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Abstract: Accurate wind speed forecasting plays a significant role for grid operators and the use of
wind energy, which helps meet increasing energy needs and improve the energy structure. However,
choosing an accurate forecasting system is a challenging task. Many studies have been carried out
in recent years, but unfortunately, these studies ignore the importance of data preprocessing and
the influence of numerous missing values, leading to poor forecasting performance. In this paper,
a hybrid forecasting system based on data preprocessing and an Extreme Learning Machine optimized
by the cuckoo algorithm is proposed, which can overcome the limitations of the single ELM model.
In the system, the standard genetic algorithm is added to reduce the dimensions of the input and
utilize the time series model for error correction by focusing on the optimized extreme learning
machine model. And according to screened results, the 5% fractile and 95% fractile are applied
to compose the upper and lower bounds of the confidence interval, respectively. The assessment
results indicate that the hybrid system successfully overcomes some limitations of the single Extreme
Learning Machine model and traditional BP and Mycielski models and can be an effective tool
compared to traditional forecasting models.

Keywords: extreme learning machine (ELM); cuckoo search (CS); data preprocessing; hybrid model;
Point and interval forecasting

1. Introduction

At present, the increasing energy demand, security of the energy supply and reduction of
emissions are the most difficult challenges that need to be address urgently for the whole world [1].
Energy consumption, which accounts for 60% of global greenhouse gas emissions, has already
contributed to climate change [2]. How best to stop climate change and global warming while
still satisfying the world’s energy consumption, without impairing the global economy, is an essential
problem for every country [3]. There is no doubt that renewable energy is an appropriate way.

In renewables, wind power technology is regarded as the most mature of the new technologies
today, with the potential to cover more than 20% of the global electricity demand by 2050 [4]. By the
end of 2015, the worldwide total cumulative installed wind capacity had reached about 432,680 MW [5].
Wind touches our life in countless ways all the time. Thus, research on wind power production can be
taken as an illustrative case for renewable energy.

Wind energy is of great significance in many countries” energy structures and has received a large
amount of attention as a type of renewable energy. However, many problems connected with wind
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power generation have arisen, which seriously restrict the development of the wind power [6]. Due to
the intermittency and stochastic fluctuations of wind, wind speed forecasting is one of those problems.
If the wind speed forecasting error were to decrease by 1%, the operating costs would decrease by
10 million pounds [7]. In recent years, a large amount of research has been directed toward the
improvement of accurate and reliable wind speed forecasting models. Many different approaches
have been proposed and developed at home and abroad. These forecasting methods can be classified
into four main categories: physical models, statistical models, artificial intelligence models and
hybrid models.

Physical models, which are suitable for long-term wind speed forecasting, consider not only
historical data, but also make use of physical parameters, including temperature, density, speed,
and topography information [8]. However, physical methods always cost a great deal of computing
time and thus are not suitable for wind speed forecasting. In physical models, the numerical weather
prediction (NWP) model has been widely employed. Lynch et al. [9] presented a simplified forecasting
method, deriving the Kalman Filter Covariance Matrices from a NWP model. The adoption of KF
technique can successfully extract results that better reflect local conditions. Landberg [10] studied
the performance of different models for wind speed forecasting, including the NWP and an artificial
neural network (ANN), and so on. However, models adopting the physical methods are time and
resources consuming. Besides, these methods are more suitable for weather forecasting rather than
wind speed forecast.

Statistical methods always build mathematical and statistical models to forecast future wind
speeds [11]. Common statistical techniques include Auto-Regressive Moving Average, Autoregressive
Integrated Moving Average, fractional ARIMA, exponential smoothing and grey prediction. They are
built based on the relationship between each variable by mathematical statistics to describe the
potential correlations from history data sampling for wind speed forecasting [12]. Schlink and Tezlaff
applied AR for wind speed forecasting task at an airport [13,14], and the results showed that the width
of intervals produced by AR were narrower than the intervals generated by the persistence model [14].
Torres et al. [15] applied standardized data and ARMA model to forecast wind speed series in Navarre
and presented a comparison between the model results and meteorological forecasts. The results show
that ARMA model has a good effect. Taylor et al. [16] applied an ARFIMA-generalized autoregressive
conditional heteroskedasticity (GARCH) model to forecast hourly wind speed series and presented
a comparison between the model results and meteorological forecasts. However, statistical models
are based on the assumption that there are linear patterns among time series, so they are unfit for
accurately forecasting the complex and nonlinear electrical power system series [17].

The intelligent methods do the wind speed forecasting by adopting the artificial intelligence
theories or evolutionary algorithms. Artificial intelligence prediction models are mainly focused on
artificial neural networks (ANNSs), including the back propagation neural network (BPNN), radial basis
function neural network (RBF), ElIman neural network (ENN) and wavelet neural network (WNN).
Younes and Mohammad [18] employed ANN for predicting the temporal dimension of wind speed
at one-hour time interval, as a short-term wind speed prediction. Adil et al. [19] developed wind
speed time series model using a Nonlinear Autoregressive Neural Network (NARNN). In the study,
historical wind data is taken for training and testing the developed NARNN. The evaluation criteria
include several standard performance indices namely Mean Absolute error (MAE), Symmetric Mean
Absolute Percentage error (SMAPE) and Root Mean Square error (RMSE). Liu et al. [20] proposed a
wind speed prediction based on the Elman neural networks (ENN) and the Secondary Decomposition
Algorithm (SDA) which combines the Wavelet Packet Decomposition (WPD) and the Fast Ensemble
Empirical Mode Decomposition (FEEMD). Maatallah et al. [21] put forward an artificial intelligent wind
speed forecasting model optimized by the HM and the AR approach, which suited for a short-term
horizon. The model simulations results showed that this hybrid intelligent model outperformed both
of the ARIMA model and the ANN model. Accordingly, development of hybrid models should be
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taken into consideration, which is deemed as an effective method to utilize the advantages of each
approach and obtain higher forecasting accuracy.

The combination forecast theory was first proposed by Bates and Granger in 1969 [22].
Since the 1970s, the study of combined forecast models has been a popular field in wind speed
forecasting [23,24]. In consideration of high accuracy and stability, the application of multi-objective
optimization algorithms in the forecasting fields is worth studying [25]. Xiao et al. [26] reviewed
and classified the combined wind speed forecasting models, then proposed the NNCT (no negative
constraint theory) combination model and the artificial intelligence algorithm combination model. do
Nascimento Camelo et al. [27] studied two innovative hybrid methodologies capable of performing
short and long term wind speed predictions. The one is ARIMAX-ANN hybrid model and the other
is Holt-Winters-ANN hybrid model. Their simulations showed that the two hybrid models can
offer effective wind speed forecasting results. A wind speed forecasting method based on improved
empirical mode decomposition (EMD) and GA-BP neural network is proposed by Wang et al. [28].
The simulation with MATLAB shows that the proposed method can improve the forecasting accuracy
and computational efficiency.

Although previous studies have achieved satisfactory forecasting results, most of them analyze
relatively complete data sets and rarely mention the specific process of data preprocessing. For data
with more missing values, many current methods have limitations and cannot be used directly
to promote. For example, the EMD method is limited based on missing values. Moreover, one thing to
note for wavelet decomposition is the processing of the boundary point, and when adding new data,
part reconstructed decomposition coefficient would change, which may require a new training model
and thus increase the operation time.

Based on the analysis above, a wind speed forecasting system which can increase forecasting
accuracy effectively was developed in the paper. The system can be divided into data preprocessing,
algorithm optimization, wind speed forecasting and accuracy evaluation modules.

Our contributions are described as follows:

1.  In the data preprocessing module, the Dynamic absolute mean value method and Cubic Spline
interpolation is employed to eliminate outliers and process the missing data, respectively.
The Dynamic absolute mean value method can define the scope of outliers effectively by setting
the value of the segmentation length and the coefficient. Cubic Spline interpolation not only can
overcome the defects in high-order polynomial interpolation but also can guarantee a certain
smoothness of piecewise interpolation.

2. In the algorithm optimization module, the ELM algorithm is optimized by the Cuckoo Search
algorithm. The Cuckoo Search algorithm is abstracted to solve various optimization problems by
simulating the nest parasitic behavior in the natural world. In the paper, it is used to optimize the
initial weight of ELM and then increase the forecasting accuracy.

3.  In the wind speed forecasting module, an innovative hybrid system which successfully takes
advantages of CSELM algorithm and SGA algorithm is proposed. Then, according to this,
we conduct an empirical analysis on the wind speed of Dangjin Mountain located in Akesai,
China. The combined system can provide more accurate and stable wind speed forecasting
results compared with traditional forecasting models.

4. A more scientific and comprehensive evaluation is conducted to estimate the performance of the
developed forecasting system in this paper. The evaluation system contains the performance of
the whole research process including data preprocessing, optimized algorithm and empirical
forecasting results.

The reminder of the paper is organized as follows: Section 2 introduces the algorithms for the
outliers and the imputation method for missing data. Attempting to overcome the low forecasting
accuracy of the single ELM method, this article proposes a prediction model that optimizes the initial
weight of ELM by using Cuckoo Search. Section 3 filters the input and output matrix established
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by SGA, calibrates the forecasting error using the sliding ARMA process and estimates the upper
limit and lower limit of the prediction point’s confidence interval based on historical samples. Finally,
Section 4 concludes the paper.

2. Data Preprocessing and Proposed CS-ELM Model

The section can be primarily divided into two parts. The first part introduces the algorithms for
the outliers and the imputation method for missing data. Attempting to overcome the low forecasting
accuracy of the single ELM model, this second part proposes a prediction model that optimizes the
initial weight of ELM via the usage of Cuckoo Search and contrast the prediction results obtained from
BP and Mycielski.

2.1. Multiple Patterns

This part introduces the Dynamic absolute mean value method, Cubic Spline interpolation
function, Extreme Learning Machine and Cuckoo Optimization Algorithm in turn. Dynamic absolute
mean value method is used to process outliers and Cubic Spline interpolation is applied for missing
data interpolation. Extreme Learning Machine is a method, which is applied to forecast based on
the processed data. Targeting at the poor forecasting accuracy of single ELM model, ELM model is
optimized by Cuckoo Search in the paper.

2.1.1. Dynamic Absolute Mean Value Method

Let x1,x2, %3, - - , X, be an evenly spaced discrete sequence that is segmented at a fixed length
T(T < n). This part focuses on the first segmented sequence and calculates as follows:

Definition 1. Calculate the mean value:

_ 1

x:;(x1+x2+x3+~--+xr) 1)
and write the new sequence as:

/ - / - / -
X]=X1—X, Xg=Xp— X, Xz =Xr—X (2)

Definition 2. Calculate the absolute mean value of the new sequence:
P - 1 / / /
¥ = —|¥ x4 X 3)

iterate over the new sequence x, x5, - - -, x& and mark the value that is larger than the threshold k-x'. For X}
such that x! > k-x', x/ is generally the bad data for k > 4.

The scope of outliers that need to be removed can be defined by setting the segmentation length T
and the coefficient k determining the threshold size. For max-min outliers in data with lower volatility,
k = 4 is applied. However, k > 7 is always set in volatile data.

2.1.2. Cubic Spline Interpolation

Spline interpolation is a popular model that not only can overcome the defects in high-order
polynomial interpolation but also can guarantee a certain smoothness of piecewise interpolation.
Therefore, after eliminating outliers, Cubic spline interpolation is used to complete data.

Let [a,b] be partitioned into subintervals by n + 1 points of the function
fx)a=xp<x <---<x,=b). Let f(xy) = y(I = 0,1,2,---,n). The function S(x) is a
Cubic Spline interpolant on interval [x;_1, x;] if:
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The function S(x) is a cubic polynomial having a second-order continual derivative. And

5(x; = 0) = S(x; +0) @

S'(x;—0) = §'(x; +0) G)
S"(x,—0) = S"(x;+0) for| =1,2,...,n—1 ©)
S(x;)) =y forl=1,2,...,.n—1 (7)

To obtain the concrete expression of S(x) on each subinterval, analysis of its existence is
necessary. For distinguishing conveniently, S;(x) is written for a cubic function on [x;_1, x;]. Thus,
Si(x) = a;x3 + byx* + ¢;x +d; for x on [x;_1,x;] and [ = 1,2, - - ,n. In the cubic function, a;, b, ¢}, d;
are unknown parameters. Then, there are 4n unknown parameters in n subintervals. From (a),
we can obtain:

Si(x1) = Sy (xr)
5;{(961) = Sz'uﬂ(xz) (I=1,---,n-1) ®)
Sz (x1) = Sz+1(xl)

There are 3(n — 1) constraints. Then, considering (b), there willbe 3(n —1) + (n+1) = 4n —2
constraints in total. The other two free parameters in a cubic spline interpolant can be variously
assigned [29].

In this paper, we invoke the function interpl in MATLAB to interpolate elimination points,
choosing not-a-knot as its end point constraints by default. The calling method is splineRes =
interpl(datanum,data, indexRR, spline’), where data represents data, datanum is the subscript of
the data, indexRR stands for the interpolation position, and spline is the selected Cubic Spline
interpolation function.

2.1.3. Density Function Estimation

To estimate the probability density function effectively, a random sample Xi, Xp, -+, X is
employed to estimate the histogram in this paper.

Assume that the non-negative density function f(x) meets [ f(x)dx = 1. For the purpose, starting
point tp and width /4, the two parameters are selected to construct a histogram where  decides the
smoothness of the histogram. If /1 is minor, the histogram will show more detail. However, if the
calculation is too large, the histogram will be too smooth. Thus, & can be considered as a smoothness
parameter, and selecting a proper & is important.

Let By = [tk, fr11) be the kth subinterval, and f; 1 — f; = h. If there are v), data in the subinterval,
at the point of x, there will be fp (x) = % = nl*hil I, (X;), x € By where I, (X;) is the characteristic
i=

1, X; € By
0, X; & By

Thus, if the size of the sample in the interval By is given, the probability destiny value at the given

point x will be worked out. A proper h is defined via these common rules:

function and I, (X;)

(a) Sturges’ Rule
k=1+log,n ©)

(b) Normal Reference Rule-1-D Histogram

st = ( ) ~350n /3 (10)

24037 M3
n

(c) Scott’s Rule
Wi = 3.5 x s x n~1/3 11)
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(d) Freedman-Diaconis Rule
i =2 x IQR x n~1/3 (12)

2.1.4. Extreme Learning Machine

Extreme Learning Machine (ELM) is a promising artificial neural network method introduced
by Huang which has very fast learning capability [30]. ELM has a simple three-layer structure: an
input layer, output layer, and hidden layer, which contains a large number of nonlinear processing
nodes [31]. The ELM structure of multiple inputs and a single output is shown by Figure 1.
One advantage of ELM over traditional neural networks is that it is not necessary to adjust parameters
iteratively. Thus, ELM has a much faster training process with better performance in some cases when
compared with traditional neural networks [32]. However, ELM is always applied for balanced data.
Imbalanced data problems require special treatment because characteristics of the imbalanced data can
decrease the accuracy of the data [33].

Input layer

— Hidden layver

‘ Output layer
=
Q-
‘/

Figure 1. The ELM structure of multiple inputs and a single output.

2.1.5. Cuckoo Search

The Cuckoo Search (CS) is a new meta-heuristic animal-behavior-imitation algorithm developed
by Yang and Deb in 2009 [34]. The CS is always based on three idealized rules: first, each cuckoo can
only lay one egg at a time, and lay it in a randomly chosen host bird nest. Second, the best nests with
high-quality eggs (solutions) can also be selected by the next generations. Last, the number of available
host nests is fixed, and a host bird can discover an alien egg with probability p, € [0, 1] [35]. Moreover,
the performance of the CS can be improved by the usage of Lévy flights. The following Lévy flights
are performed:

Xep1h =Xk TOD L(w) (k=1,2,---,n) (13)
d = do(Xpx — Xp) (14)
L(a) ~u=A"? (15)

In these formulas, the step size (9) is related to the scale of the problem of interests [36], and @&
expresses entry-wise multiplication locations.

Due to the outliers in the collected data set, the prediction results of the Extreme Learning Machine
are not very good. In order to overcome the weakness of the ELM model, one ELM model optimized
by Cuckoo Search is developed in the paper. The computational steps of the optimized algorithm
(CS-ELM) are described as Algorithm A2.
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2.2. Wind Speed Empirical Analysis

Based on the data of Dangjin Mountain in Akeisai, China, the part uses MAE, RMSE and MAPE
as prediction evaluation indexes, builds a model after statistical analysis and data preprocessing,
and gets results.

2.2.1. Data Resources

Dangjin Mountain wind farm in Akesai is the first plateau type of demonstration wind farm
established in our country and has been in use since 2010. In 2014, the wind farm had an electricity
installment capacity of approximately 100 MW and provided surrounding areas with green and clean
energy add up to 4.58 billion kWh [37]. The wind speed data collected every 15 min from 1 January to
31 December in 2013 for Akesai Dangjin Mountain wind farm is referenced for empirical analysis data
in the experiment.

2.2.2. Prediction Evaluation Index

Let the forecasting target outcome be y'3%¢t(n) € RN forn = 1,2, - -, T presenting forecasting
temporal points. To evaluate the accuracy of the output result y(#), mean absolute error (MAE),
root mean square error (RMSE) and mean absolute percentage error (MAPE) are applied as prediction
evaluation indexes and the equations of these indexes are shown as Table 1.

Table 1. Three prediction evaluation indexes.

Metric Definition Equation
T
MAE Mean absolute error MAE = } ¥ [y (n) — y(n)|
n=1
T
RMSE Root mean square error RMSE = \/71- Y (yameet(n) — y(n))?
n=1

yREet ()

x 100%, y@&¢t(n) > 0

T
MAPE The average of the absolute errors MAPE = % v
n=1

When these three indexes are smaller, single point prediction is more accurate and the applicability
of the proposed model is better.

2.2.3. Statistical Analysis and Data Preprocessing

The wind speed data collected every 15 min covering the period from 1 January to 31 December
in 2013 for Akesai Dangjin Mountain wind farm is used as empirical analysis data in the experiment.
As shown in Figure 2a, the general trend of annual raw wind data demonstrates that the data fluctuation
frequency is large and that there are many cuspidal points. The data value on both sides is small,
but there is a peak in the middle. In addition, because of the existence of data loss, the diagram
also presents the wind speed data collection. The grey line indicates that the data are missing at that
position or that the value is the same at different times. It is estimated that the amount of missing data
takes up 12.2% of the total samples.
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____________________________

Missing datd

i (a) Initial wind speed dat

Wind speed (m/s)

11808 B8 RN

The part with many missing data

25

Discrete missing data S

PR

Figure 2. Initial data and its loss.

Figure 2b shows the frequency histogram after removing missing data. It’s easy to be seen from
the frequency histogram that with the influence of significant missing data, the collected data does not
obey the single peak statistical distribution, but has complex statistical characteristics. The boxplot
below clearly reflects the range of 0~4 m/s, focuses nearly 50% of the data, and the other distributes in
the range of 4~30 m/s more dispersedly. From this, it can be seen that the local has rich wind resources.
Therefore, setting up accurate wind speed forecasting model is significant to the effective usage of
wind energy for the region.

To estimate the probability density function of collected wind speed data, the probability
histogram and the Freedman-Diaconis Rule function are applied to calculate h. In statistics,
the Freedman-Dacoins rule can be used to selected the size of the bins to be used in a histogram [38].
For a set empirical measurements sampled from some probability distribution, the Freedman-Doaconis
rule is designed to minimize the difference between the area under the empirical probability
distribution and the area under the theoretical probability distribution. According to the
Freedman-Diaconis Rules, I = 2 x IQR x n~1/3. The calculation result shows that 1 = 0.5010
and that the probability of points falling into the range of 5~30 m is 0.5095. Figure 2c provides the
probability histogram after removing missing data.

In the process of collecting data, the situation of collecting unreal data resulting from transmission
error, instrument failure or special weather often appears. These data perform as abnormal and
missing two cases and would influence further analyzing and forecasting by negative trends. To make
the process of analyzing and predicting complete and the results more reasonable, the method of
processing outliers and interpolating missing data is employed as follows.

The section takes the wind speed data as random dynamic signal and adopts the absolute mean
value method to remove outliers. The underneath of Figure 3 shows existing minimax value segment
in the empirical data adding up to 1000 from 20:00 on 15 February 2013 to 5:45 on 26 February 2013.
The section applies T = 10, k = 4 and T = 50, k = 5 two parameter combinations, respectively,
to remove the maximum point and minimum point. According to detected outliers by Dynamic
Absolute Mean Value method (as shown in Figure 3), red dot and yellow dot present the extreme value
point through the first and second parameter combination.
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Figure 3. Comparison and test points between different window widths and threshold wind speed
sequence chart.

The recognition results of outliers with different segmentation length T and coefficient k are
presented in Figure 3. From this, it is easy to draw the conclusion that using a single parameter
combination is difficult to recognize all maximum and minimum value points comprehensively and
is possible to eliminate the abnormal points. In addition, when the coefficient k is the same and the
segmentation length 7 is different, both the subscript and the number of recognized points are different.
Then, with the same T and an increasing k, both the rejection range and the number of found extreme
value points become smaller. This is the reason why we apply two different parameter combinations
to remove outliers. Figure 3 also lists the points’ subscript with different coefficients. Moreover, there
are a few single points absent in the original data distribution. Combined with the above eliminated
outlier, the Cubic Spline function is selected to interpolate the missing value in the data. Missing too
many data cannot achieve satisfied result, so the segments missing more than 20 values are excluded
in the section.

Figure 4 shows the wind speed data for empirical research after the removing of outliers and
interpolating missing data. Compared with Figure 2a, the effect of the Dynamic Absolute Mean
Value method in removing outliers and the practicability of Cubic Spline Interpolation are ensured.
From Figure 4, it can be observed that there are only 20 or more values that are empty in processed
missing data segments. In the subsequent study, the overall data are decomposed into four datasets
for empirical analysis according to the position of these nulls.
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Table 2 lists several statistical indexes, such as median and range before and after data

interpolation. As can be observed, in these indexes, the average is slightly larger, and the rest
values are the same as the original data, which suggests the preprocessing in the paper retains the
basic characteristics and changing trend of the original data. In other words, the preferred method of
removing extreme points and interpolating missing data is effective.

The Sequence Diagram of wind speed after processing

30

Wind speed (m/s)

1 15 2 25

Time point
Figure 4. Data situation after interpolation.

Table 2. Several statistical indexes before and after data interpolation.

Index Before Interpolation  After Interpolation
Median 4.23 4.23
Average 5.99 6.00

Range 29.88 29.88

Skewness 0.74 0.74
Kurtosis 2.57 2.57

2.2.4. Model Building

This section proposes building a wind speed forecasting model where random initial input

weights and the threshold in the ELM method are optimized by Cuckoo Search. The framework of the
entire optimization model is shown in Figure 5. The specific modeling process is as follows:

Step 1. Data processing: The scope of the outlier to be removed can be defined by the Dynamic
absolute mean value method, and after eliminating outliers, Cubic spline interpolation is used to
complete data. Normalize the input data to eliminate the null column in the transformation data
matrix and avoid the influence of data in results obtained by ELM as much as possible.

Step 2. Parameter setting: Set the number of hidden layers and the activation function in ELM
and the number of iterations, nest number, host recognition, boundary conditions and objective
function in CS. Due to the weights in the interval [—1, 1] and the threshold in [0, 1], the parameter
of the different parts of each individual coding need to be set with different scopes. The situation in
which a portion of the individual is beyond the scope in iterating should employ re-initialization.
The objective function decides the search trends and the results of the algorithm. The section
employs 10-fold cross-validation mean square error sum as the output value of the objective
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function. Then, screen the optimal weight and threshold on the basis of this. As a result,
the possibility of being selected is higher with higher fitness.

e  Step 3. Encoding: Code for individuals wy1w1y - - - W1pWowop - - - Wap - - - WN1 * - WNpbs1bsy - - - bsy
where w denotes the weight and bs denotes the threshold. In the initial phases, the first N * p
weights are initialized by the usage of the real random number in [—1, 1], but the rest part is
initialized by the number in [0, 1].

e  Step 4. Optimization iteration: firstly initialize the fitness of the nest, use the initial optimal nest
individual and Lévy flights disturbance to generate new individuals, and calculate the fitness
values of all nest individuals after disturbance. Write the fitness of nest i as O(7) and the new nest
fitness as O(i’). If O(i") < O(i), then replace the nest i; in every generation save the nest with
small fitness, abandon the host nest with high recognition and find a new nest individual again.

o  Step 5. Test: The optimized weights are used as the input weights in ELM to build the optimized
wind speed prediction model.

e  Step 6. Reconstructed model: Set a single point prediction threshold. If ELM forecasting values are
continuously above the prediction threshold, re-optimize and adjust the weights.

Wind speed
forecasting

\ 4
e

Make decision

) g

Build relationship "
matrix
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Figure 5. Framework of the proposed model.

2.2.5. Model Results

In this section, BP neural net, Mycielski and non-optimized ELM are used as contrast models to
analyze the predictable performance of the ELM model optimized by the Cuckoo algorithm proposed
in the previous section. To ensure the model’s rationality, node number of input and hidden layers
of BP, non-optimized ELM and CS-ELM are set to be the same. Moreover, the Sigmoid function is used
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as the activation function in three models. The parameter of the CS-ELM model is set as follows: let
the nest number n = 50, the host recognition p = 0.25, the number of iterations N = 100, node number
of input inputnum = 11 and hidden layers hidnum = 20. Moreover, Sigmoid function is the activation
function, the weight is in [—1, 1], and the threshold is in [0, 1].

To reflect the forecasting effect of each model in different months and seasons, the annual data
are divided into four datasets referred to as Data 1, Data 2, Data 3 and Data 4. In the section, at least
two months of data are used for training and the weeklong prediction is selected for evaluating the
performance of each model. Figure 6 lists the training data and time of the four datasets corresponding
to four seasons from top to bottom.
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Figure 6. Four datasets.

For convenience in contrasting the effects, Figure 6 also shows the basic statistical value of data
use in four datasets. The test set length of all four datasets is 672, presenting collected wind speed
data in seven days. In Data 2, the average wind speed is 11.2 m/s and the median is 10.94 m/s,
illustrating the wind is strong in the period. The wind speed is 2.64 m/s on average in the low
wind period, Data 4. The statistical indicators of Data 1 and Data 3 are similar. From range, it can be
observed that all four datasets have windy days. The range of Data 2 reaches 26.3 m/s, and Data 1 also
reaches 21.05 m/s. It suggests that the size and type of the local wind is various and that the wind
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energy resource is abundant. In this case, establishing an accurate wind speed forecasting model is
particularly important.

Figure 6 presents the line chart of four test datasets at the same time, clearly describing the overall
changing trend of wind speed in four seasons. As shown in Figure 6, the data in Data 4 is stable and
the overall value is small. Data 2 and Data 3 fluctuate wildly, accompanied by certain periodicity.
Both sides of the Data 1 value are small, and the middle value is large.

Figure 7 includes figures that present the contrast between the true value and the predicted
results obtained by the different models on the basis of four datasets. There, the horizontal axis is
the real value, and the vertical axis shows the prediction result. Clearly, when the points are closer
to the diagonal, the prediction effect is better. In Data 1, it is evident that the predictions of ELM and
CS-ELM are close and focus around the diagonal, the Mycielski model is more dispersed, and the
points of BPNN are in the range of 0-10 m/s and off to the real value, demonstrating that the prediction
results are small. In the contrasting processing in Data 2, the points of BP off to the true value and
Mycielski off to the prediction show that both models are biased for Data 2. The results of ELM and
CS-ELM are close and more concentrated, suggesting that the two models have an advantage in the
group. From the third figure, it can be seen that the prediction effect of the four models is unsatisfied,
and among them, the Mycielski method is the worst one. For Data 4, the points are mainly in the range
0—4 m/s, and the four algorithms are similar. The forecasting results of the part more than 0-4 m/s
are dispersed. Based on the overall situation in four datasets, the following conclusion can be draw:
the effect of ELM and CS-ELM is satisfied relatively, while the results of BPNN and Mycielski are
often dispersed.
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Figure 7. The contrast between the true value and predicted results in four datasets.

Moreover, Table 3 collects the prediction evaluation indexes of different models in the four
datasets. Overall, the prediction effect of ELM and CS-ELM is much better than that of BP and
Mycielski. In Data 1 and Data 2, the performance of BP is worse than Mycielski, while in Data 3 and
Data 4, Mycielski is worse. This is because initial weights have a great influence in BP, and different
random initialization results led to different prediction results. Next, in view of the above four dataset
results, after being optimized by CS, the ELM effect achieves a certain improvement. The improvement
is the most obvious and the degree is the highest in Data 2 which can be seen by comparing the values
of the RMSE, MAE and MAPE. In regard to other datasets, only the performance of CS-ELM has a
weak improvement.
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Table 3. The results of the optimized model and contrast model.

Datasets Model RMSE MAPE (%) MAE
BP 1.2937 37.7885 1.0574
Data 1 Mycielski 1.3973 32.0933 0.98815
ata ELM 0.95513 22.0223 0.70935
CSELM 0.95154 21.9128 0.70312

BP 247 20.8619 2.0638

Data 2 Mycielski 1.8098 15.9512 1.3655
ata ELM 1.2884 11.365 0.97447
CSELM 1.2069 10.98 0.92169

BP 1.7408 32.5512 1.231

Data 3 Mycielski 1.7999 38.1428 1.2921
ata ELM 1.2618 29.0563 0.88979
CSELM 1.2582 27.8345 0.88564
BP 0.83373 57.8981 0.60687
Data 4 Mycielski 1.1868 69.887 0.85244
a ELM 0.80629 49.52 0.57975
CSELM 0.78449 49.0454 0.55874

14 of 29

Figure 8 shows the contrasting error boxplot of each model for four datasets, in which 1 represents
the BPNN model, 2 is the Mycielski model, 3 shows ELM and 4 represents the CS-ELM model.
Then, the following conclusions would be introduced:

(a)

In the first figure, the prediction result of BP is biased, and the part beyond quartiles is greater.

The data of the Mycielski model beyond the upper and lower edge is more and the range of
error distribution is wide, presenting an error interval that is maximized. In ELM and the
CS-ELM model, the data mainly focuses on the range of —2 m/s~2 m/s, the excess part is less
than BP and Mycielski, and the prediction effect is better.

(b)

In the second figure, the error range of the Mycielski model reaches [—10, 10], showing that the

performance is very unsatisfied. The overall error is concentrated for ELM and CS-ELM.

In the last two figures, the result of BP is not obviously biased, and the data range beyond the top
and bottom edge is less than Mycielski, so the performance is better than Mycielski. However,
its error concentration is not higher than ELM and CS-ELM, leading to worse performance than
ELM and CS-ELM.
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Figure 8. The contrasting error boxplot of each model for four datasets.
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2.3. Summary

This section applies Cuckoo Search to optimize the weight parameters of ELM. In accordance with
the problem that ELM is sensitive to input data, the Dynamic Absolute mean value and Cubic Spline
are used to reject outliers and interpolate parts of the missing data, which maintains the integrity of
research data well.

In addition, to increase the stability of the proposed model, the rest of the data having more
vacancy is removed after setting up an input and output mapping matrix net. Then, optimize the
weight parameters of ELM by CS and build the optimized CS-ELM model. Based on the above analysis
of the wind speed of Akesai Dangjin Mountain in four seasons, CS-ELM achieves much better accuracy
than the other models, and its single-point prediction effect is best followed by ELM. The effect of BP
and Mycielski is the worst. Therefore, through optimized weights and a threshold by CS and ELM,
the model performance has an improvement, but the improvement is affected by the test set. The wind
speed has considerable difference in different seasons, so both the prediction error distribution and
results are different for different datasets.

3. Proposed Hybrid Model

Based on CS-ELM prediction model, the chapter mainly studies the following two questions:
(1) proper simplified input regardless of the precision of the model; (2) how to provide the range of
the forecasted points. To solve the first problem, a hybrid model based on the SGA and ARMA is
developed. The SGA plays the main role, which simplifies input in the hybrid model, and ARMA is
used to adjust the errors. For the second question, the interval prediction based on the distance cluster
is proposed with the application of the filter input.

The remainder of the section is organized as follows: the theoretical part describes the SGA,
ARMA and the modeling procedure. The empirical part first presents specific modeling steps, and then
the point and interval forecasting results of the hybrid model are given on the basis of the wind speed
of Akesai Dangjin Mountain in four seasons.

3.1. Theoretical Analysis

In the chapter, the Standard Genetic Algorithm is used for data filtering to achieve the goal
that partial data can obtain higher prediction accuracy. In the end, ARMA model is employed for
error correction. Based on the standard genetic algorithm SGA, ARMA time series and CS-ELM model
developed in the second section, a hybrid model is proposed in this part.

3.1.1. Standard Genetic Algorithm

The Genetic Algorithm (GA) is a powerful stochastic algorithm based on simulating biological
genetics and natural selection mechanism’s biological evolution process [39], which was first described
in the Ph.D. thesis of Bagay in 1967 [40]. GA starts with an initial set of random solutions called
a population, and each individual in the population is called a chromosome [28].

To qualitative analyze the global convergence of SGA based on binary encoding, Holland has
established the model theorem and implicit parallelism, proving that SGA can keep the optimal
solution in each generation before or after selecting the operation and the result of SGA converge
to global optimal solution with probability 1 [41]. Because of its characteristics of uncomplicated
operation and parallel searching of the global space, SGA has been successfully utilized in optimal
control and machine learning field.

The standard Genetic Algorithm flow chart is shown in Figure 9.
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Figure 9. The standard Genetic Algorithm flow chart.

3.1.2. Stationary Time Series

The stationary of one time series includes strictly stationary, wide stationary and non-stationary.
In practical application, the stability of one time series can be determined by its statistical properties,
such as the mean, variance and so on.

The white noise test: if the time series {X;, t € T} meets:

(a)Vt € T,EX; = u (16)
2 ¢
(b)Vt,s € T,r(t,s) = { %':;SS (17)

then {X;} is a white noise sequence.

Only when the single variable time series meets stationarity and passes the white noise test,
a stationary time series model can be build. The commonly used regression models are the AR model,
MA model and ARMA model.

After building the regression model, it’s necessary to verify the fitting effect of the selected model,
which is to test the stability of the error.

There are two types of error stationary tests—figure tests and statistic tests—for error sequences.
A figure test is a test method utilizing a drawing sequence diagram and autocorrelation. There,
the commonly used test methods are the ADF test, PP test and so on. The Daniel test comes to the
conclusion through the Spearman rank correlation coefficient gs passing the hypothesis test:

B " (t—Rs)?
gs=1- 6; n(nz—1) (18)
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3.1.3. Problem Description and Solution

In the previous section, the established model can be expressed as:
yi=f(xyitxoi+- - +xp:) +& (19)

where x1;, X2, - -, Xp,; expresses the input variables of the model, p represents the dimension, i shows
the ith column of the input matrix, f(-) represents the built CS-ELM model, y; is the target output,
and ¢; shows the error. Moreover, when applying a neural network to build the model, it is generally
suggested that variables without high correlation are applied as input. However, in the previous section,
the transformed original data matrix is used directly for output-input mapping where the data are
in time order and the input has high correlation. Thus, SGA is developed to filter the transformed
matrixes. The screening input is used as the input of CS-ELM. Then, adjust the errors with ARMA,
achieving the establishment of the hybrid forecasting model. The process of SGA variable selection
method joint in the model is shown as follows:
Assume that the established input-output mapping is such that:

Yyi = f(Z1Xi,1 +zoXip + -+ pri,p) +¢; (20)

where z1,2,- - ,zp represents the coefficient of controlling input for 0 or 1. Thus, z1,22,- -,z
can be encoded with the binary method, for example, E[Y|x,z=(1,0,1,0)] = x; +x3 and
E[Y|x,z = (1,1,0,0)] = x1 + x2. Then, choose the corresponding row data as the input of CS-ELM to
build the prediction model.

The method of multi-step ahead forecast is that updating the input data by discarding the old
data for each loop to perform the prediction. The multi-step ahead forecast is defined as: define the
time index & as the forecast origin and the positive integer 1 as the forecast horizon. Suppose we are
at time index & and intended to forecast 7,1, where I > 1. Let #;,(I) be the forecast of 7;,, 1, then we
defined 7 (1) as the l-step ahead forecast of r; at the forecast origin h. When | = 1, we defined 7;,(1) as
one-step ahead forecast of r; at the forecast origin / [42,43].

The following is the method for building the interval model:

e Calculate the Euclidean distance between the test input vector and training input matrix after
screening and arrange according to the values from small to large. Set a distance threshold.
Lump the values less than the threshold into one class and find corresponding input vectors to
form a new mapping matrix. Because each vector in the new matrix has a small distance with the
test input vector, vectors therein are considered as the test input vector joined the interference.
At a result, corresponding test output value which is used as a possible sample space of current
prediction can be obtained. We select 5% fractile and 95% fractile of the sample as the upper and
lower bounds of the confidence interval. However, due to the limited historical data, it is difficult
to find close vectors and construct the sample space for the test input vector. For this reason, we can
consider the spacing of part points and ignore the distance of other points, which reduces the
overall distance and constructs the sample space of similar sequences. Although the SGA-CSELM
model proposed in this chapter removes part variables during the input process, its result is
similar to that of the CS-ELM model or even better. Thus, the SGA-CSELM screening results
are adopted as a new test vector to find the possible forecast sample space again and obtain a
confidence interval closer to the forecasting point. Figure 10 is an instance of the prediction point.
In addition, for rare points that cannot form intervals, the moving average method is applied to
obtain upper and lower boundaries.
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Figure 10. Instance of the prediction point.

3.2. Experiment

The hybrid model proposed in this section takes SGA into consideration, reduces the input

variable appropriately and achieves a more powerful forecasting result than the CS-ELM model.

3.2.1. SGA-CSELM Model

The following briefly introduces the process of the construction of the SGA-CSELM combination

model:

1.

Data processing: Build the initial input and output matrix of the CSELM model and then eliminate
the null columns in the matrix to ensure the continuity of the data. Normalize the data to reduce
the interference of data resources on the ELM.

SGA parameters setting: Set the appropriate fitness function F(e), write the number of inputs
requiring filtering as n and compile the SGA individuals as:

Gk:(gl/gZI"'rgir"'rgl’l)r giIOOT’ 81:1 (21)

Set up the SGA parameters, such as the total number of individuals N, number of iterations Niter,
crossover probability p;, mutation probability p3 and so on.

ELM parameters setting: Decode the output results of the ELM, extract the corresponding line of
the output and input matrix as the model input, obtain the neuron number of the input layer and
hidden layer and employ Sigmoid as the activation function.

CS parameters setting: Set the number of iterations, nest number, host recognition, boundary
conditions and objective function. The weight is in the interval [—1, 1], and scope of threshold
is [0, 1], so the parameters represented by the different parts of each individual should be set
in different ranges. Moreover, generate the portion of the individual out of range by way of
re-initialization. The objective function determines the search trends and results of the algorithm,
so the paper employs the mean square error of the test data fitting the value 1/mse(y — §) as the
output value of the objective function and filters the optimal weight and threshold accordingly.
Encoding: Apply the COdil’lg w11 w1 - - - wlPWQlez cee 'LUzp s WNT wprslbsz s bSN, where
w represents the weight and bs stands for the threshold value, for individuals. In the initial phase,
the first N * p weights are initialized by the usage of the real random number in [—1, 1], but the
rest is initialized by the number in [0, 1].

Optimization iteration: First, initialize the fitness of the nest, use the initial optimal nest individual
and Lévy flights disturbance to generate new individuals and calculate the fitness value of all
nest individuals after disturbance. Write the fitness of nest i as O(i) and the new nest fitness as
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O(i"). If O(i") < O(i), then replace nest i; in every generation, save the nest with small fitness,
abandon the host nest with high recognition and find a new nest individual again.

7. Carry out test data fitting and obtain the training error: Set the sliding window width H, obtain
the training error of the data within the widow width H used to test data and judge whether
the data are white noise. If it is white noise, skip the ARMA model building steps, or establish
ARMA and carry out step (8).

8.  Identify the ARMA model: Employ the window width data to calculate the corresponding model
lag intervals for endogenous to minimum BIC rule and build the ARMA model.

9.  Training model: Take the obtained optimizing weights as the input weights of ELM and build the
SGA-CSELM hybrid wind speed forecasting model.

10.  Error correction: Enter the new data into the SGA-CSELM model to obtain the prediction. If there
is an ARMA model, then enter the error obtain the error prediction, and correct the error in the
SGA-CSELM results to obtain the Hybrid Model.

11.  Reconstruct model: Set the forecasting threshold of a single point. If the efficiency of the ELM
exceeds the threshold continuously, then retrain the Hybrid Model.

3.2.2. Model Results

Apply the GAOT toolbox to build SGA, and the specific parameters are set as follows: the number
of iterations is 100, the species number is 20, the crossover probability is 0.09, and the mutation
probability is 0.05. It is important to note that, due to variable screening, the input node of CSELM,
inputnum, varies with the change of screening data. Therefore, when building the SGA-CSELM model,
we set the number of hidden layer nodes at the Apply GAOT toolbox to build SGA, and the specific
parameters are set as follows: the number of iterations is 100, the species number is 20, the crossover
probability is 0.09, and the mutation probability is 0.05. It is important to note that due to variable
screening, the input node of CSELM, inputnum, changes with the change of screening data. Therefore,
when building SGA-CSELM model, we set the number of hidden layer nodes at:

hiddennum = 2 x (inputnum — 1) (22)

To facilitate the efficiency of models quickly, we directly introduce the prediction of ELM and
CS-ELM and write them as ELM-1 and CSELM-1. In addition, the ELM model of which the number of
hidden layer nodes is the same as screening hiddennum is added, and its efficiency and CS-ELM’s are
comprehensively compared. The input of the newly added model and the original one is the same;
for the purpose of distinguishing them, they are written as ELM-2 and CSELM-2. Finally, through the
test in stationary and white noise for the prediction error of the SGA-CSELM model, the ARMA
model is built for the non-white noise part to correct the prediction error. The other parameters of the
SGA-CSELM model are set as in the previous chapter.

Selection Results of the Input Variable

Table 4 lists the output of four datasets after being screened by SGA. The first column presents
the four datasets, and the second is the screening binary results, where 0 shows it cannot be chosen
as model input and 1 means that it can be chosen. Here, the established input and output matrix is
the same as the previous one. The third one shows the input subscript after screening, from which
it is easy to see that, for the different stages of data, different input data models should be applied.
Among them, the data Data 3 need is the most and Data 4 is the least. The last column describes the
fitness function value corresponding to the screening model.
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Table 4. The screening results of input data.

Dataset z Model f(e)
Data 1 (1/0r0r01010/01011/1/1) f(Z] xirl + ng,"g + Zloxirlo =+ Z11 xi,n) 2.6925 x 1074
Data 2 (0,1,1,0,0,0,0,0,0,1,1) f(zaxip + z3%i 3 + 210%;,10 + Z11Xi11) 1.4634 x 1074
Data 3 (0,0,0,0,0,0,1,1,1,1,1) f(Z7xi’7 +28Xig + Z9Xj9 + 210Xi10 + lexl‘,ll) 1.2828 x 10~%
Data 4 (0,0,1,0,0,0,0,0,0,1,1) f(Z3.’Xi,3 + 210Xi,10 + znx,‘,n) 2.7143 x 1074

Through this table, the number of input variables and the subscript can also be obtained.
For example, in Data 1, the input nodes number is inputnum = 4, so the corresponding layer nodes in
SGA-CAELM is hiddennum = 2 x (inputnum — 1) = 6, and the index in contrast model in ELM-2 and
CSELM-2 is also 6.

Model Contrast Result

Table 5 shows the prediction results of various models in Data 1. The first column is the six
models used in the test. Among them, the results of ELM-1 and CSELM-1 come from the second
section, ELM-2 and CSELM-2 are contrast models of which the layer nodes are set as SGA-CSELM,
SGA-CSELM is the model that does not join ARMA for error correction, and the last hybrid model
is the one joining ARMA. Moreover, the second to fourth columns describe the performance of each
model under different indicators. According to the value of the RMSE, the hybrid model’s value
is the smallest and the ELM-2's is the largest. From MAPE, all models are near 22%, the ELM-2 is
the biggest, CSELM-1 is the smallest one, and the rest center. The efficiency of the hybrid model is
the best, and SGA-CSELM follows from MAE. Taken together, although there is a decrease in the input
information of SGA-CSELM after screening the variable, the prediction result is still better than ELM
and near CS-ELM. The result of the hybrid model has ascends after error correction by ARMA.

Table 5. The comparison between the predictive indexes of various models in Data 1.

Model RMSE MAPE (%) MAE
ELM-1 0.95513 22.0223 0.70935
CSELM-1 0.95154 21.9128 0.70312
ELM-2 1.0758 26.2801 0.80785
CSELM-2 0.94509 22.1702 0.70205
SGA-CSELM 0.94368 22.0715 0.70112
Hybrid model 0.93729 22.4062 0.69569

In the process of forecasting, we employ the ARMA time series model and a dynamic test
and predict the stationarity of the error and judge whether the error is a white noise sequence.
If the conditions of the time series model are met, then build ARMA to fetch useful information for
further data. Figure 11a shows the line chart drawn according to 200 points used to construct the ARMA
model in Data 1. From the figure, it can be seen that the error fluctuation is larger, and the SGA-CSELM
model does not fully extract the data information in the process of training. Apply the ADF test for
the sequence; the result indicates that it is smooth. Through the Ljung-Box Q-test, detect the error
correlation, not the white noise sequence. Therefore, the ARMA model can be constructed for the
data fitting error and further extract the useful information from the error term. Figure 11b is the
autocorrelation and partial autocorrelation figure of the segment data, showing that the data fits
ARMA (4,6), but in factual modeling, ARMA (1,1) is chosen because, when the orders of both AR and
MA are 1, the value of the corresponding criterion is minimum (shown in Table 7) through comparing
the criterion value of AIC and BIC, etc.
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Table 6 lists the AIC value and BIC value for fitting the ARMA model in the data segment with
the sliding window width H =200 when R =0, 1,2,3 and M = 0, 1,2, 3. By comparing the BIC rule in
the scope in whichR =0,1,2,--- ,6and M =0,1,2,- - -, 6, it can be found that, whenR =1,M =1,
the AIC and BIC values are the smallest. Thus, ARMA (1,1) is used to build the model, and in the next
H = 200 steps, the error for the SGA-CSELM model is corrected with it.

Table 6. AIC and BIC values in ARMA model with different R, M in the data segment with H = 200.

R M AIC BIC

0 0 525.9757 532.5723
0 1 522.9694 532.8644
0 2 520.4012 533.5945
0 3 520.9191 537.4107
1 0 521.2324 531.1274
1 1 510.6493 523.8426
1 2 511.7579 528.2495
1 3 513.2704 533.0603
2 0 517.0375 530.2307
2 1 511.8597 528.3513
2 2 513.2522 533.0421
2 3 514.3671 537.4553
3 0 516.4494 532.941
3 1 513.6157 533.4056
3 2 515.1741 538.2623
3 3 515.9503 542.3369
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Table 7 shows the concrete results of the 1st to 28th points in Data 1 with each model. In the table,
the second column is the measurement data, and the following columns are the point prediction results
of ELM-1, CSELM-1, ELM-2, CSELM-2, SGA-CSELM and the model joining error correction. The last
one is the error correction of the SGA-CSELM model with ARMA (1,1). For facility, all data reserve two
decimal fractions. As a result of Table 7, the prediction effect of the Hybrid Model proposed is best,
followed by that of the SGA-CSELM Model.

Table 7. The wind speed forecasting results from 0:15 to 7:00 with each model with part data in Data 1.

Time Original Data ELM-1 CSELM-1 ELM-2  CSELM-2 SGA-CSELM Hybrid Model  Adjusted Value

0:15:00 1.82 2.87 2.7 2.19 2.77 2.86 2.69 —0.17
0:30:00 155 1.81 1.72 2.49 1.95 1.78 2.05 0.28
0:45:00 1.53 1.6 1.63 1.96 1.64 1.68 1.49 —-0.19
1:00:00 1.14 1.54 1.51 1.5 1.52 1.59 1.74 0.14
1:15:00 0.41 111 1.23 1.35 1.34 1.22 116 —0.06
1:30:00 0.45 0.55 0.62 1.24 0.66 0.62 0.76 0.14
1:45:00 1.86 0.76 0.66 1.2 0.64 0.71 0.6 —0.11
2:00:00 0.71 2 1.99 1.41 1.85 1.93 1.82 —0.11
2:15:00 0.63 0.77 0.93 1.25 0.95 0.71 0.95 0.24
2:30:00 0.98 0.88 0.94 1.16 0.77 0.9 0.71 —0.2
2:45:00 1.13 117 0.96 113 1.03 1.15 1.25 0.1
3:00:00 1.33 1.15 1.25 1.03 131 1.21 11 -0.11
3:15:00 1.54 1.42 1.43 1.43 1.39 1.39 1.42 0.03
3:30:00 1.53 1.78 15 2.13 1.55 1.57 15 —0.07
3:45:00 1.57 1.57 1.61 1.97 1.64 1.55 1.58 0.03
4:00:00 0.92 1.61 1.69 1.48 1.58 1.59 1.53 —0.06
4:15:00 1.18 0.97 1.05 1.39 1 0.99 1.1 0.11
4:30:00 1.5 1.31 1.24 1.58 1.36 1.33 1.19 —0.14
4:45:00 1.86 1.59 1.54 1.64 153 1.52 1.57 0.05
5:00:00 2.61 1.92 1.95 1.97 1.9 1.84 1.72 —0.12
5:15:00 2.63 2.65 2.64 2.44 2.52 2.54 25 —0.05
5:30:00 2.02 2.6 2.59 2.61 2.55 2.51 2.52 0
5:45:00 3.01 1.92 2.04 2.18 2.01 1.98 2.03 0.05
6:00:00 215 2.98 2.92 2.28 2.8 3 2.8 —02
6:15:00 1.86 2.01 1.96 24 217 2.03 2.28 0.26
6:30:00 2.02 1.86 1.94 2.3 2.01 1.92 1.73 —-0.19
6:45:00 1.65 21 2.01 22 1.94 2.02 213 0.1
7:00:00 1.7 1.66 1.7 1.96 1.76 1.65 1.6 —0.05

Figure 12 shows the prediction of the hybrid model and the upper and lower bounds of the
prediction interval that is composed by 5% fractile and 95% fractile in Data 1, Data 2, Data 3 and Data
4. First, our model prediction is very close to the real sequence, showing that the forecasting effect
of SGA-CSELM has a certain improvement after adding the ARMA model to correct the error. Next,
our forecasting range includes almost all real values, and the interval width at some points is narrow.
However, there is an obvious shortage in that, when the original data increases quickly, the prediction
interval cannot well contain the real value, and the effect is better in the decrease part. To see the
details of the forecasting results of the Hybrid model, the point prediction performance of Data 1,
Data 2, Data 3 and Data 4 is also given in Figure 12 for reference.

Table 8 lists the evaluation index situation of Data 2 after screening, on the basis of predictive
results. Different from Data 1, overall, CSELM-2 works best followed by CSELM-1 and SGA-CSELM
effects worse than the two models with the small gap. ELM-1 and ELM-2 work the worst. Because the
error sequence is white noise after using SGA-CSELM to forecast the test data in Data 2, the prediction
evaluation indexes of the Hybrid Model are not shown in Table 8.

According to Table 8 and the value of the RMSE, CSELM-1 works best, followed by SGA-CSELM,
and the Hybrid model result is worse than that of CSELM-2 in Data 3. From the point of view of MAPE,
the result of the Hybrid model is the best, and SGA-CSELM follows. From MAE, the parameter value
of SGA-CSELM is the minimum. Taken together, each indicator in SGA-CSELM performs most stably,
but its result is a bit weaker after joining correction by the time sequence, explaining that the ARMA
model is not entirely appropriate for the dataset.
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Table 8 also presents the prediction index comparison result of each model in Data 4. From the
table, we can see that SGA-CSELM is the smallest in RMSE and MAE. CSELM-2 is minimum in the
index MAPE, and the MAPE value of the rest of the model is larger, even more than 50%. This is
because the wind speed data in Data 2 is generally small and fluctuates frequently, and any small
forecast deviation will lead to a sharp fall in results. In addition, the Hybrid Model of the effect is not
the best one; this may be due to the error correction for SGA-CSELM, and the selected MA model is

not good for modeling of different variance components.
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Table 8. The RMSE, MAPE and MAE values of many models in Data 2, Data 3 and Data 4.

Dataset Model RMSE MAPE (%) MAE
ELM-1 1.2884 11.365 0.97447
CSELM-1 1.2069 10.98 0.92169

Data 2 ELM-2 1.4416 13.1777 11133
CSELM-2 1.1987 11.0051 0.91502
SGA-CSELM 1.2077 10.9918 0.91705
ELM-1 12618 29.0563 0.88979
CSELM-1 1.2582 27.8345 0.88564

ELM-2 1.4675 35.7339 1.0631

Data 3 CSELM-2 1.2654 28.7894 0.8927
SGA-CSELM 1.2652 26.9906 0.88335
Hybrid model 1.2763 26.5807 0.89842
ELM-1 0.80629 4952+ 0.57975
CSELM-1 0.78449 49.0454 * 0.55874
ELM-2 0.88965 58.7557 * 0.64605
Data 4 CSELM-2 0.79179 47.9399 * 0.56206
SGA-CSELM 0.78186 49.0009 * 0.55542
Hybrid model ~ 0.78695 51.3721 * 0.55959

Note: there are zero points in the measured dataset, “*” is the value of MAPE calculated after removing the point.

3.3. Summary

Based on the standard genetic algorithm SGA, ARMA time series and CS-ELM model developed
in the second section, a Hybrid model is proposed in this section. When building the CS-ELM model
in the previous section, all input and output mapping was put in models to test. However, taking SGA
into consideration, the section reduces the input variable appropriately and achieves a more powerful
forecasting result than the CS-ELM model.

In the process of hybrid modeling, first, make up the input subscript for 0-1 by the binary code
and, through the standard genetic algorithm, select a variable to set up the SGA-CSELM model. Second,
conduct the stationarity and white noise test for the prediction error of the SGA-CSELM model. If the
error series meets the ARMA modeling conditions, then identify the optimal model by the AIC and BIC
information rules. Thus, establish the SGA-CSELM model with error correction, namely, the Hybrid
Model. Through empirical analysis of the four datasets of Dangjin Mountain in Akesai, the following
results are produced:

1. Under the influence of different initial weights, the effect of the single extreme learning machine
model changes greatly; nevertheless, the ELM model optimized by the cuckoo algorithm
possesses both a stable result and a reliable output guarantee.

2. Selecting input variables by the usage of SGA reduces the information of the part variables to
some extent, but its prediction effect can still achieve results that are not weaker than those of
CS-ELM, which all inputs test.

3. The error of SGA-CSELM is corrected by the ARMA model, and the performance of the hybrid
model after calibration is improved and declines because during the process of fixing the width
of the sliding window, the error may become a white noise sequence and join the error correction,
leading to poor results.

4. With the screening result of SGA, by calculating the distance between the predicted sample and
constructed historical data-mapping matrix, possible forecast points of the sample can be screed
to be composed of points that are close. The upper and lower bounds of the prediction sample
constructed by calculating the 5% and 95% fractile numerical values obtain a good result.
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4. Conclusions

Because existing fossil fuels cannot meet the increasing energy demand, increased attention has
been paid to wind energy, a type of clean and renewable energy. However, owing to the intermittency
and random character of wind speed, it is essential to build a wind speed forecasting model with
high-precision for wind power utilization [44]. Therefore, this paper contributes to the development of
an improved wind speed forecasting method [45].

In the paper, the optimized CS-ELM model is applied as the main model, joining SGA and
ARMA to build a hybrid model. Based on a series of empirical analyses, the performance of the
optimized CS-ELM model is found to overcome the limitations of the single ELM model, that is,
it is easily affected by the initial weights, fluctuates, cannot provide stable prediction results and so
on. Compared with BP and the single extreme learning machine model, the model has achieved a
great improvement in the prediction effect and stable prediction results. It is easy to see that after
SGA screening, the model only requires data of lower dimension to produce better prediction results
than the single ELM. The ARMA model is employed for error correction to further extract useful
information in error prediction. In addition, based on the SGA screening results, by calculating the
distance between the test input vector and mapping matrix, building a possible prediction sample
space and providing the rough range of the upper and lower boundaries of the predicted values has
yielded an excellent performance. Providing an increased accuracy forecasting range can prevent the
dramatic fault of a single point prediction, which on a windy day, allows managers to take measures in
advance to protect the fan from damage and to have a more competitive advantage to drive markets.
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Abbreviations

Abbreviations in this manuscript are summed up as follows:

ARIMA Auto-regressive integrated moving average

ARMA Auto-Regressive and Moving Average Model

CS Cuckoo search

ELM Extreme learning machine

GA Genetic Algorithm

LS-SVM Least Squares-Support Vector Machine

MAS Multiple Architecture System

SGA Standard Genetic Algorithm

Nomenclature

X1,%2,%3,- -+, X,  Evenly spaced discrete sequence D The dimension of the parameters
X The difference between x and X N The iterative times of the algorithm
k-x', bs Threshold p The recognition rate of the host

T Segmentation length O(xtx) target function in the CS algorithm
k EZ;?S{SZT;; determining the ytareet (i) The predicted objective results
S(x) Cubic Spline interpolant function — w weight

X1, X5, , Xy Random sample O(i) The fitness of nest i

Ig (X;) characteristic function o(i") The new fitness of nest i

h Width, the difference between hiddennum Number of hidden layer nodes

tk+l and tk
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By kth subinterval [t, t;1) inputnum Input node
Xtk The locat1o.n of the kth nest in the G The encoding of the kth individual
’ tth generation
0 Step length controlled quantity gi The ith gene of the individual k
The probability of the individual G can
@ dot product Pk .
be saved over to the next generation
Xp The current optimal solution rand Random number
Appendix A
Appendix A.1

Algorithm A1: Cuckoo Search Algorithm

Input:

x§°> = (x(o) (1),x9(2),...,x0 (q))—sequence of training data.

xg,o) = (x(o) (g+1), x(0) (g+2),..., x(0) (g + d))—sequence of verification data
Output:

xp—the value of x with the best fitness value in the population of nests
Parameters:

Genppax—maximum number of iterations

n—number of host nests

F;,—fitness function of nest i

x;—nest i

pa—parameters of the cuckoo search algorithm

x—step size

g—current iteration number

1 [* Initialize the population of n host nests x; (i=1,2, ..., n) randomly */
2 FOR EACHi: 1 <i<nDO

3 Evaluate the corresponding fitness function F;
4 END FOR

5 WHILE (g < Gerygay) DO

6 /* Obtain new nests by Lévy flights */

7 FOR EACHi:1<i<nDO

8 xr = x; + adLevy(A);

9 END FOR

10 FOREACH::1<i<nDO

11 Compute Fp,

12 IF (F; < F;) THEN

13 Xj4—XL;
14 END IF

15 END FOR

16 Compute Fp,

17 /* Update the best nest x;, of the d generation */
18 IF (F, < F,) THEN

19 Xp—Xp;

20 END IF

21 END WHILE

22 RETURNY,
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Appendix A.2

Algorithm A2: CS-ELM

Input:

x§°> = (x(o) (1),x0(2),...,x0 (q))—sequence of training data.

x;}o) = (x(o) (g+1), x(0) (g+2),..., x(0) (g + d))—sequence of verification data
Output:

yﬁf’) = (1}(0) (g+ l),yw) (g+2),..., :9(0) (g + d))—forecasting electrical load data from ELM.
Parameters:

Genppax—maximum number of iterations

n—number of host nests

F,—fitness function of nest i

x;—nest i

pa—parameters of the cuckoo search algorithm

x—step size

g—current iteration number

1 /* Initialize the population of n host nests x; (i=1,2, ..., n) randomly */

2 FOR EACHi: 1 <i<n DO

3 Evaluate the corresponding fitness function F;

4 END FOR

5 WHILE (g < Gerygay) DO

6 /* Obtain new nests by Lévy flights */

7 FOR EACHi: 1 <i<nDO

8 xr = x; + adLevy(A);

9 END FOR

10 FOREACH::1<i<nDO

11 Compute Fj,

12 IF (F, < F;) THEN

13 Xi<—XL;

14 END IF

15 END FOR

16 Compute Fy,

17 /* Update the best nest x,, of the d generation */

18 IF (F, < F,) THEN

19 Xp—Xp;

20 END IF

21 END WHILE

22 RETURNY,

23 Set the weight and threshold of the ELM according to x;.

24 Use x; to train the ELM and update the weight and threshold of the ELM.

25 Input the historical data into the ELM to obtain the forecasting value 7.
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