
 

Energies 2018, 11, 1790; doi:10.3390/en11071790  www.mdpi.com/journal/energies 

Article 

Infeasibility Analysis of Half-Wavelength 
Transmission Systems 
Zheng Xu *, Jian Yang and Nengjin Sheng 

College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;  
yangjian_zju@zju.edu.cn (J.Y.); shengnengjin@126.com (N.S.) 
* Correspondence: xuzheng007@zju.edu.cn; Tel.: +86-0571-8795-2074 

Received: 29 May 2018; Accepted: 4 July 2018; Published: 8 July 2018 

Abstract: This paper analyzes the infeasibility of half-wavelength transmission systems in the 
aspects of power-frequency overvoltage and synchronization stability. The circuit model of the 
long-distance transmission system is established at first for steady-state and transient analysis. The 
sending-end system and the receiving-end system are both considered in the model. A test system 
based on an actual transmission line is given to facilitate the description of system characteristics. 
Based on the circuit model, the resonant transmission distance of the system is found and calculated. 
Theoretical analysis and numerical calculations are carried out to determine the feasibility 
transmission distance. It is demonstrated that the transmission distance should be in a certain range, 
which is larger than the resonant transmission distance, to satisfy the steady-state overvoltage and 
the small signal synchronization stability as well as the frequency deviation constraints. For 
transmission distances in the feasible range, the three-phase short circuit fault at a certain point of 
the transmission line will cause the most serious transient power-frequency overvoltage, and the 
system is very likely to lose synchronization stability. Considering the transient power-frequency 
overvoltage and the transient synchronization stability, the half-wavelength transmission system is 
technically impossible to operate. 

Keywords: power transmission; half-wavelength transmission; resonant transmission distance; 
power-frequency overvoltage; synchronization stability; frequency deviation; equal area method 

 

1. Introduction 

In countries like Brazil, Russia, and China, renewable energy sources may locate far away from 
the major load centers [1–3]. The half-wavelength transmission is an attractive technique for those 
situations. This kind of transmission has been studied since the 1940s, however, there is no half-
wavelength transmission system operating in the world [4,5]. The feasibility of half-wavelength 
transmission systems still needs further study. 

Existing researches have investigated the basic characteristics of half-wavelength transmission 
systems. Previous literature declared that the advantages of half-wavelength transmission systems 
include: 

• The half-wavelength transmission line is free from the usual long-line operating problems, such 
as Ferranti effect, excessive charging current, and generator self-excitation [6]. 

• There is no need of compensating equipment and switching stations for the half-wavelength 
transmission line [7,8]. 

• The half-wavelength transmission lines are considered to be equivalent to short lines. 
Synchronization stability is not a limiting factor for power transmission [6]. 
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• The half-wavelength transmission is competitive in terms of economy. Results in previous 
papers [9–11] have shown the economic advantages in comparison with the high-voltage direct 
current transmission (HVDC). 

However, the above declared advantages of half-wavelength transmission systems have not 
been fully supported in theory. There are some technical problems in the half-wavelength 
transmission system. Among them, overvoltage and synchronization stability are the most important 
technical issues that should be considered for the feasibility analysis. Previous researches find that 
the steady-state voltage is dependent on the transmission power and the power factor [12]. To avoid 
steady-state overvoltage, the transmission power should not exceed the surge impedance loading 
(SIL, which is the power under the matched condition) [13]. In terms of small signal synchronization 
stability, a transmission system whose equivalent electric length is slightly longer than the electrical 
half wavelength is thought to be suitable [6,12,14]. However, the feasible range of the equivalent 
electric length has not been figured out clearly. Actually, the feasible range is related to the system 
resonant transmission distance, which is proposed and clarified in this paper. 

Under three-phase short circuit faults and asymmetrical faults, the occurrence of power-
frequency overvoltage is inevitable and serious, and the transient synchronization stability of the 
half-wavelength transmission system varies with the fault type and location [12,15,16]. For three-
phase faults, the maximum overvoltage has been given a theoretical explanation in a previous paper 
[12], but the transient synchronization stability is usually studied by simulations in previous 
literature, theoretical analysis of the transient synchronization stability is still lacking. 

This paper tries to find out the feasible transmission distance of the half-wavelength 
transmission system in terms of overvoltage and stability. In this process, indicators such as the 
resonant transmission distance and the synchronization coefficient are proposed to reflect the steady-
state characteristics and small signal synchronization stability, and the most serious fault point is 
defined and derived to study the transient characteristics under three-phase faults. 

The main contributions and findings of this paper are: 

• A general circuit model of half-wavelength power transmission system is established, which can 
be used to analyze the steady-state and transient overvoltage of half-wavelength power 
transmission system and the problem of small signal synchronization stability and transient 
synchronization stability. 

• The resonance phenomenon of the half-wavelength power transmission system is found, and 
the concept of resonant transmission distance is proposed. The resonant transmission distance 
is less than the half-wavelength transmission distance. 

• When the transmission distance is equal to the resonance transmission distance, there is a 
specific point on the transmission line whose overvoltage level reaches infinity. 

• The small signal equation of the half-wavelength transmission system is established, the concept 
of the synchronization coefficient is put forward, and the range of the transmission distance that 
can keep the small signal synchronization stability is determined. 

• The most serious fault location was found, and the formula for calculating the most serious fault 
location was derived. 

• It is found that the transient power frequency overvoltage of the transmission system exceeds 
10 times the rated voltage when there is a short-circuit fault on the most serious fault location. 

• If the generator adopts “a constant potential behind a reactance” model and neglects the 
damping effect when the most serious fault occurs, the half-wavelength power transmission 
system loses its transient stability definitely, regardless of the transmission power. 

• Different from all the previous studies, this paper clearly points out that the half-wavelength 
transmission system is technically impossible and has no feasibility of engineering, because on 
the one hand, the transient power frequency overvoltage level is unacceptable, and on the other 
hand, the transient synchronization stability cannot be guaranteed. 

This paper is organized as follows. The circuit model of the half-wavelength transmission system 
is given in Section 2. The resonant transmission distance is defined in Section 3. The steady-state 
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overvoltage and the small signal synchronization stability of the system are analyzed in Sections 4 
and 5 to determine the feasible transmission distance. After considering the frequency variation, the 
feasible range of the transmission distance is presented in Section 6. For feasible transmission 
distances, the transient power frequency overvoltage and the transient synchronization stability 
characteristics under three-phase short circuit faults are analyzed in Sections 7 and 8, respectively. At 
last, conclusions are drawn. 

2. Circuit Model 

Half-wavelength transmission lines are usually applied in point-to-grid transmission systems or 
grid-to-grid transmission systems. For both cases, the steady-state characteristics and the 
synchronization stability of the system can be analyzed by the single-machine-infinite-bus system. 
When considering the sending-end system and the receiving-end system, a general long-distance 
transmission system can be represented by Figure 1. The transmission line adopts the positive 
sequence distributed parameter model; the sending-end generator-transformer unit adopts the 
classical generator model; the receiving-end system is represented by the Thevenin equivalent circuit. 

l

S X R

x

Eg Er

Ps+jQs

jXg Is

Us UrUx

jXrIr

Pr+jQr

 
Figure 1. Equivalent circuit of the long distance transmission system. 

As shown in Figure 1, Eg and Xg are the equivalent electromotive force and the equivalent 
impedance of the sending-end generator-transformer unit; Er and Xr are the equivalent source voltage 
and the equivalent impedance of the receiving-end system. Us and Ur are the voltages at both ends of 
the transmission line. Is and Ir are the currents of the sending end and receiving end. Ux is the voltage 
at the point x km away from the sending end. l is the length of the transmission line (or called the 
transmission distance). Ps and Qs are the active and reactive power of the sending end; Pr and Qr are 
the active and reactive power of the receiving end. 

When taking the line resistance into consideration, the basic characteristic of the transmission 
line is described by the long line equations: 

r s s Cch shl lγ γ= −U U I Z  (1) 

r s C ssh / chl lγ γ= − +I U Z I  (2) 

where ZC is the line’s surge impedance; γ is the line’s propagation coefficient. ZC and γ can be 
calculated by: 

( ) ( )C 1 1 1 1/R j L G j Cω ω= + +Z  (3) 

( )( )1 1 1 1j R j L G j Cγ α β ω ω= + = + +  (4) 

where R1, L1, G1, and C1 are the positive sequence resistance, inductance, conductance, and 
capacitance of per unit length, respectively; ω is the angular frequency; α is the attenuation constant 
and β is the phase constant. 

To facilitate the description of system characteristics and to carry out numerical calculations, a 
test system is analyzed in this paper. The rated frequency of the system is supposed to be 50 Hz. The 
unit length line parameters are given by [17,18], and the surge impedance and the propagation 
coefficient are calculated by (3) and (4). Detailed parameters are shown in Table 1. 
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Table 1. Transmission Line Parameters. 

Items Values 

Unit length line 
parameters 

Resistance 0.00801 Ω/km 
Reactance 0.83747 mH/km 

Conductance 0 S/km 
Capacitance  0.01383 μF/km 

Propagation 
coefficient 

Attenuation constant (α) 1.6273 × 10−5 km−1 

Phase constant (β) 1.06929 × 10−3 km−1 
Surge impedance (ZC) 246.135 ∠  −0.87° Ω 

As shown in Table 1, the attenuation constant (α) is much smaller than the phase constant (β); 
the phase angle of the surge impedance is negligible. These system parameters are very close to those 
of lossless lines. 

The half wavelength of the test system is: 

/ 2 π/ 2938.0 kmλ β= =  (5) 

The rated voltage of the line (Urated) is supposed to be 1000 kV, and then the surge impedance 
loading is: 

2
SIL rated / 4062.8 MWCP U= =Z  (6) 

In this paper, the rated voltage and the surge impedance loading of the transmission line are set 
as the reference voltage (UB) and the reference capacity (SB) for the per-unit system, respectively. The 
actual values of physical quantities are represented by upper-case letters, and the corresponding per-
unit values are represented by lower-case letters in this paper. 

In order to analyze the typical application of half wavelength transmission system in 
transmitting bulk power from energy bases to the load centers, assume the parameters of the two end 
systems are as shown in Table 2. 

Table 2. Parameters of the sending-end and the receiving-end systems. 

Items Values 

Sending end system 

Rated capacity of the generator 2 × SIL 
Subtransient reactance of the generator 0.1 p.u. 

Rated capacity of the transformer 2 × SIL 
Leakage inductances of the transformer 0.1 p.u. 

Equivalent impedance of the sending-end system (xg) 0.2 p.u. 

Receiving-end system 
Short circuit capacity of the receiving-end system 20 × SIL 

Equivalent impedance of the receiving -end system (xr) 0.05 p.u. 

First we neglect the losses of the transmission line, according to the long line equations and 
Figure 1, we have: 

[ ]s g

r r

   
=   −   

i e
y

i e
 (7) 

where the admittance matrix [y] is: 

[ ]
( ) ( )( )

( ) ( )( )
r

0 g

sin cos1

sin cos

j x l l j

j j x l l

β β

β β

 −
 =

Δ  − 
y   (8) 

( ) ( )0 g r g r(1 ) sin ( ) cosx x l x x lβ βΔ = − + +  (9) 

According to (7), the following per-unit power equations can be derived: 
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g r g
g r

0

sine e
p p

δ
= =

Δ
 (10) 

( )( )g r g g r g

0
g

cos sin( ) cos( )e e e x l e
q

lδ β β− − +

Δ
=  (11) 

( ) ( ) ( )( )r g g r g

r

r

0

cos sin cose e e x l e l
q

δ β β+ −

Δ
=  (12) 

where δg is the phase angle difference between eg and er. 
Similarly, if the line losses are considered, the power equations become: 

( )
lo

1 g 1 31 g 2 g 3
g

ss loss

sinsin cos K CC C C
p

δ ϕδ δ + ++
Δ

+
=

Δ
=  (13) 

( )
lo

1 g 2 42 g 1 g 4
g

ss loss

sinsin cos K CC C C
q

δ ϕδ δ + +−
Δ

+
=

Δ
=  (14) 

( )
lo

1 g 3 51 g 2 g 5
r

ss loss

sinsin cos K CC C C
p

δ ϕδ δ + +−
Δ

+
=

Δ
=  (15) 

( )
lo

1 g 4 62 g 1 g 6
r

ss loss

sinsin cos K CC C C
q

δ ϕδ δ + ++
Δ

+
=

Δ
=  (16) 

where: 

2 2
1 1 2K C C= +  (17) 

( ) ( ) 2
2

loss g r c c g rsh + chx x l j x x lγ γΔ = − −z z  (18) 

When the transmission line parameters and xg, xr, eg, er are given, C1–C6 and 1ϕ – 4ϕ  are 
constants. The detail expressions are given in the Appendix A.1. 

3. Resonant Transmission Distance 

Using (9), we have: 

( )2 2
0 g r g r C( ) (1 ) sinx x x x lβ ϕΔ = + + − +  (19) 

where: 

g r
C

g r

π
= arctan 0

1 2

x x
x x

ϕ
+  ∈  −  

，  (20) 

When ( )Cπ /l ϕ β= − , Δ0 = 0. Then according to (8), the denominators of elements in the 
admittance matrix [y] are zero. Series resonance occurs between the transmission line and the 
equivalent reactance of both sides of the system. If we define the transmission distance at this 
condition as the resonant transmission distance and denote it as lresnt, then we have: 

r

r
resnt arctan

1
π /g

g

x x
x x

l β
+

−

  
= +      

 (21) 

As shown in (21), lresnt is dependent on the parameters of the transmission line and the equivalent 
reactance of both ends, but not related to eg and er. 
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When the losses of the transmission line are considered, the resonant transmission distance can 
also be calculated by (21) according to (18). For the test system, lresnt is about 2707 km, βlresnt is about 
165.8°. 

To analyze the test system’s characteristic, we set a general terminal condition, which is eg = 1.1 
p.u. and er = 1.0 p.u. Then qg is calculated under different transmission power and transmission 
distances, and the results are shown in Figure 2. 
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l
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Figure 2. qg of different transmission power and transmission distances. 

As shown in Figure 2, when the transmission distance is close to lresnt (in 2700–2715 km), there is 
no solution for (13), so the test system cannot operate; when the transmission distance is not in the 
above range, the test system can operate, but the absolute value of qg is too large. For example, when 
βl = 167°, if pg = 0 p.u., 0.5 p.u., 1.0 p.u. and 1.5 p.u., then qg is 5.81 p.u., 4.06 p.u., 2.69 p.u., and 1.53 
p.u., respectively. It can be seen that the less the pg is, the greater the absolute value of the qg is. With 
the increase of the deviation between l and lresnt, qg decreases; when l reduces to below 2639 km or l 
increases to over 2804 km, the absolute value of qg decreases to below 1.0 p.u. 

Thereby, the transmission distance should stay away from lresnt to make the system operational 
and to decrease the reactive power. 

4. Steady-State Overvoltage Analysis 

In order to further determine the feasible transmission distance, the steady-state overvoltage is 
analyzed. According to the long line equations, the voltage at the point x km away from the sending 
end is: 

x s s Cch shx xγ γ= −u u i z  (22) 

where: 

( ) *

s g/g gp jq = + i e  (23) 

s g s gj x= −u e i  (24) 

where * indicates the conjugate complex. 
Under the terminal condition eg = 1.1 p.u. and er = 1.0 p.u., taking pg as a parameter, for different 

transmission distances, the maximum voltage along the whole transmission line, which is defined as 
ul,max, is calculated as shown in Figure 3. Figure 3a is a large range picture of ul,max in different 
transmission distances; while Figure 3b is a small range picture of ul,max for clearer presentation. 
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Figure 3. The maximum voltage along the whole line for different transmission distances. (a) βl in the 
range of 120°–240°; (b) βl in the range of 160°–170°. 

From Figure 3, it can be drawn that: 

(1) Under different pg, when l gets closer to lresnt, ul,max has an abrupt increase;  
(2) As shown in Figure 3b, for l in the range of 163.3°–164.6° and 167.0°–168.2°, ul,max decreases with 

the increase of pg; 
(3) As shown in Figure 3a, when pg is 1.5 p.u., there is obvious overvoltage for all the transmission 

distances and ul,max is close to pg for most transmission distances. Actually, this is true for any 
transmission power larger than 1.0 p.u. 

(4) As shown in Figure 3a, there is no operation point when pg is 1.5 p.u. and βl is larger than 217.1°; 
similarly, as shown in Figure 3b, there is no operation point when pg is 0.0 p.u. and βl is in the 
range of 164.6°–167.0°. 

Figure 3 only gives the maximum voltage along the whole line, we still need to know the location 
where the maximum voltage occurs. The location where the maximum voltage (ul,max) occurs is 
defined as xumax (in km) or βxumax (in deg.). The maximum voltage (ul,max) and its location (βxumax) for 
different transmission distances with fixed transmission power are illustrated in Figure 4 and 
described in Table 3. 

As shown in Figure 4 and Table 3, taking pg = 1.0 p.u for example, when the transmission distance 
is 2448.3 km (150°), 2725.8 km (167°), 2938.0 km (180°), and 3427.7 km (210°), respectively, the 
maximum voltage along the transmission line (ul,max) is 1.098 p.u., 2.446 p.u., 1.071 p.u., and 1.088 p.u., 
respectively, and the location where the maximum voltage occurs (xumax or βxumax) is 88.1 km (5.4°), 
1682.8 km (103.1°), 2378.1 km (145.7°), and 0.0 km (0°), respectively.  

If we choose ul,max < 1.5 p.u. as the permissible range of overvoltage, when pg changes from 0 p.u. 
to 1.5 p.u., the feasible range of transmission distance for the test system is: 

126.0 161.5

170.1 210.0

l
l

β
β

 < <


< <

 

 
 (25) 
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Figure 4. The maximum voltage and its location for different transmission distances. (a) ul,max and 
βxumax when pg = 0.0 p.u.; (b) ul,max and βxumax when pg = 0.5 p.u.; (c) ul,max and βxumax when pg = 1.0 p.u.; 
(d) ul,max and βxumax when pg = 1.5 p.u. 

Table 3. Description of specified points in Figure 4. 

Transmission Power  
pg/p.u. 

Transmission 
Distance The Maximum Voltage 

ul,max/p.u. 

The Maximum Voltage 
Location 

βl/° l/km βxumax/° xumax/km 

0 

150 2448.3 1.086 0 0 
167 2725.8 5.357 90.3 1473.9 
180 2938.0 1.099 158.1 2580.5 
210 3427.7 1.126 185.2 3022.9 

0.5 

150 2448.3 1.081 0 0 
167 2725.8 3.595 96.0 1566.9 
180 2938.0 1.072 159.5 2603.4 
210 3427.7 1.121 5.5 89.8 

1.0 

150 2448.3 1.098 5.4 88.1 
167 2725.8 2.446 103.1 1682.8 
180 2938.0 1.071 145.7 2378.1 
210 3427.7 1.088 0 0 

1.5 

150 2448.3 1.399 64.3 1049.5 
167 2725.8 1.787 104.1 1699.1 
180 2938.0 1.385 89.9 1467.4 
210 3427.7 1.501 101.0 1648.5 
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5. Small Signal Synchronization Stability Analysis 

The rotor motion equation of the system is: 

g
0 g

g
m g g

( 1)

1
( ( 1))

2

d
dt

d
p p D

dt H

δ
ω ω

ω
ω


= ⋅ −


 = − − ⋅ −

 (26) 

where ω0, ωg, H, pm, and D are the rated angular frequency of the system, the angular frequency of 
the generator, the inertia time constant, the mechanical power and the damping coefficient of the 
generator, respectively. When pm is supposed to be constant, the linearized equation of the rotor 
motion equation at the operating point (δg(0), ω0) is: 

( )
g

0

g(0)
1 g 1

gg

loss

0

cos

2 2

d
dt K Dd

H Hdt

δ ω
δ

δ ϕ ωω

Δ     Δ    = +    ΔΔ  − −   Δ    

 (27) 

where K1, Δloss and 1ϕ  have been defined in (13)–(18). 
The characteristic equation of the system is: 

( )2 (0)0 1
g 1

loss

cos 0
2 2

KD
H H

ωλ λ δ ϕ+ + + =
Δ

 (28) 

Because H and D are positive, the small signal synchronization stability condition of the system 
finally becomes: 

( )(0)1
synch 1

loss

cos 0g
KK δ ϕ= + >

Δ
 (29) 

We define Ksynch as the synchronization coefficient. The characteristic of the half-wavelength 
transmission system can be summarized as: if Ksynch is positive, the system is stable under small 
disturbances; otherwise, the system is unstable. For the test system with the terminal condition of eg 
= 1.1 p.u. and er = 1.0 p.u., the synchronization coefficient are calculated under different transmission 
distances with fixed transmission power pg. The results are shown in Figure 5 and described in Table 
4. 
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Figure 5. Ksynch of different transmission power and transmission distances. 

As shown in Figure 5 and Table 4, taking βl = 150° for example, when pg = 0 p.u., 0.5 p.u., 1.0 p.u., 
and 1.5 p.u., respectively, Ksynch = −3.88, −3.91, −3.88 and −3.78 respectively. From Figure 5 we can see: 
in the studied transmission distance range, when l is smaller than lresnt, Ksynch is negative; and when l 
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is greater than lresnt, e.g., βl = 167°, Ksynch becomes positive. So, only when l is larger than lresnt, may the 
system be stable. Considering the small signal synchronization stability condition of the test system, 
when pg changes from 0 p.u. to 1.5 p.u., the feasible transmission distance range is: 

166.8 217.1lβ< <   (30) 

Table 4. Description of specified points in Figure 4. 

Transmission Distance Transmission Power  
pg/p.u. 

Synchronization Coefficient  
Ksynch βl/° l/km 

150 2448.3 

0 −3.88 
0.5 −3.91 
1.0 −3.88 
1.5 −3.78 

167 2725.8 

0 4.65 
0.5 6.69 
1.0 8.21 
1.5 9.46 

180 2938.0 

0 4.24 
0.5 4.31 
1.0 4.33 
1.5 4.29 

210 3427.7 

0 1.53 
0.5 1.50 
1.0 1.28 
1.5 0.74 

6. Feasible Transmission Distance Analysis 

Taking the overvoltage constraint (25) and the small signal synchronization stability constraint 
(30) into consideration, when pg changes from 0 p.u. to 1.5 p.u., the feasible range of the transmission 
distance for the half-wavelength transmission system is: 

170.1 210.0lβ< <   (31) 

In considering of the frequency variation during transient process, we set an allowable 
frequency variation range of −3% to +3% of the rated frequency. βl changes with the variation of 
frequency, as shown in Figure 6. 

-4 -3 -2 -1 0 1 2 3 4
2500

2750

3000

3250

3500

3750

  

 

 β l = 210.0°  
 β l = 170.1°  

Δ f/%

l / km

 
Figure 6. l of different frequency. 

As shown in Figure 6, when the frequency changes −3%, the feasible transmission distance range 
for the half-wavelength transmission system is: 
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2862.3 km 3533.7 kml< <  (32) 

When the frequency changes 3%, the feasible range is: 

2695.6 km 3327.9 kml< <  (33) 

In conclusion, after considering the frequency variation, the feasible transmission distance range 
that satisfies both the overvoltage constraint and the synchronization stability constraint is: 

2862.3km 3327.9 kml< <  (34) 

7. Transient Overvoltage Analysis 

This section studies the transient overvoltage characteristic under three-phase short circuit 
faults. The test system and the transient model mentioned in Section 2 are adopted. The transmission 
distance is supposed to be in the feasible range given by (34). The system is in the steady state at t = 
0−, and the fault occurs at t = 0+. The system model under the three-phase short circuit fault is shown 
in Figure 7. 

l

S R

x

lf l -lf

r rp jq+

eg er

jxg jxr

ps+jqspg+jqg

us ur

isf irfuf

 
(a) 

S

lf

F

eg

ps+jqspg+jqg

jxg

uf

is
isfzsf

 
(b) 

Figure 7. System model under the three-phase short circuit fault. (a) Schematic diagram of the fault 
location and related variables; (b) Sending end equivalent circuit under the fault. 

In Figure 7, all the per-unit values in lower-case letters are based on SIL and the rated voltage of 
the transmission line. The meanings of the variables in Figure 7 are the same as in Figure 1. Besides, 
lf is the distance between the fault point and the sending end; uf is the voltage of the fault point; isf 
and irf are the currents of the fault point; zsf is the input impedance seen from the sending end. 

When the phase angle of Zc is ignored, using uf = 0 and the long line equations, we can deduce: 

( ) ( ) ( )
( ) ( ) ( )

s f f sf f sf f

s f f sf f sf f

ch sh sh

sh ch ch

l l l

l l l

γ γ γ
γ γ γ

= + =


= + =

u u i i

i u i i
 (35) 

Then, the input impedance zsf can be expressed as: 

( )sf s s f/ th lγ= =z u i  (36) 

During the fault period, the magnitude of eg is constant. According to (36) and the sending end 
equivalent circuit shown in Figure 7b, us and is can be expressed as: 
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( )
( )

s g sf sf g

s g sf g

/

/

jx

jx

 = +


= +

u e z z

i e z
 (37) 

According to the long line equations and (37), we can calculate ux by: 

( )g f
x s s

f g

th ch sh
ch sh

th

l x x
x x

l jx
γ γ γ

γ γ
γ

−
= − =

+
e

u u i  (38) 

Then the magnitude of ux is: 

g
x f

f g

th ch sh
th

e
u l x x

l jx
γ γ γ

γ
= −

+
 (39) 

It can be proved that when the imaginary part of (thγlf + jxg) is zero, ux will get its maximum 
value ufmax. So we define lfmax as the solution of the equation Im(thγlfmax + jxg) = 0, whose meaning is 
the fault distance which will cause the largest overvoltage compared to the other fault distance. After 
lfmax is defined, we next define the location at which the maximum overvoltage occurs, which is 
defined as xf,umax. The meaning of xf,umax is: when a three phase fault occurs at lfmax, the maximum 
overvoltage ufmax will occur at xf,umax. According to the definitions of ufmax, lfmax, and xf,umax, we can 
derive their expressions from (39) as: 

( )f max garctan /l xπ β = −   (40) 

( )f,umax fmax π/ 2x l β= −  (41) 

g
f max 2

fmax gth( ) (1 )

e
u

l xα
≈

+
 (42) 

It is shown by (40) that lfmax is shorter than the half wavelength, and it is independent of eg and 
er. For the test system, βlfmax is about 168.7°, which is smaller than any feasible transmission distance 
given by (34). This means that there is always a fault point on the transmission line that will cause 
the maximum overvoltage.  

According to (41), the maximum overvoltage occurs at the point exactly a quarter wavelength 
away from the fault point. 

Using (42), we can estimate the maximum overvoltage ufmax. Because g 1e ≈ , 

fmaxth( ) th(0.05) 0.05lα < ≈  and xg < 1, f max 20 / 2 10u > >  p.u. So the power-frequency overvoltage 
is larger than 10 p.u. for the test system. Actually, such a serious overvoltage is unacceptable in the 
actual power system. 

Simulations have been done by PSS/E to illustrate the above conclusion. The structure of the test 
system is shown in Figure 1. The system parameters given in Section 2 are adopted. The transmission 
distance is 3200 km. From the sending end of line, a voltage measurement point is set every 160 km, 
and is numbered from 0 to 20. According to the previous analysis, when the fault point is 2753.4 km 
away from the sending end (i.e., lfmax = 2753.4 km), the maximum overvoltage (ufmax) will occur at the 
point 1284.4 km away from the sending end (i.e., xf,umax = 1284.4 km), which is near the 8th 
measurement point (which is 1280 km away from the sending end). 

When the above fault occurs, the voltage profile of the line is shown in Figure 8. 
As shown in Figure 8, when pg = 0 p.u., 0.5 p.u., 1.0 p.u., and 1.5 p.u., respectively, the maximum 

overvoltage is 22.77 p.u., 22.59 p.u., 22.98 p.u., and 23.91 p.u., respectively. This example illustrates 
that the maximum overvoltage (ufmax) is much larger than 10 p.u., which cannot be accepted in real 
engineering. 
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Figure 8. Voltage profile under the three-phase short circuit fault at lfmax. 

8. Transient Synchronization Stability Analysis 

During the fault period, the power of the sending end can be calculated by: 

( )
2

2 g* *
s s s s sf s s sf s f 2

f g

= = th
th

e
p jq l

l jx
γ

γ
+ = =

+
u i z i i z i  (43) 

According to (43), the electromagnetic power of the sending-end generator is not varied with 
time during the fault period. We denote it by ps(1). When lf = lfmax, ps(1) gets its maximum value psmax(1): 

2
g(1)

smax 2
fmax gth( ) (1 )

e
p

l xα
≈

⋅ +
 (44) 

Because when lf = lfmax, both ps(1) and ux get their maximum values, we define lfmax as the most 
serious fault point. Using (44), we can estimate the maximum electromagnetic power. Because g 1e ≈

, fmaxth( ) th(0.05) 0.05lα < ≈ and xg < 1, so (1)
smax 10p >  p.u. 

During the fault period, the rotor motion equation is: 

( )

g
0 g

g 1
m s g

( 1)

1
( ( 1))

2

d
dt

d
p p D

dt H

δ
ω ω

ω
ω


= ⋅ −


 = − − ⋅ −

 (45) 

If the effect of the governor is ignored, pm = ps(0), where ps(0) is the electromagnetic power of the 
steady state. For the convenience of analysis, D is supposed to be zero. If the fault is cleared at time 
tclear, the states at the fault clearing time can be calculated by: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 0 1 0
g s s clear g

1 0 1 02
g s s 0 clear g

1

2

/ 4

p p t
H
p p t H

ω ω

δ ω δ

 = − +

 = − +

 (46) 

where ωg(0) = 1.0 p.u.; δg(0) is the phase angle difference between eg and er before the fault; ωg(1) and δg(1) 

are the angular frequency and phase angle difference at the fault clearing time. 
Next we analyze the transient synchronization stability under the fault at the most serious fault 

point lfmax. 
For the fault occurs at lfmax, the states at the fault clearing time are: 
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( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 0 1 0
g s smax clear g

1 0 1 02
g s smax 0 clear g

1

2

/ 4

p p t
H
p p t H

ω ω

δ ω δ

 = − +

 = − +

 (47) 

After the fault is cleared, the system structure recovers. If the losses of the transmission line are 
ignored, the expression of the generator electromagnetic power is the same as (10): 

( ) g r g2
g s

0

sine e
p p

δ
= ≈

Δ
 (48) 

where ps(2) is the generator electromagnetic power after the fault is cleared. 
According to (48), the electromagnetic power is a sine wave with respect to the power angle of 

the generator, as shown in Figure 9. During the fault period, the generator gets an initial deceleration 
area, A1¯. At the fault clearing time, ωg(1) is less than ωg(0) according to (47), so the phase angle (δg) will 
continue to decrease after the fault is cleared. 
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Figure 9. Schematic diagram of the generator electromagnetic power. 

For the fault at lfmax, because psmax(1) is much larger than ps(0) and the fault clearance requires a 
certain amount of time, in general, the acceleration area A1+ cannot compensate A1¯. If the mechanical 
power of the generator is zero (ps(0) = 0), in any sinusoidal cycle of the phase angle, the acceleration 
area obtained by the generator is always equal to the deceleration area. The phase angle of the 
generator will keep decreasing after the fault. This means that the system will lose stability after the 
fault. 

If the mechanical power of the generator is positive (ps(0) > 0), the acceleration area is always 
larger than the deceleration area in a sinusoidal cycle of the phase angle, as shown in Figure 10. This 
means the initial deceleration area (A1¯) will be compensated gradually. When the initial deceleration 
area is totally compensated, ωg will recover to ωg(0). Suppose that when δg reaches δg(2), ωg recovers to 
ωg(0), and the initial deceleration area is totally compensated, then the last compensating area is gotten 
at δg(2), this is to say, ps must be smaller than ps(0) when δg is at δg(2). 

On the other hand, there is a critical phase angle (δcritical) that makes An+ = An¯, as shown in Figure 
10. Before ωg recovers to ωg(0), δg is in the decreasing state. Next we will prove that δg(2) must be less 
than δcritical, i.e., δg(2) must be on the left of δcritical.  

If δg(2) > δcritical, i.e., δg(2) is on the right of δcritical, then An+ cannot compensate An−, the sum of the 
deceleration area and the acceleration area will be negative, and ωg will be still less than ωg(0) when δg 
reaches (from right to left) δg(2). This contradicts to the definition of δg(2). Thereby, δg(2) must be less 
than δcritical, i.e., δg(2) must be on the left of δcritical. 
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Figure 10. Schematic diagram of the critical phase angle. 

After ωg increases to ωg(0), because δg(2) is on the left of δcritical, the acceleration area is always larger 
than the deceleration area. Thenωg will always be larger than ωg(0), and δg is in the increasing state. 
In this situation, when δg reaches δgr, ωg is still larger than ωg(0), and δg will keep increasing. The system 
also loses stability after the fault. 

In conclusion, the phase angle δg will keep decreasing, or keep increasing after a certain time of 
decreasing. In both cases, the system will lose stability under the fault that occurs at the most serious 
fault point. Actually, the same conclusion will be obtained through similar derivation process when 
the losses of the transmission line are considered and the power equation is expressed as (13).  

The above result shows that if the sending-end generator is modeled by the classical model, the 
system will lose stability under the fault that occurs at the most serious fault point.  

Simulations have been done to illustrate this conclusion. The test system in Section 7 is adopted. 
The sending end generator is modeled by the classical model with H = 8.692 p.u. and D = 0. The 
receiving end system is represented by the Thevenin equivalent circuit with xr = 0.05 p.u. In the 
simulations, the short circuit fault occurs at lfmax at 1 s. The swing curves of the sending-end generator 
power angle under different fault clearing time (0.03–0.11 s) are shown in Figure 11. 

As shown in Figure 11, when pg(0) = 0 p.u., δg keeps decreasing after the fault. When pg(0) = 0.5 p.u., 
1.0 p.u. and 1.5 p.u. respectively, δg keeps increasing after a certain time of decreasing. For all the 
cases, the system is unstable after the fault. This is consistent with the conclusion of the previous 
analysis. 

If a detailed generator model is adopted and the effect of the excitation system is considered 
(detailed data is given in the Appendix A.2), the results under the same fault are shown in Figure 12. 
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Figure 11. The swing curves of the sending-end generator power angle (classical model). (a) pg(0) = 0 
p.u.; (b) pg(0) = 0.5 p.u.; (c) pg(0) = 1.0 p.u.; (d) pg(0) = 1.5 p.u. 
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Figure 12. The swing curves of the sending-end generator power angle (detailed model). (a) pg(0) = 0 
p.u.; (b) pg(0) = 0.5 p.u.; (c) pg(0) = 1.0 p.u.; (d) pg(0) = 1.5 p.u. 

As shown in Figure 12, when pg(0) = 0 p.u., if the fault clearing time is 0.03 s, the system can keep 
stable; if the fault clearing time is 0.05 s, 0.07 s, 0.09 s, or 0.11 s, the system will lose stability. When 
pg(0) = 0.5 p.u., if the fault clearing time is 0.05 s, 0.07 s, or 0.09 s, the system can keep stable; if the fault 
clearing time is 0.03 s or 0.11 s, the system will lose stability. When pg(0) = 1.0 p.u., if fault clearing time 
is 0.05 s or 0.09 s, the system can keep stable; if fault clearing time is 0.03 s, 0.07 s, or 0.11 s, the system 
will lose stability. When pg(0) = 1.5 p.u., if fault clearing time is 0.07 s, the system can keep stable; 
otherwise, the system will lose stability.  

When the system loses stability, if pg(0) = 0 p.u., δg will keep decreasing; if pg(0) is positive, δg will 
keep increasing after a certain time of decreasing. This is the same as the result of the classical model. 

In conclusion, if a detailed generator model is adopted and the effect of the excitation system is 
considered, the stability of the system is uncertain, it depends on the value of the fault clearing time. 
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However, the fault clearing time that keeps the system stable is segmented, so there is no fault critical 
clearing time. 

9. Conclusions 

On the conception of half wavelength power transmission, which was put forward in the 1940s, 
and is becoming a hot topic again, this paper makes an in-depth analysis with theoretical derivation 
and numerical calculation. The main conclusions are as follows: 

(1) There exists a resonant transmission distance in the half-wavelength transmission system. The 
resonant transmission distance is only related to the equivalent reactance of the sending end and 
the receiving end system, and is independent of the equivalent voltage source of the sending 
end and the receiving end system, and is less than the half wavelength. 

(2) Under the resonant transmission distance, the maximum voltage along the transmission line will 
reach infinity. Therefore, the transmission distance of the half-wavelength transmission system 
must be larger than that of the resonant transmission distance. 

(3) A transmission distance greater than the resonant distance is necessary for the small signal 
synchronization stability of the half-wavelength transmission system because when the 
transmission distance is less than the resonant transmission distance, the half-wavelength 
transmission system loses its small signal synchronization stability. 

(4) There exists a most serious fault location along the transmission line. When a three-phase short 
circuit fault occurs at this location, the most serious power-frequency overvoltage occurs at the 
point a quarter of wavelength from this location, and the value of the overvoltage is larger than 
10 p.u. 

(5) When a three phase short circuit occurs at the most serious fault location, if the generator is 
modeled with the classical model and the damping is ignored, the system always loses its 
transient synchronization stability regardless of the fault clearing time and the initial 
transmission power. 

(6) When a three-phase short circuit occurs at the most serious fault location, if the generator is 
modeled with its detailed model and the effect of the field excitation and its control system is 
considered, the transient synchronization stability of the system is uncertain, i.e., the transient 
synchronization stability has no definite relationship with the fault clearing time and the initial 
transmission power. 

(7) Because the transient power frequency overvoltage of the half-wavelength transmission system 
exceeds 10 p.u. and the transient synchronization stability cannot be guaranteed, the conception 
of the half wavelength power transmission cannot be established, and the half wavelength 
transmission system is not feasible. 
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Appendix A 

Appendix A.1. Power Equations of the Lossy Transmission Line 

As shown in Figure A1, the transmission line can be equivalent to the π-type equivalent circuit, 
and then we have: 

Ceq sinhZ lγ= Z  (A1) 

eq
C

cosh

sinh

1lY
l

γ
γ
−=

Z
 (A2) 

eqZ

eqY
eqY

 
Figure A1. π-type equivalent circuit of the transmission line. 

By extracting the real part and the imaginary part, the equivalent impedance and the equivalent 
admittance are: 

eq eq eqz r jx= +  (A3) 

eq eq eqy g jb= +  (A4) 

Based on the node voltage method, the admittance matrix [y] is: 

[ ] ( ) ( )
( )

( )

2
g r c c g r

c r c

c c g

1

sinh + cosh

ch sh

ch sh

x x l j x x l

l jx l

l jx l

γ γ

γ γ
γ γ

= ×
− −

− +

−

 
 
  + 

y
z z

z z

z z

 (A5) 

Then, the power equations can be obtained: 

( )
lo

1 g 1 31 g 2 g 3
g

ss loss

sinsin cos K CC C C
p

δ ϕδ δ + ++
Δ

+
=

Δ
=  (A6) 

( )
lo

1 g 2 42 g 1 g 4
g

ss loss

sinsin cos K CC C C
q

δ ϕδ δ + +−
Δ

+
=

Δ
=  (A7) 

( )
lo

1 g 3 51 g 2 g 5
r

ss loss

sinsin cos K CC C C
p

δ ϕδ δ + +−
Δ

+
=

Δ
=  (A8) 

( )
lo

1 g 4 62 g 1 g 6
r

ss loss

sinsin cos K CC C C
q

δ ϕδ δ + ++
Δ

+
=

Δ
=  (A9) 

where: 
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1

2
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arctan , 0

arctan π, 0

C C
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C

ϕ
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 + <
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 (A13) 

( )eq eq r g e
2 2

g r
q r g eq r g

1

eq r g eq eq eq eq r g

( ) 1

2 ( 1) ( 1)( )

x b x x b x x g x x
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b x x g r g r x x
e e

 − + − +
 
 −

=
+ + + + 

 (A14) 

( )eq eq r g eq r g eq r g
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eq eq eq r g

2 2

r g r g
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r b x x b x x g x x
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g x b x x x x
e

x x
e
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 
 + − + + + 
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 (A15) 

( )( ) ( )( )
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r eq eq eq eq eq eq eq eq eq eq eq eq eq
2 2 2 2 2 2

2
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r eq eq eq eq eq eq eq eq eq eq eq eq e
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2
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Appendix A.2. Dynamic Parameters of the Sending-End Generator and Its Excitation System 

The sending-end generator is modeled by the round rotor generator model (GENROU). The 
excitation system is modeled by the 1992 IEEE type ST1A excitation system model (ESST1A). The 
dynamic parameters of the generator and the excitation system are given in the Table A1 below. 

Table A1. Dynamic parameters of the sending-end generator and the excitation system. 

Generator Excitation System 
T’d0 6.4000 TR 0.0100 
T’’d0 0.0450 VI MAX 0.2000 
T’q0 0.7000 VI MIN −0.2000 
T’’q0 0.0690 TC 1.0000 

H 4.3464 TB 1.0000 
D 0.0000 TC1 0.1000 

Xd 2.0870 TB1 0.1000 
Xq 2.0497 KA 51.0000 
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X’d 0.2942 TA 0.0100 
X’q 0.4449 VA MAX 4.0000 

X’’d = X’’q 0.2000 VA MIN −4.0000 
XI 0.0266 VR MAX 4.0000 

S(1.0) 0.13 VR MIN −4.0000 
S(1.2) 1.067 KC 0.0000 

  KF 0.0000 
  TF 1.0000 
  KLR 0.0000 
  ILR 3.0000 
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