table 2. Performance comparisons of basic KPCA and IRKPCA on the benchmark datasets.

Dataset Algorithms Modeling Parameters Reduced Features Discriminative Power L2/L1 Reduced Time (s)

Iris
KPCA σ = 210 2 0.9564 ± 0.0155 0.0928 0.0372

IRKPCA σ = 29 ρ = 2−1 2 0.9600 ± 0.0158 0.0945 0.0080

Wine
KPCA σ = 210 10 0.8609 ± 0.0335 0.0849 0.0517

IRKPCA σ = 210 ρ = 21 8 0.8621 ± 0.0435 0.0851 0.0089

Glass
KPCA σ = 29 7 0.6453 ± 0.0290 0.0967 0.0726

IRKPCA σ = 210 ρ = 1 6 0.6438 ± 0.0284 0.0974 0.0115

E.coli
KPCA σ = 27 6 0.8847 ± 0.0135 0.0627 0.1069

IRKPCA σ = 29 ρ = 2−1 5 0.9117 ± 0.0112 0.0717 0.0149

Balance
KPCA σ = 28 4 0.8576 ± 0.136 0.0512 0.5873

IRKPCA σ = 28 ρ = 1 3 0.8897 ± 0.130 0.0791 0.0288

Vehicle
KPCA σ = 210 8 0.7198 ± 0.0128 0.0402 1.2387

IRKPCA σ = 29 ρ = 2−1 7 0.7201 ± 0.0114 0.0404 0.0645

From Table 2, we can see that both KPCA algorithms reduce the feature number, and the number
by IRKPCA is less than that by KPCA in the most examined datasets. In terms of the discriminate
power index, the IRKPCA produces more than 2.70% and 2.89% of mean correct ratio compared to
KPCA in the E.coli and Balance datasets, respectively. The differences of mean correct ratios by the
two KPCAs in the rest of the datasets are no more than 1%. The indices L2/L1 by IRKPCA is slightly
larger than those by KPCA except in the Glass dataset, so the former produces less information loss
than the learning feature. The KPCA generates one magnitude larger reduced time than IRKPCA.
The reduced time of KPCA increases faster with the sample size, and the indices are 1.2387 s by
KPCA and 0.0645 s by IRKPCA in the Vehicle dataset. The IRKPCA consumes less computational
time and owns a lower feature number without discriminative power reduce compared to KPCA.
Hence, it implies that the IRKPCA might be a better candidate for gas-path fault feature extraction.
Figure 1 shows the extraction effect on benchmark datasets of Iris and Wine by the proposed IRKPCA
method. The first three dimensions of benchmark datasets are presented in the form of scatter plots in
Figure 1, and the points with the same color belongs to the same cluster. From Figure 1 we can see
that the distance of different color points increases after the dimension transformation by the IRKPCA.
The processed datasets are more easily distinguished than the original dataset in scatter plots, and it
supports further classification.
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3. IRKPCA-HMM Based Structure

3.1. Hidden Markov Model

Hidden Markov model is extended from Markov chains to yield inferential statistical information
on a state sequence [26,27]. It comprises a finite hidden state number, and each state relates to an
observation at a time point. There are two kinds of probabilities of every hidden state: transition
probability and observation probability. HMM have double stochastic processes: the stochastic
transition from one hidden state to another one with transition probability and the stochastic output
observation generated from every hidden state with observation probability.

The state sequence of HMM is unobservable, but it can be estimated from the observation
sequence. Let hidden state sets S = {s1, s2, · · · , sM} and observation vector O = {o1, o2, · · · , oT}
with ot ∈ {v1, v2, · · · , vN}, where M is the number of hidden states, N is the number of observation
per state and T is the length of observation sequence. The variable qt(qt ∈ S) indicates the hidden
state, and ot(ot ∈ O) the observation at time t. In general, the compact definition λ = (π, A, B) is used
to specify an HMM model, and it includes three components: state transition probability matrix A,
observation probability matrix B, and initial state distribution π.

An initial state distribution π illustrates the probability of the starting hidden state si (t = 0)

π = {πi},
M

∑
i=1

πi = 1 (19)

where πi = Pr(q0 = si), 1 ≤ i ≤M.
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A transition probability A contains the element aij

A =
{

aij
}

,
M

∑
j=1

aij = 1, (1 ≤ i ≤ M) (20)

where aij is the probability of transition from one hidden state si at time t to another hidden state sj
at time t + 1, and it follows aij = Pr(qt+1 = sj|qt = si), 1 ≤ i, j ≤M. The observations are emitted from
each state according to the conditional probability, bi(vj) = Pr(ot = vj|qt = si), which is represented as
a matrix B{bi(oj)} as well. The elements of B evidently satisfy the constraints:

N

∑
j=1

bi(vj) = 1, 1 ≤ i ≤ M (21)

The Baum-Welch algorithm is used to obtain the topological parameters of HMM, where an
iterative calculation is implemented to maximize the observed sequence probability Pr(X|λ) from
an initial λ. The observed sequence XT×H = [x1, x2, . . . , xT]T is divided into two sections: Xt×H =
[x1, x2, . . . , xt]T with t measurement data number, and X(T−t)×H = [xt+1, xt+2, . . . , xT]T with T − t.
H is the dimension of measurement vector. Two probabilities corresponding to the forward variable
and backward variable are computed. The former is denoted by the probability of observing the
partial measurement data Xt×H ending in the state sj, and the latter by the probability of observing the
remaining data X(T−t)×H as the state si. The forward variable αt(j) is

αt(j) = Pr(x1, x2, . . . , xt, qt = sj| λ) = [
M

∑
i=1

αt−1(i)·aij]bj(xt), 1 ≤ i, j ≤ M, 1 ≤ t ≤ T − 1 (22)

where α1(i) = πi. bi(x1), 1 ≤ i ≤M. The backward variable βt(i) is

βt(i) = Pr(xt+1, xt+2, . . . , xT | qt = si, λ) =
M
∑

i=1
aijbj(xt+1)βt+1(j), 1 ≤ i, j ≤ M, T − 1 ≥ t ≥ 1 (23)

where βT(i) = 1, 1 ≤ i ≤M. The detailed Baum-Welch algorithm to obtain the probability of sequence
O can be referred to in paper [28]. The scalar quantization is to generate the partition vector and the
codebook vector according to the quantization distortion of the input before training HMM [29].

The observation sequence of HMM is formed by measurement data from various sensors,
which are equipped along a gas path to depict engine operation. As mentioned earlier, redundant
information of various operating data will increase fault diagnosis difficulty. The larger dimension of
measurement vector xi leads to more complex HMM topology [5,19]. It would not only increase the
computational time of forward-backward procedure in Baum-Welch algorithm but also negatively
impact on classification accuracy.

3.2. IRKPCA-HMM Algorithm

Gas-path fault feature extraction based on the IRKPCA is combined with HMM for fault diagnosis
in this section. The reduced observation sequence X*T×R = [x*

1, x*
2, . . . , x*

T]T with R feature
dimensions (R < H) is generated from the original sequence XT×H. Thus, the re-estimation process of
HMM with the new sequence X*T×R is as follows

aij =

R
∑

k=1

1
Pk

T−1
∑

t=1
a(k)t (i)aijbj(x∗(k)t+1)β

(k)
t+1(j)

R
∑

k=1

1
Pk

T−1
∑

t=1
a(k)t (i)β

(k)
t+1(j)

, 1 ≤ i, j ≤ M (24)
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bj(l) =

R
∑

k=1

1
Pk

T−1
∑

t=1,x∗t=vt

a(k)t (i)β
(k)
t (i)

R
∑

k=1

1
Pk

T−1
∑

t=1
a(k)t (i)β

(k)
t (i)

, 1 ≤ j ≤ M, 1 ≤ l ≤ N (25)

P(X ∗ |λ) =
R

∏
k=1

P(X∗(k)
∣∣∣λ) =

R

∏
k=1

Pk (26)

where a(k)t is k-th forward variable, and β
(k)
t+1 is k-th backward variable. In IRKPCA-HMM test phase,

Equation (26) is specified as

P(X ∗ |λ) =
R

∏
k=1

M

∑
i=1

a(k)t (i)β
(k)
t (i) (27)

The log-likelihood probability (LL) is a fault index defined by the logarithm calculation to P(X∗|λ)
in Equation (27). The larger LL indicates the greater consistency of observation sequence to the HMM.

The IRKPCA-HMM achieves gas-path fault diagnosis in the lower dimension feature space from
the original measurement space, and it decreases the calculation effort not only in the training process
but also in testing process. The IRKPCA-HMM algorithm schematic is presented for fault diagnosis of
aero engines in Figure 2.
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The proposed IRKPCA-HMM procedure is as follows:

(1) Initialization. Set initial kernel parameters, regulation parameter and information loss threshold.
Select the number of hidden states and observation states, and topological structure of HMM.

(2) Search optimal samples by iterations.

(2.1.) The original training sample set X0, and let the dataset Xs = ∅, Xs = ∅, Xt = X0.
(2.2.) Select the first optimal sample. Calculate the objective function Equation (13) for each

sample, and the sample x1 with the maximum objective value is added into the sample
dataset Xs, Xs = Xs ∪ {x1}.

(2.3.) Compute the sample similarity degree. The similarity degree is computed between the
selected sample in Xs and rest samples xi in Xt− Xs− Xs. If sample similarity degree is
larger than similarity threshold, then Xs = Xs ∪ {xi}, i = I + 1, and continue until the rest
samples are all checked.
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(2.4.) Calculate the objective Equation (18) for each sample and select the sample of maximum
objective value xi. Compute the mean objective residual as Equation (14) for the selected
optimal sample xi. If the sample mean objective residual is larger than the difference
threshold, go to 1.3, else continue.

(3) Principal component computation in kernel space.

(3.1.) Calculate the centralized kernel matrix K with selected samples.
(3.2.) Compute eigenvectors {εi} with corresponding eigenvalues {λi}.
(3.3.) Choose the p largest eigenvalues until ∑

p
i=1 λi ≥ 0.95 //information loss threshold.

(4) Online fault feature extraction for testing data {xnew}.

(4.1.) Calculate Ksi(xnew) = [k(x1, xnew), . . . , k(xs, xnew)]T.
(4.2.) Calculate the features according to Equation (7).

(5) HMM modeling with reduced observation.

(5.1.) Set initial number of hidden states, observation states and choose topology structure
of HMM.

(5.2.) Re-estimate parameter using Equations (24) and (25).
(5.3.) Form the HMM libraries for gas-path fault modes.

4. IRKPCA-HMM Based Engine Gas-Path Fault Diagnosis

The proposed IRKPCA-HMM approach to gas-path fault diagnosis is tested on a virtual two-spool
turbofan engine developed by the component-level engine model [30,31]. The examined turbofan engine
is mainly composed of inlet, fan, compressor, bypass, combustor, high-pressure turbine (HPT) and
low-pressure turbine (LPT), mixer and nozzle, and it is illustrated in Figure 3. The inlet supplies airflow
into the fan, and then the air is divided to two streams: one flowing into the compressor and the other
passing through the bypass. Air leaving the compressor moves to the combustor, where fuel is injected
and burns to produce hot gas to drive the turbines. The fan and compressor are driven by the LPT
and HPT, respectively. Gas from LPT and air from bypass mix in the mixer, and then leaves the engine
through the nozzle. Closed-loop control strategy of spool speed is applied to aero engine with safety
protection [32]. The engine station numbers in Figure 3 are as follows: inlet exit marked by 2, compressor
inlet by 22, compressor exit by 3, HPT entrance by 43, LPT entrance by 5, and LPT exit by 6.
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Figure 3. A dual-spool turbofan engine gas-path component cross-section diagram.

The data are generated from the numerical engine model [33,34] to evaluate the involved methods
in the steady behavior of the maximum power operation and transient behavior including acceleration
and deceleration. The involved engine parameters are reported in Table 3. The control variables include
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fuel flow Wf and Nozzle area A8, which define the operating point of the engine. The health parameters
are unmeasurable and represent engine gas-path health, containing indicators of fan efficiency SE1,
fan flow SW1, compressor efficiency SE2, compressor flow SW2, HPT efficiency SE3, HPT flow SW3,
LPT efficiency SE4, and LPT flow SW4. The available measurements are used to calculate health
parameters, and they are low-pressure spool speed NL, high-pressure spool speed NH, compressor
inlet temperature T22, compressor inlet pressure P22, compressor outlet pressure P3, compressor outlet
temperature T3, LPT inlet temperature T43, LPT inlet pressure P43, LPT outlet pressure P5 and mixing
chamber inlet temperature T6 [35]. The maximum power point on the ground is defined as corrected
percentage of high-pressure spool speed NHcor = 100%, and corresponds to the corrected normalized
values of engine control variables: fuel flow Wf = 100%, nozzle area A8 = 47%. The measurement
noise follows time-uncorrelated zero-mean Gaussian noise, and the magnitude of these noises can be
referred to in paper [36].

Table 3. Turbofan engine control variables, health parameters, and measured variables.

Control Variables Health Parameters Measured Outputs

Wf—Fuel flow SE1—Fan efficiency indicator NL—LPC speed
A8—Nozzle area SW1—Fan flow indicator NH—HPC speed

SE2—Compressor efficiency indicator T22—Compressor inlet temperature
SW2—Compressor flow indicator P22—Compressor inlet pressure

SE3—HPT efficiency indicator P3—Compressor outlet pressure
SW3—HPT flow indicator T3—Compressor outlet temperature

SE4—LPT efficiency indicator T43—Low pressure turbine inlet temperature
SW4—LPT flow indicator P43—Low pressure turbine inlet pressure

P5—Low pressure turbine outlet pressure
T6—Mixer inlet temperature

Both gradual and abrupt performance deterioration causes health parameter variations.
The health parameters resulting from performance gradual degradation is long term, and all health
parameters synchronously diverge from their nominal quantities with the cycle number increase.
It starts from a healthy engine (all health parameters at their nominal values) at initial cycle number
CN = 0, and with the linearly deviation at the end of cycle number CN = 6000. The first factory
overhaul occurs at one quarter of the engine’s whole lifetime, and three cycle number points before
this overhaul, including CN = 0, CN = 807 and CN = 1558, are addressed in this paper. Table 4 shows
health parameter deviations under gradual degradation with regard to cycle numbers.

Table 4. Gradual degradation of turbofan engine performance over time.

CN SW1 (%) SE1 (%) SW2 (%) SE2 (%) SW3 (%) SE3 (%) SW4 (%) SE4 (%)

0 0 0 0 0 0 0 0 0
807 −0.4125 −0.2704 −0.5190 −0.4593 0.5212 −0.8142 0.0632 −0.0896
1558 −0.7886 −0.5316 −1.1219 −0.9689 0.9032 −1.3919 0.1151 −0.1796

The health parameters move suddenly from their nominal values in gas-path fault scenarios,
and the shift quantities of each fault case are given in Table 5. There are thirteen operating scenarios in
total at one cycle number, including twelve fault cases and a no-derivation case. Sensor malfunction,
such as bias or drift, is not considered in this study.
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Table 5. Turbofan engine gas-path performance fault cases.

Scenario Variations of Health Parameter Faulty Component

I SE1 −1%
FanII SE1 −0.5% and SW1 −1%

III SE2 −1%
CompressorIV SW2 −1%

V SE2 −0.7% and SW2 −1%

VI SE3 −1%
HPTVII SW3 +1%

VIII SE3 −1% and SW3 −1%

IX SE4 −1%

LPT
X SW4 −1%
XI SE4 −0.4% and SW4 −1%
XII SE4 −0.6% and SW4 +1%

The historical measured data sample is used offline to build up gas-path fault HMM libraries
of the engine by the proposed methodology in training stage. Every gas-path fault case relates to
one HMM fault library, and they are independent each other. The IRKPCA-HMM libraries are
ζ = {ζ1, ζ2, . . . , ζK} as the count of fault case equals to K. The available engine measurements
in Table 3 are recorded online in sequence, and IRKPCA-HMM runs in the left-right type [37].
Figure 4 shows a gas-path fault diagnosis framework based on IRKPCA-HMM, and the processed data
sequence is fed into HMM libraries and each LL of HMM will be calculated.
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Figure 4. Gas-path fault diagnosis framework for turbofan engine based on IRKPCA-HMM.

The optimal kernel samples are obtained from an online-sensed sequence by IRKPCA in the test
stage. The probabilities related to gas-path fault libraries are calculated from reduced observation by
the Baum-Welch algorithm. The index LL is used to recognize gas-path fault mode from the observation,
and it belongs to the fault library that owns the largest LL [18]. The examined algorithms including
HMM, KPCA-HMM and IRKPCA-HMM are performed on a Windows 10 PC with CPU i5-2450 M @2.50
GHZ (Intel, Santa Clara, CA, USA) and 8 GB RAM using MATLAB R2012b software (The MathWorks,
Inc., Natick, MA, USA). The Monte-Carlo simulation is conducted, and the performance indices are
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from ten tries. The correct diagnostic ratio Acc and its standard deviation Std are separated, to assess
gas-path fault diagnostic accuracy and stability:

Acc = 1
U

U
∑

i=1

Nci
Nti

Std =

√
1

U−1

U
∑

i=1

(
Nci
Nti
− Acc

) (28)

where Nc is sample number of correct recognition, Nt is total sample number in one fault scenario,
and U is the count of fault scenarios.

4.1. Fault Diagnosis in Steady Process

To evaluate fault diagnosis capability of the examined algorithms in steady process, tests are
conducted in engine gas-path fault scenarios mixed with gradual degradation at full power on the
ground. Gas-path faults are separately injected into the nominal performance deterioration at CN = 0,
CN = 807, CN = 1558 in Table 4. The health parameters deviate with the cycle number accumulated
over time, and they have an abrupt shift with the constant bias related to every gas-path fault scenario
in the steady process. The available measurements are recorded as Table 3, and the hidden state
number of HMMs are obtained by searching from 2 to 8 with unit interval. After several tries,
the IRKPCA-HMM iteration stop conditions in training process are as follows: iterative step exceeds
100 or convergence error (LL difference between current step and last step) is below 0.01. The similarity
degree is 0.9, and the training data for stochastic modeling is the observation sequence with the length
of 100 sampling points. There are 1300 samples in total used as training data. Figure 5 gives the effect
of gas-path fault feature extraction by IRKPCA in steady behavior.Energies 2018, 11, x FOR PEER REVIEW  13 of 20 
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Similar to that of benchmark dataset, the first three dimensions of aero engine dataset are presented
in the form of scatter plots, where points with the same color belong to the same cluster from Figure 5.
We have a more distinct version of thirteen engine fault patterns in steady process after feature
extraction by IRKPCA.

The test data of ten gas-path fault scenarios are different from their training observation sequences.
Table 6 shows maximum log-likelihood probability LL* and correct recognized number Nc by the
HMMs at CN = 1558 in the steady process. The IRKPCA-HMM produces the least absolute LL* except
in the case of XI and the largest Nc except in cases VIII and XI among the involved HMMs. It implies
that IRKPCA-HMM is superior to HMM and KPCA-HMM with confidence and correct ratio regards
at CN = 1558 in the steady process. The performance comparisons of HMMs are presented at various



Energies 2018, 11, 1807 14 of 21

cycle numbers in the steady behavior in Table 6, and it shows average performance indices of HMMs
in 13 scenarios.

Table 6. LL* and Nc by three HMMs in the steady process at CN = 1558.

Fault Scenarios
HMM KPCA-HMM IRKPCA-HMM

LL* Nc LL* Nc LL* Nc

I −1195.13 9 −398.65 10 −302.47 10
II −1433.33 8 −453.51 8 −362.97 8
III −1154.37 10 −446.14 8 −429.36 9
IV −1371.25 8 −503.75 9 −399.32 9
V −1226.52 10 −415.89 10 −415.88 10
VI −1360.83 9 −404.67 9 −258.15 9
VII −1203.93 8 −512.18 8 −420.53 9
VIII −1358.67 7 −530.84 9 −312.82 8
IX −1217.61 10 −454.51 10 −299.79 10
X −1367.24 9 −369.51 9 −362.25 10
XI −1274.02 9 −419.78 10 −439.94 8
XII −1150.72 8 −386.98 9 −250.36 9
XIII −1269.47 9 −420.05 8 −320.03 8

The fault feature number and optimal hidden state number of basic HMM are the same at three
cycle numbers, and they are larger than those of KPCA-HMM and IRKPCA-HMM. From Table 6,
KPCA-HMM and IRKPCA-HMM have much simpler topological structure than the basic HMM due
to less reduced feature number and hidden state number. The quantities of confusion matrix and
transition matrix of IRKPCA-HMM in fault mode 1 are shown in Table 7.

Table 7. Parameters of IRKPCA-HMM at CN = 0 in fault mode 1.

Transition Matrix Confusion Matrix

0.75 0.25 0 0 0 0 0.044 0.042 0.037 0.039 0.047 0.231 0.242 0.252 0.040 0.020
0 0.69 0.31 0 0 0 0.060 0.077 0.064 0.064 0.057 0 0 0.003 0.366 0.304
0 0 0.74 0.26 0 0 0.094 0.085 0.080 0.307 0.373 0.058 0 0 0 0
0 0 0 0.84 0.16 0 0.446 0.400 0.154 0 0 0 0 0 0 0
0 0 0 0 0.46 0.54 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0.379 0.621 0 0 0 0 0 0

The fault diagnostic accuracy indices of Acc, Std, and execution time ttest by three HMMs are
discussed in Table 8. The Acc of KPCA-HMM and IRKPCA-HMM are clearly larger than that of
HMM, while Std are smaller than that of HMM at three cycle numbers. The larger Acc represents
better confidence of fault diagnosis result, and the less Std illustrates better stability. Hence, both of
KPCA-HMM and IRKPCA-HMM have better fault diagnostic confidence and stability than basic
HMM, and KPCA-HMM is a little worse than IRKPCA-HMM. When it comes to executing time ttest,
KPCA-HMM and IRKPCA-HMM consume less time compared to basic HMM due to the former two
having more simplified topology. It is also found that IRKPCA-HMM has almost half the executing
time of KPCA-HMM.
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Table 8. Fault diagnosis comparisons of the HMMs in the ground steady process.

CN Algorithms Reduced Features Hidden States Acc ± Std ttest

0
HMM 10 5 0.9108 ± 0.0124 0.2958

KPCA-HMM 6 4 0.9305 ± 0.0063 0.4237
IRKPCA-HMM 6 4 0.9226 ± 0.0044 0.2654

807
HMM 10 5 0.9054 ± 0.0103 0.3096

KPCA-HMM 6 3 0.9208 ± 0.0072 0.4045
IRKPCA-HMM 6 4 0.9174 ± 0.0053 0.2596

1558
HMM 10 5 0.8785 ± 0.0125 0.3013

KPCA-HMM 6 4 0.8953 ± 0.0082 0.4109
IRKPCA-HMM 6 3 0.8907 ± 0.0068 0.2432

The performance index Acc decreases a bit with cycle number accumulation over time, while
computational time of three HMMs are hardly changed at three cycle numbers. The IRKPCA-HMM
produces the least Std in all cases in Table 8. It implies that IRKPCA-HMM has more outstanding
diagnostic accuracy, stability and computational efforts compared to the HMM and KPCA-HMM.
Hence, it is a satisfactory method of gas-path fault diagnosis in the steady behavior of turbofan engine.
In addition, the tests are simulated in the steady process of high-altitude operation (H = 5000, Ma = 1,
Wf = 100%, A8 = 52%), and the results are as shown in Table 9. As seen from Table 9, the performance
indices of HMM, KPCA-HMM and IRKPCA-HMM are similar to those in the steady process of
ground operation.

Table 9. Comparisons of fault diagnosis methods in high altitude steady operation.

CN Algorithms Reduced Features Hidden States Acc ± Std ttest

0
HMM 10 5 0.8916 ± 0.0103 0.2809

KPCA-HMM 6 3 0.9012 ± 0.0070 0.4254
IRKPCA-HMM 6 3 0.8983 ± 0.0053 0.2543

807
HMM 10 5 0.8795 ± 0.0114 0.3025

KPCA-HMM 6 4 0.8902 ± 0.0065 0.4181
IRKPCA-HMM 6 3 0.8883 ± 0.0058 0.2496

1558
HMM 10 5 0.8501 ± 0.0130 0.2957

KPCA-HMM 6 4 0.8676 ± 0.0068 0.4316
IRKPCA-HMM 6 3 0.8602 ± 0.0049 0.2601

4.2. Fault Diagnosis in Transient Process

The transient test is performed including acceleration and deceleration in the flight envelope to
further reveal the performance of proposed methodology for gas-path fault diagnosis. The engine
starts from the idle (Wf = 68%, A8 = 100%), and gradually increases to full power (Wf = 100%, A8 = 47%).
After dwelling 0.5 s it moves sharply back to the idle, and the whole operation lasts 9.5 s on the ground.
The variations of control variables are shown in the transient behavior in Figure 6. The deviation
quantity of the combination of gradual degradation and abrupt degradation are added into health
parameters, and the simulations run at three cycle numbers.
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Figure 6. Variations of fuel flow and nozzle area of the engine in the transient process.

The sampling rate of 10-dimension measurements is 0.1 s, and the length of observation sequence
for training is 95. The hidden state number and the iteration stop parameters in the dynamics
are set as the same as those in Section 4.1. There are 1235 samples in total used as training data
for 13 fault scenarios, and average training time of these fault scenarios by HMM, KPCA-HMM and
IRKPCA-HMM are 23.27 s, 19.53 s and 16.89 s, respectively. We can find that the training computational
efforts of IRKPCA-HMM are the least among the examined algorithms. The scale of test data for each
gas-path fault scenario is 10 observation sequences, and the length of every sequence is the same as
the training one. The indices of LL* and Nc by the examined HMMs at CN = 0 in the transient process
of ground operation is given in Table 10.

Table 10. LL* and Nc by three HMMs at CN = 0 in the transient process of ground operation.

Fault Scenarios
HMM KPCA-HMM IRKPCA-HMM

LL* Nc LL* Nc LL* Nc

I −1809.88 10 −926.16 10 −725.03 10
II −1654.79 10 −759.55 10 −566.62 9
III −1804.08 8 −760.09 10 −658.05 9
IV −1636.12 6 −893.39 8 −865.88 10
V −1804.72 10 −748.01 10 −639.46 10
VI −1707.47 7 −824.51 8 −723.78 8
VII −1821.22 7 −780.72 9 −641.11 9
VIII −1676.86 8 −710.99 10 −711.86 10
IX −1831.40 9 −704.30 10 −600.94 10
X −1685.29 9 −713.12 10 −766.83 10
XI −1696.52 6 −840.63 9 −686.89 9
XII −1861.67 10 −795.27 10 −709.48 10
XIII −1685.33 4 −596.59 9 −470.51 9

From Table 10, the indices of LL* and Nc by IRKPCA-HMM are the largest ones in the most fault
cases as engine experiences from idle to full power and then back to idle. The topological parameters of
three HMMs and average performance indices of all fault scenarios at CN = 0, CN = 807, CN = 1558 are
reported in Table 11. The fault feature number and optimal hidden state number of basic HMM
are clearly larger than the rest HMMs, and it means that the topologies of the latter two HMMs are
simplified. This is positive for reducing the computational time of gas-path fault diagnosis.
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Table 11. Fault diagnosis result comparisons in the transient process of ground operation over time.

CN Algorithms Reduced Features Hidden States Acc ± Std ttest

0
HMM 10 6 0.7931 ± 0.0053 0.2938

KPCA-HMM 4 4 0.9474 ± 0.0036 0.3992
IRKPCA-HMM 4 3 0.9446 ± 0.0033 0.1948

807
HMM 10 5 0.8157 ± 0.0047 0.2824

KPCA-HMM 4 3 0.9402 ± 0.0035 0.3319
IRKPCA-HMM 4 4 0.9362 ± 0.0028 0.1891

1558
HMM 10 5 0.8023 ± 0.0057 0.2602

KPCA-HMM 4 4 0.9386 ± 0.0041 0.3707
IRKPCA-HMM 4 4 0.9306 ± 0.0037 0.2030

Both KPCA-HMM and IRKPCA-HMM produce the similar performance indices of Acc and Std,
which outperforms basic HMM. The confidence and stability of fault diagnostics are improved by fault
feature extraction of KPCAs. When the performance index ttest is concerned, KPCA-HMM is obviously
different from IRKPCA-HMM and no longer better than basic HMM. The feature extraction dominates
computational time of gas-path fault diagnosis in the transient process. The IRKPCA-HMM consumes
less time for feature extraction due to the forward kernel inverse and sample simplification scheme,
and it is the best way of weighting off the diagnostic accuracy and computational efforts.

Furthermore, transient performance tests of the proposed methodology are implemented in
the flight envelope, and control variables fuel flow Wf and nozzle area A8 change along flight
operation H and Ma. The engine starts from the ground point H = 0, Ma = 0, climbs to high altitude
(H = 5000, Ma = 1), and the whole operation lasts 10 s. It runs at the full power operation using
closed-loop control strategy of spool speed. Figure 7 shows the change route of four input variables
during transient process in the flight envelope. The deviation quantities related to each fault scenario
are initially added into health parameters as well as that of the ground operation.
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Figure 7. The change route of engine input variables in the transient process in flight envelope.
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The observation sequence length of training data is 100, and there are 1300 samples in total used
for 13 fault cases. The average training time of fault cases by HMM, KPCA-HMM and IRKPCA-HMM
are 26.75 s, 22.43 s and 17.75 s, respectively. The training time of the IRKPCA-HMM is the least among
the examined algorithms. The indices of LL* and Nc by the examined HMMs at CN = 0 in the transient
process is given in Table 12.

Table 12. LL* and Nc by three HMMs during dynamic process in the flight envelope at CN = 0.

Fault Scenarios
HMM KPCA-HMM IRKPCA-HMM

LL* Nc LL* Nc LL* Nc

I −2013.02 8 −1021.62 10 −925.03 10
II −1895.17 7 −872.45 9 −716.43 9
III −1974.28 6 −853.12 9 −658.52 9
IV −1862.29 7 −983.43 7 −865.16 8
V −2084.42 9 −855.09 9 −709.75 9
VI −1906.54 6 −934.16 8 −815.87 8
VII −2021.33 6 −870.39 9 −734.27 8
VIII −1892.18 7 −819.09 9 −756.13 10
IX −2011.04 5 −844.60 10 −694.26 9
X −1889.25 6 −793.25 7 −706.83 6
XI −1906.27 7 −841.42 9 −741.14 9
XII −2056.71 8 −896.71 8 −811.73 8
XIII −1892.35 4 −696.87 6 −624.29 6

From Table 12, the indices of LL* and Nc by IRKPCA-HMM at CN = 0 are the largest ones in
the most fault cases in the flight envelope. The topological parameters of three HMMs and average
performance indices in all fault scenarios at CN = 0, CN = 807, CN = 1558 are reported in Table 12.
The fault feature number and optimal hidden state number of basic HMM are clearly larger than
the others. It indicates that the topological structure of the HMMs is clearly simplified after feature
extraction by the KPCA and IRKPCA, and it is positive for reducing computational time of gas-path
fault diagnosis.

5. Conclusions

This paper develops a systematic approach to fault feature extraction and pattern recognition,
which leads to an improved data-driven fault diagnosis method. The novelty of this methodology
lies in the development of IRKPCA and HMM in combination to facilitate gas-path fault diagnosis
for turbofan engines. The reduced samples from IRKPCA in feature space decrease the measurement
dimension while the principal information of fault feature is retained. The IRKPCA is evaluated using
general benchmark datasets, and the results reveal that IRKPCA is superior to plain KPCA regarding
discriminative power, sparsity and reduced dimension time. The simplified observation sequence by
IRKPCA is utilized by HMM to develop an IRKPCA-HMM algorithm. The goal of this methodology
is to increase gas-path fault diagnostic accuracy and relieve computational effort both in steady and
transient behaviors. The proposed methodology is evaluated in the scenarios of gas-path abrupt fault
mixed with gradual degradation in the flight envelope, and test data are generated from a dual-spool
turbofan engine model. The stochastic diagnostic modeling framework is presented and numerically
assessed by several performance indices. The advantage of the proposed methodology is that it does
not only produce more reliable results but also consumes less computational efforts of fault diagnosis.

This research establishes a new direction in data-driven fault diagnosis by proposing
IRKPCA-HMM technique that is specifically beneficial to gas-path stochastic fault diagnosis for
turbofan engine applications. The methodology developed in this study is not only limited to turbofan
engine, but also extended to other types of gas turbine engine. There are some important topics for
further study related to this work. First, further studies can be carried out to investigate various
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kernels used to map the measurement space to feature space. Second, extensions of the cases that have
more than one gas-path abrupt fault, added to gradual degradation and the tests of semi-physical
hardware in the loop, are worthy of future exploration.
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Nomenclature

PCA Principal component analysis
HMM Hidden Markov model
HPC High-pressure compressor
LPT Low-pressure turbine
HPT High-pressure turbine
L1 Norm-1
L2 Norm-2
LL Log-likelihood
H Height
Ma Mach number
SW Flow capacity
SE Efficiency
NL Low-pressure spool speed
NH High-pressure spool speed
T22 Compressor inlet temperature
P22 Compressor inlet Pressure
P3 Compressor outlet pressure
T3 Compressor outlet temperature
T43 low pressure turbine inlet temperature
P43 low pressure turbine inlet pressure
P5 low pressure turbine outlet pressure
T6 mixing chamber inlet temperature
Wf Fuel flow
A8 Nozzle area
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