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Abstract: In regional power grids with high wind power penetration, wind turbine tripping poses
great challenges to short-term voltage stability. Dynamic reactive power (VAR) compensation (DVC)
plays an important role in securing wind farm operation. To address short-term voltage stability
issues, voltage disturbance index (DI) and voltage supporting index (SI) are defined to evaluate the
degree of voltage fluctuation and voltage supporting ability of a bus, respectively. Then corresponding
vector-type features, called disturbance vector (DV) and supporting vector (SV) are proposed based
on the defined indexes. The Kendall rank correlation coefficient is adopted to evaluate the matching
degree of DV and SV, so as to determine the influenced area of each wind farm. Candidate locations
for DVC are determined sequentially. By comprehensively considering the probability of combined
disturbance in each wind farm, a site selection method is proposed and then genetic algorithm is
applied to optimize the DVC capacity considering short-term voltage security. The proposed method
is applied on a modified NE 39-bus system and a real power grid. Comparison with the engineering
practice-based method validates its effectiveness.

Keywords: dynamic VAR compensation; short-term voltage stability; wind turbines tripping; Kendall
rank correlation coefficient

1. Introduction

Wind power is attracting increasing attention across the world. In China, major load areas are far
from large-scale wind farms; as a result, wind power is often collected to the point of common coupling
(PCC) and then centrally transmitted to load areas [1]. However, in recent years, as small-scale
offshore and near-sea wind farms have developed rapidly in coastal areas, wind power is now
dispersedly integrated into regional power grids [2]. In this situation, the synchronous stability
issue has diminished, while short-term voltage stability issues brought by power fluctuation are
becoming significant due to the stochastic nature of wind speed, especially in radial grids without
local synchronous power supplies [3]. In coastal areas where typhoons hit frequently, wind turbine
tripping due to excessive wind speed often occurs; with the increase of installed capacity of wind
power, the resulting impacts can no longer be neglected [4].

Energies 2018, 11, 1709; doi:10.3390/en11071709 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/7/1709?type=check_update&version=1
http://dx.doi.org/10.3390/en11071709
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1709 2 of 15

Voltage stability issues caused by wind power fluctuation can be grouped into two categories:
static voltage stability and transient voltage stability issues. Existing research mainly focuses on static
voltage stability problems resulting from wind power fluctuation in terms of hour and minute time
scales, e.g., [5,6]; while transient voltage stability issues are generally studied under short-circuit
fault scenarios [7], i.e., transient voltage stability issues caused by disturbances arising from the wind
turbines themselves are rarely considered. Once the wind speed is over the cut-off speed, some wind
turbines would trip off. In this situation, as the slow-response capacitor banks cannot switch off in time,
the wind farm’s voltage could rise to a certain high level and may result in cascading tripping [8,9].

Although the hierarchical automatic voltage control (AVC) system can support rational voltage
profiles considering the intermittent and stochastic characteristics of wind power [10], it still requires
sufficient dynamic reactive power (VAR) reserve to provide rapid dynamic VAR support when wind
turbine tripping occurs [11]. With this concern, power system usually requires sufficient dynamic VAR
compensation capacity to be mandatorily installed in the wind farms. Hence, most of the recently built
wind farms in China coastal areas are equipped with dynamic VAR compensators (DVC), e.g., Static
Synchronous Compensator (STATCOM), Static Var Compensator (SVC), etc. which significantly
increase the total investment cost of the wind farms. Effective planning of the locations and capacity of
the DVCs from the system perspective can greatly reduce the investment on DVCs and promote wind
farm integration ability.

DVC planning aims at dealing with short-term voltage stability issues using DVC devices with the
least investment [12]. Currently, DVC planning mainly focuses on short-circuit fault scenarios, which
can be divided into two inter-related steps: site selection and capacity optimization. Site selection
plays a major role in DVC planning, which determines the optimality of the overall planning scheme.
Trajectory sensitivity index (TSI) is widely applied to identify proper installation locations with
sufficient control ability [12–14]. After calculating the TSI regarding voltage dip, low voltage duration,
etc. to reactive power injection, buses with strong control ability are distinguished via a ranking method.
However, due to the proximity effect of the voltage dip, adjacent buses tend to be simultaneously
selected by the TSI ranking based methods, resulting in redundant installation. To overcome this
shortcoming, a zoning-based approach is put forward in [15,16], which partitions the grid and then
determines installation locations by zones.

Capacity optimization is another crucial step following sites selection. As it is computationally
expensive, existing references provided two typical optimization strategies: two-stage optimization [13,17]
and full optimization [18]. The two-stage optimization approach determines the locations and capacity
separately, which is widely adopted due to its less computational complexity. However, its optimality is
consequently sacrificed. The full optimization approach optimizes locations and capacity simultaneously
for better optimality, generally using intelligent searching algorithms, e.g., Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), etc. while due to its huge computation load, it may be hard to solve or
even infeasible in a large-scale system. Thus, in engineering practice, the former one is a priority selection
and at this point, determining proper locations is of great concern.

As short-term voltage stability issue induced by wind turbine tripping is becoming critical, and
few articles deals with it, this paper develops a DVC planning strategy considering wind turbine
tripping, so as to restrain transient voltage fluctuations to prevent cascading tripping. Note that as
wind turbine tripping is a kind of non-Gaussian intermittency [19,20], it is rational to consider the worst
condition in the planning stage. The so-called worst conditions would vary depending on the interest
of different studies. In our framework, we focus on the dynamic reactive power reserve for wind
farms. Therefore, in our proposed framework, we consider the worst condition which will cause severe
short-term voltage stability issues. This situation usually refers to the early morning scenario, where
the load is light but the wind turbines almost work at rated condition. In this case, the requirement of
dynamic reactive power would be great due to the few synchronous generators providing dynamic
reactive power support. In this scenario, once wind turbines are tripped, the power imbalance will
greatly influence the power flow and lead to short-term voltage stability issues. Dynamic reactive
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power reserve considering this scenario is sufficient for other scenarios. The contributions of this paper
are summarized as follows:

(1) A vector-type evaluation indexes system is established, including Disturbance Vector (DV) to
assess the influence of wind power large disturbance on system-wide transient voltage; and
Supporting Vector (SV) to evaluate a bus’s system-wide transient voltage control ability.

(2) The Kendall rank correlation coefficient of DV and SV is calculated and then the grid is partitioned
into several parts to differentiate the influenced areas of each wind farm, which helps reduce
searching the space for candidate locations.

(3) A novel DVC planning scheme is put forward for preventing cascading tripping of wind farms.
Based on the above indexes, combined disturbances and their probability are considered to
determine proper installation locations. Then, a genetic algorithm is introduced to optimize DVC
capacity, considering the transient voltage constraints to prevent cascading tripping.

The rest of the paper is organized as follows: Section 2 establishes the indexes system including
DV and SV to evaluate buses’ transient voltage behavior. Based on the indexes system, a novel DVC
planning scheme is proposed in Section 3, and the sites selection and the capacity optimization steps
are provided in detail. Section 4 provides a case study on a modified NE 39-bus system and application
on a real regional grid in Southern China is conducted in Section 5. Conclusions are given in Section 6.

2. Evaluation on Buses’ Transient Voltage Behavior

In this section, vector-type indexes describing buses’ transient voltage fluctuation and voltage
control ability are defined, respectively. The vector-type indexes record buses’ dynamic characteristics
more completely thus provide more information in analysis. Note that the proposed indexes are
universal, which can be also applied in other scenarios, e.g., short-circuit faults.

2.1. Voltage Disturbance Index

Once an extremely strong wind, e.g., a typhoon, occurs, the wind turbines would be tripped off
by its protection system, resulting in a large amount of unbalanced power. Synchronous generators
will then adjust their output to balance the system-wide power flow. Consequently, the change of
power flow lead to voltage fluctuation on each bus with varying degree. The difference of voltage
fluctuation is reflected in fluctuation amplitude and time duration. To comprehensively consider the
above factors, the Disturbance Index (DI) is defined as in (1):

DI =
te∫

t0

|Vt −V0|dt (1)

As shown in Figure 1, DI is denoted by the shaded area, reflecting the accumulation of voltage
amplitude deviation from steady state value within a certain time span.
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To globally characterize the system-wide influence of a disturbance, Disturbance Vector (DV) is
defined as in (2):

DV = [DI1, DI2, . . . , DIN ] (2)

where 1, 2, . . . , N is the bus number.
The DV index retains the DI value of each bus under the corresponding disturbance scenario.

Therefore, compared with the widely-used scalar-type index, DV can record more information and
thus serves as the influencing feature of the disturbance scenario in our study.

2.2. Voltage Supporting Index

A bus’s voltage will deviate from its specified value when a contingency occurs. Then, a DVC source
will quickly respond to absorb or inject reactive power to reduce the degree of voltage fluctuation. DVC
planning aims at providing a rational DVC allocation scheme to secure the power system operation on
the premise of the economy.

To quantify the compensation effect of a DVC device, we define Supporting Index (SI) in Equation (3)
and its specific meaning is provided in Figure 2:

SIij =

∣∣∣∣∫ (V′ j −Vj
)
dt
∣∣∣∣ (3)

where the reactive power signal duration is set as 2~6 s; the amplitude of reactive power signal is
determined by testing, with which the maximum voltage improvement is about 0.2 pu to 0.4 pu.
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As shown in Figure 2, the SI represents the accumulation of voltage improvement in time domain
thus can be used to evaluate buses’ voltage control ability.
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Analogous to the definition of DV, here we use SI to constitute a new vector-type index Supporting
Vector (SV) as given in (4):

SVi = [SIi1, SIi2, . . . , SIiN ] (4)

where SIij represents the voltage improvement of bus j with reactive power injection on bus i. Therefore,
the SV index records the system-wide control ability of a specific bus.

Note that SI value is related to three factors: contingency, the controlling bus (i.e., the bus with
reactive power injection) and the controlled bus. Hence, the SV value of a certain bus varies with
contingencies. So far, we have built a vector-type indexes system to characterize the influence of
disturbance and voltage control ability of buses, respectively. The DVC planning method based on the
above indexes system will be described in the following sections.

3. DVC Planning Model

In the existing literatures, DVC planning is mainly applied to solve the problem of large
disturbances such as short-circuit faults. The basic framework is as follows: firstly, determine the
security range of transient voltage according to operation guidelines. Then select proper locations
for DVC allocation and optimize capacity to ensure that transient voltage of all the buses subject to
considered faults are all within their security range, at the same time with the least investment. Our
study follows the similar framework and takes the wind turbines tripping as the disturbance scenario
to carry out DVC planning. It is to be noted that our proposed method is based on simulation results,
i.e., we can use any specific simulation models as we need to make a trade-off between the accuracy of
the results and the computational cost.

3.1. Objective and Constraints

DVC planning is a mix-integer nonlinear programming problem. Its objective is to minimum the
total investment as given in (5):

min f =
N

∑
i=1

ωi

(
QiCvar + C f ix

)
(5)

where ω ∈ {0, 1} denotes whether the corresponding bus is selected for compensation; Qi is the DVC
capacity on bus i; Cvar is the unit variable cost and C f ix is the fixed cost of DVC installation. In this
study, C f ix = $1.5 million, Cvar = $5 million/100 MVar.

Considering the operation security, the constraints are provided in (6) to (8):{
x = f (x, y, u, s)
0 = g(x, y, u, s)

(6)

Vlow(t) < V(t) < Vup(t)∀t ∈ [tcl , tend], i = 1, 2 . . . , N, j = 1, 2, . . . , K (7)

0 ≤ Qi ≤ Qmax (8)

where x ∈ RNx represents the state variables; y ∈ RNy represents the algebraic variables; u ∈ RNu

represents the control variables; s ∈ RNs represents parameters of reactive power compensation
devices; f, g are the dynamic state function and power flow function, respectively; (8) is the capacity
constraint considering the expensive cost of large capacity DVC devices; Vlow and Vup are voltage
boundaries, whose value is determined according to system operation requirements and in our study
focusing on transient voltage security after wind turbines tripping, the boundaries are as recommended
in (9) considering the operation requirements of wind turbines. Note that as different type of wind
turbines have different operation requirements, the boundaries can be adjusted in real applications:

0.9p.u. ≤ V(t) ≤ 1.1p.u. (9)
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In addition, we define Voltage Violation Index (VVI), as given in (10) to denote the integral of
over-limit voltage in time domain:

VVI =
∫ tend

tcl
v′(t)dt

v′(t) =


(Vlow −V(t))/V0, if V(t) < Vlow
(V(t)−Vup)/V0, if V(t) > Vup

0, otherwise

(10)

Hence, (7) can be rewritten as given in (11):

N

∑
i=1

K

∑
j=1

VVIij = 0 (11)

Then we can obtain the equivalent representation of the optimization problem in (12):

ming =
N

∑
i=1

wi

(
QiCvar + C f ix

)
+ M

(
N

∑
i=1

K

∑
j=1

VVIij

)2

(12)

where M is a large enough positive number to make the objective as large as possible when constraints
are not satisfied. In this paper, M = 1× 107.

3.2. Selection of Installation Locations

In DVC planning, it is preferred to provide sufficient reactive power support to the seriously
influenced buses. Note that to achieve this goal, SV and DV established in Section 2 provide a valuable
guide for the site selection, which should be comprehensively considered. Then, in this section,
the Kendall rank correlation coefficient is introduced to determine the best installation locations.

3.2.1. Kendall Rank Correlation Coefficient

There are various statistical indicators for measuring correlations between data sequences, e.g., the
Pearson correlation coefficient and the linear correlation coefficient. However, they may be ineffective
in the presence of noise, measurement inaccuracy, etc. Furthermore, we only focus on the relative
positions of the elements in a sequence in this field, i.e., focus on their rank correlation. With this
concern, Kendall rank correlation coefficient is widely used and proved to have great sensitiveness
and discriminative ability [21,22].

Let X and Y be vectors, represented by {x1, x2, . . . , xn}{y1, y2, . . . , yn} ∀i 6= j, xi 6= xj, yi 6= yj.
Then, calculate conformance value (assumed by A) of each pair of elements by (13):

Aij = sgn(xi − xj)sgn(yi − yj), i 6= j (13)

That is, if the ranks of (xi, xj) and (yi, yj) are identical, Aij = 1 means that they are concordant.
Otherwise, if one ranking is the reverse of the other, Aij = −1 means they are discordant.

The n-dimensional vectors can make up n(n− 1)/2 pairs of elements and then calculate all the A
value to compute Kendall correlation coefficient as given in (14):

τ =

n
∑

i=1

n
∑

j=1,j 6=i
Aij

n(n− 1)/2
∈ [−1, 1] (14)

where τ = 1 means that the ranking of the two sequence all identical; while τ = −1 indicates that the
ranking of one is the reverse of another; τ = 0 denotes that they are completely independent.
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3.2.2. Selection of Installation Locations

In a wind farm cluster, tripping disturbance of any combination of wind farms may cause different
voltage violation issues. In addition, as mentioned before in Section 2, buses’ voltage supporting ability
(denoted by SV) varies with the disturbance. Therefore, it is crucial to select comprehensively optimal
installation locations to cope with potential tripping disturbance.

In our study, probability of each potential disturbance scenario is considered to determine
installation locations. Figure 3 provides a detailed illustration of the steps.Energies 2018, 11, x FOR PEER REVIEW  7 of 14 
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Firstly, according to geographical location and historical wind speed data, determine the potential
tripping scenarios and their corresponding probability.

Subsequently, calculate DV vector of each considered scenario and then the probability-weighted
sum is carried out to obtain a comprehensive vector DV0 in (15). Similar calculation is applied to get
SV0 in (16):

DV0 =
∑ piDVi

∑ pi
(15)

SV0,j =
∑ piSVij

∑ pi
(16)

where DV i is the DV of scenario i; SV ij is the SV of bus j in scenario i; pi is the probability of scenario i.
Finally, we calculate the Kendall rank correlation coefficient of DV0 and SV0, then rank them

in descending order. The bus with the greatest correlation coefficient is selected as the installation
location for the corresponding wind farm cluster.

3.3. Capacity Optimization

The capacity optimization step purpose is to determine the DVC capacity considering operation
security constraints with the least investment. Based on the selected locations, any feasible optimization
algorithm, e.g., particle swarm optimization (PSO), genetic algorithm (GA), can be adopted. In this
study, we use GA for capacity optimization.

The flow diagram for solving this is shown in Figure 4. The DAEs’ constraints (6) are solved
by a power system simulation tool (e.g., PSD-BPA) and the GA is run in MATLAB. The simulation
tool provides a voltage series to MATLAB to transform into a penalty item in (12), then the original
problem can be solved by the GA solver directly.
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4. Case Study on the Modified NE 39-Bus System

4.1. Simulation Settings

The original NE 39-bus system is modified considering high penetration wind power as shown in
Figure 5. Thermal power plants in bus 33, bus 35 and bus 38 are replaced by a 600 MW wind farm
(consisting of 400 1.5 MW wind turbines), respectively. In addition, generation in bus 36 is shut down
and three small-capacity wind farms are added to bus 2, bus 8 and bus 9, respectively. The capacity of
WF5 and WF6 is 49.5 MW; WF4 is 99 MW.

Energies 2018, 11, x FOR PEER REVIEW  8 of 14 

 

 
Figure 4. Flowchart of the proposed method. 

4. Case Study on the Modified NE 39-Bus System 

4.1. Simulation Settings 

The original NE 39-bus system is modified considering high penetration wind power as shown 
in Figure 5. Thermal power plants in bus 33, bus 35 and bus 38 are replaced by a 600 MW wind 
farm (consisting of 400 1.5 MW wind turbines), respectively. In addition, generation in bus 36 is 
shut down and three small-capacity wind farms are added to bus 2, bus 8 and bus 9, respectively. 
The capacity of WF5 and WF6 is 49.5 MW; WF4 is 99 MW. 

10S

1S

8S

5S3S2S

1

2

22

29

21

23

24

34

28

27

26

17

30 37

25

3

4

59

8 31 32

7

6

11

10

12

13

14

15

18

16

19

20

39

W

WF2

W

WF3

W WF1

38

35
33

W

WF4

W

WF5

W

WF6

Load

2S Generator

W
Wind farm

 
Figure 5. The modified NE 39-bus system with distributed large-scale wind farms. 

An early morning scenario is considered, where the load is light and the wind turbines work at 
their rated condition; the load is 3800 MW and the wind power output is 1800 MW (the power 
factor is 0.95). The proportion of wind power is about 50%. Electricity production consists of 2000 
MW thermal power and 1800 MW wind power. 

Figure 5. The modified NE 39-bus system with distributed large-scale wind farms.

An early morning scenario is considered, where the load is light and the wind turbines work at
their rated condition; the load is 3800 MW and the wind power output is 1800 MW (the power factor is
0.95). The proportion of wind power is about 50%. Electricity production consists of 2000 MW thermal
power and 1800 MW wind power.



Energies 2018, 11, 1709 9 of 15

A typhoon is simulated which causes 80% of the wind turbines in the wind farm trip off at 0.1 s.
In this situation, the wind power output decreases to 20%. Other settings and parameters are provided
in Table 1.

Table 1. Setting and parameters.

Model Setting

Generator model Fifth-order synchronous generator model
Load model ZIP load and induction motor

Wind turbine DFIG from GE company
Dynamic VAR source Typical STATCOM in [23]

4.2. Locations Selection

For this system, the simulation results show that due to the small capacity of WF4, WF5 and WF6,
wind turbines tripping disturbance occurred in these wind farms do not lead to significant voltage
violation; therefore, only the three large-scale wind farms WF1~3 are considered in DVC planning.

According to geographical location and historical wind speed data, two tripping scenarios are
taken into account, including wind turbines tripping in WF1, wind turbines tripping in WF2&3 (which
means that the strong wind can cause tripping disturbance in both WF2 and WF3 simultaneously).
Their SV and DV indexes are calculated and then their rank correlation coefficient is presented in
Figure 6.
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As shown in Figure 6, in scenario 1, the buses with large rank correlation coefficient include bus
25~29, among which bus 29 has the largest compensation ability to scenario 1. Therefore, bus 29 is
selected as compensation location for addressing scenario 1.

For WF2&3, as we have referred above, there are three sub-scenarios in this wind farm combination:

Probability of disturbance only in WF2 or WF3 is 0.05;
Probability of disturbance in both WF2 and WF3 is 0.035.

Select bus 15~24 as candidate locations according to Figure 6, then calculate their comprehensive
vectors and rank correlation coefficients. The result is shown in Figure 7 in greyscale image, where a
dark color denotes a bigger value.
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It can be found that bus 23 is comprehensively optimal; therefore, it is selected as compensation
location for addressing scenario 2.

4.3. Capacity Optimization

Although the synchronous generators can provide the imbalanced active power caused by wind
turbine tripping, it still requires dynamic VAR support because the great change of power flow causes
a short-term voltage issue. In this case study, (9) is used as constraint and it requires that the time
duration of voltage violation should not exceed 10 cycles (0.2 s). A widely used STATCOM [23] model
is used as DVC device. GA is adopted to optimize the DVC capacity and considering the discreteness
of capacity, 10 MVar is taken as the unit for capacity. Besides, we set the maximum capacity as 500 MVar
due to the much higher cost of large-capacity DVC device.

The optimization result is to allocate 140 MVar and 120 MVar in bus 23 and bus 29, respectively.
Simulation results show that the voltage violation issues caused by tripping disturbance have been
well coped with after compensation. The voltage trajectories are compared in Figure 8, where the red
dotted line is the upper limit.
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As shown in Figure 8, before dynamic VAR compensation, the wind turbine tripping will cause
short-term voltage violation. The provided optimal dynamic VAR compensation scheme can address
well the short-term voltage issues; thus, the DVC source, i.e., STATCOM, can provide reactive power
well to reduce violations to ensure short-term voltage stability.

5. Real Application in Southern China

A real application on a regional grid (ZJ grid) in Southern China is carried out. According to the
planning data, there will be 25 wind farms integrated into the ZJ grid by 2020 and the total installed
capacity will be 1730 MW. The peak load is forecasted to reach 5400 MW in the ZJ grid in 2020 and its
grid structure is shown in Figure 9.

According to the analysis of the wind power correlation, the correlation coefficient of wind power
output in the ZJ coastal area is significantly high and the peak output scenarios often appear in the early
morning, typically at 5:00 a.m. in summer. The load level at 5:00 is 53% of the peak load, i.e., 2860 MW.
Wind turbines work at 90% of the rated capacity and in this situation the proportion of wind power is 54.5%.

As ZJ is located in a typhoon-prone region, according to wind speed data, we consider 70% of the
wind turbines collected into the same 220 kV bus trip off and the wind power decreases from 90% to 20%.
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5.1. DVC Planning

The 25 wind farms are divided into three clusters according to the connected 220 kV substations.
Only 110 kV buses are considered for DVC. A wind turbine tripping disturbance is simulated and the
influenced areas of each clusters are provided in Table 2.

Table 2. Influence areas of each wind farm cluster.

Region Influenced Buses No.

Zone 1 4 6 7 8 11 13 21 22 23 28 43 44 45 53 62 69 71 78
Zone 2 9 50 16 10 34 40 39 61
Zone 3 1–5 12 14 15 17–20 29 32–38 46–47 54 65 66 70 74–77

According to geographical location and historical wind speed data, the considered disturbances
are as follows:

(1) Tripping disturbance happened in each wind farm, with probability 0.05;
(2) Only geographically close wind farms are considered for simultaneous disturbance and these

combinations are given in Table 3.

Table 3. The considered disturbance scenario and its probability.

WF Combination Probability

WF HH & DHF 0.03
WF QJ & NH 0.03
WF YS & SBL 0.03
WF YJ & HT 0.03
WF XT & GC 0.03
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Based on the above scenarios, rank correlation coefficients of SV0 and DV0 in each cluster are
calculated, and the results are shown in Figure 10.Energies 2018, 11, x FOR PEER REVIEW  12 of 14 
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As Figure 10 shows, except for #22 and #23, other buses in zone 1 have a similar rank correlation
coefficient value; therefore, further study on their voltage violation is performed.

In zone 2, #9 has the strongest compensation ability and in zone 3, the top 8 buses have similar
rank correlation coefficient value. Therefore, further study is required. Using (9) as limits, the buses
exceeding the limits are given in Table 4.

Table 4. The number of buses with voltage exceeding boundary.

Scenario Buses No.

Zone 1 null
Zone 2 null

Zone 3
2 3 75 17 19 54 46 18 15 35

70 5 65 32 12 20 66 76 77 74 33 1 47

We can find that only the disturbance in zone 3 will cause a voltage violation. The main reason
is that zone 1 and zone 2 are closely connected to the GC 500 kV substation. Thus, the voltage of
buses in these zones is well controlled, however, zone 3 is located at the end of the gird, with a weak
connection to the main grid. In addition, the installed capacity of wind farms in this zone is significantly
large. Therefore, the voltage violation is significant under disturbance conditions. With this concern,
only zone 3 requires DVC.

The planning result is to allocate 20 MVar STATCOM on #2 (PCC of WF FL), the one with the
strongest compensation ability. The reason is that there are several wind farms (FS, YQ, etc.) and when
strong wind weather occurs, the tripping will cause a large capacity power fluctuation. Then, DVC on
#2 can well cope with the voltage issue.

5.2. Comparisons and Discussion

This paper proposes a heuristic DVC planning method based on transient voltage behavior.
Installation locations are determined by their voltage control ability. To validate the effectiveness of
the proposed method, an engineering experience-based method is carried out.
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According to engineering experience, #65 (named WT) is selected as installation location because
it is the pivotal 220 kV substation of all the 110 kV lines in zone 3, indicating that it has the strongest
control ability to its radial 110 kV substations. Then capacity optimization is accomplished and the
result is to allocate 40 MVar STATCOM on #65 to address the voltage violation.

Comparison with the proposed method indicates that the capacity is relevant to the selected
locations and it can be found that the proposed method is control ability oriented, which considers the
matching degree and the bus voltage control ability and influence of disturbance; while the traditional
method considers the central control capacity of the central station but neglecting the imbalance of
capacity and location of wind farms. It can be seen from the results of capacity optimization that the
proposed scheme can meet the same transient voltage constraints with less capacity, which shows that
the proposed scheme is feasible and efficient.

6. Conclusions

This paper proposes a DVC planning method considering wind turbine tripping in regional
power grids. A vector-type indexes system is established to evaluate buses’ transient voltage features,
including disturbance vector (DV) and supporting vector (SV). Then the Kendall rank correlation
coefficient is adopted to evaluate the matching degree of SV and DV, so as to determine the best
installation locations. Capacity optimization is subsequently accomplished. The proposed vector-type
indexes retain more complete information, thus perform better than the widely-used scalar-type
indexes. In addition, rank correlation coefficient of DV and SV is used to determine locations,
which provides better locations because it considers the control effect of DVC. The adopted method
is simulation based, thus can consider different parameters of wind turbine, generators and any
other essential devices to provide a solution of greater accuracy. As the proposed framework is
simulation-based, future work can focus on the mechanism of the influence of wind turbines tripping
to provide more theoretical explanations to improve our approach. In addition, more scenarios
considering the uncertainty characteristics of wind power can be applied for better performance.
In short, the proposed framework provides an effective solution to optimal dynamic reactive power
planning considering wind turbines tripping. Furthermore, the proposed method is transferable and
can be applied to issues considering short-circuit fault and so on.
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Abbreviations

VAR Reactive power
DVC Dynamic VAR Compensation
PCC Point of common coupling
AVC Automatic voltage control
TSI Trajectory sensitivity index
PSO Particle swarm optimization
GA Genetic algorithm
DI Disturbance index
SI Supporting index
DV Disturbance vector
SV Supporting vector
VVI Voltage violation index
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