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Abstract: The optimal power flow (OPF) problem is a non-linear and non-smooth optimization problem.
OPF problem is a complicated optimization problem, especially when considering the system constraints.
This paper proposes a new enhanced version for the grey wolf optimization technique called
Developed Grey Wolf Optimizer (DGWO) to solve the optimal power flow (OPF) problem by an
efficient way. Although the GWO is an efficient technique, it may be prone to stagnate at local
optima for some cases due to the insufficient diversity of wolves, hence the DGWO algorithm is
proposed for improving the search capabilities of this optimizer. The DGWO is based on enhancing
the exploration process by applying a random mutation to increase the diversity of population,
while an exploitation process is enhanced by updating the position of populations in spiral path
around the best solution. An adaptive operator is employed in DGWO to find a balance between the
exploration and exploitation phases during the iterative process. The considered objective functions
are quadratic fuel cost minimization, piecewise quadratic cost minimization, and quadratic fuel cost
minimization considering the valve point effect. The DGWO is validated using the standard IEEE
30-bus test system. The obtained results showed the effectiveness and superiority of DGWO for
solving the OPF problem compared with the other well-known meta-heuristic techniques.

Keywords: power system optimization; optimal power flow; developed grew wolf optimizer

1. Introduction

Recently, OPF problems have become a strenuous task for optimal operation of the power
systems. The main objective of OPF is finding the best operation, security and economic settings of
electrical power systems. In this study, the operating variables of systems are determined optimally
for different objective functions such as fuel cost minimization, power loss minimization, emission
and voltage deviation minimization, etc., while in addition, enhancing system stability, loadability
and voltage profiles. Practically, the solution of OPF problem must satisfy the equality and inequality
system constraints [1,2].

OPF is a non-smooth and non-linear optimization problem that is considered a complicated
problem. This problem becomes especially more difficult when the equality and inequality operating
system constraints are considered. Thus, solving the OPF problem needs more efficient and developed
meta-heuristic optimization algorithms. Many conventional methods have been developed in order
to solve the OPF problem such as NLP [3], LP [4], QP [5], Newton’s Method [6], IP [7]. However,
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these methods face some problems in solving nonlinear or non-convex objective functions. In addition,
these methods may fall into local minima, hence new optimization algorithms have been proposed
to avoid the shortcomings of these methods. From these methods; GA [8,9], MFO [10], DE [11,12],
PSO [13], MSA [14], EP [15,16], ABC [17], GSA [18], BBO [19], SFLA [20], forced initialized differential
evolution algorithm [21], TS [22], MDE [23], SOS [24], BSA [25] and TLBO [26], decentralized
decision-making algorithm [27]. The thermal generation units have multiple valves to control the
output generated power. As the valves of thermal generation units are opened in case of steam
admission, a sudden increase in losses is observed which leads to ripples in the cost function curve
(known as the valve-point loading effect). Several optimization techniques have been employed for
solving the OPF considering the valve-point loading effect such as ABC [17], GSA [18], SFLA [20],
SOS [24], BSA [25] and Hybrid Particle Swarm Optimization and Differential Evolution [28].

The conventional and some meta-heuristics methods could not efficiently solve the OPF problem,
thus several new or modified versions of optimization techniques have been proposed. The GWO
algorithm is considered a new optimization technique that proposed by Mirjalili [29]. GWO simulates
the grey wolves’ social hierarchy and hunting behavior. The main phases of gray wolf hunting are
the approaching, encircling and attacking the prey by the grey wolves [29,30]. It should point out
that the conventional GWO technique updates its hunters towards the prey based on the condition
of leader wolves. However, the population of GWO is still inclined to stall in local optima in some
cases. In addition, the GWO technique is not capable of performing a seamless transition from the
exploration to exploitation phases. In this paper, a new developed version of GWO is proposed
to effectively solve the OPF problem. The DGWO is based on enhancing the exploration phase by
applying a random mutation in order to enhance the searching process and avoid the stagnation at
local optima. The exploitation process is improved by updating the populations of GWO in spiral path
around the best solution to focus on the most promising regions. DGWO is applied for minimizing the
quadratic fuel cost, fuel cost considering the valve loading. The obtained simulation results by the
DGWO are compared with those obtained by the classical GWO and other well-known techniques to
demonstrate the effectiveness of the proposed algorithm.

The rest of paper is organized as follows: Section 2 presents the optimal power flow problem
formulation. Section 3 presents the mathematical formulation of GWO and DGWO techniques.
Section 4 presents the numerical results. Finally, the conclusions presented in Section 5.

2. Optimal Power Flow Formulation

Solution of OPF problem aims to achieve certain objective functions by adjustment some control
variables with satisfying different operating constraints. Generally, the optimization problem can be
mathematically represented as:

Min F(x, u) (1)

Subject to:
gj(x, u) = 0 j = 1, 2, . . . , m (2)

hj(x, u) ≤ 0 j = 1, 2, . . . , p (3)

where, F is a certain objective function, x are the state variables, u is the control variables vector,
gj and hj are equality and inequality operating constraints, respectively. m and p are the number of
the equality and inequality operating constraints, respectively. The state variables vector (x) can be
given as:

x =
[
PG1, VL1 . . . VLNPQ, QG1 . . . QGNPV , STL1 . . . STLNTL

]
(4)
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where, PG1 is the generated power of slack bus, VL is the load bus voltage, QG is the generated reactive
power, STL is the power flow in the line, NPQ is the load buses number, NPV is the generated buses
number and NTL is the lines number. The independent variables u can be given as:

u = [PG2 . . . PGNG, VG1 . . . VGNG, QC1 . . . QCNC, T1 . . . TNT ] (5)

where, PG is the generated active power, VG is the generated voltage, QC is the shunt compensator
injected reactive power, T is the transformer tap setting, NG is the generators number, NC is the shunt
compensator units and NT is the transformers number.

2.1. Objective Functions

2.1.1. Quadratic Fuel Cost

The first objective function is the quadratic equation of total generation fuel cost which formulated
as follows:

F1 =
NPV

∑
i=1

Fi(PGi) =
NPV

∑
i=1

(
ai + biPGi + ciP2

Gi

)
(6)

where, Fi is the fuel cost. ai, bi and ci are the cost coefficients.

2.1.2. Quadratic Cost with Valve-Point Effect and Prohibited Zones

Practically, the effect of valve point loading for thermal power plants should be considered.
This effect occurred as a result of the rippling influence on the unit’s cost curve which produced from
each steam admission in the turbine as shown in Figure 1.

Figure 1. Cost function with and without valve point effect.

The valve point loading effect is considered by adding a sine term to the fuel cost as:

F(x, u) =
NPV

∑
i=1

Fi(PGi) =
NPV

∑
i=1

(
ai + biPGi + ciP2

Gi

)
+
∣∣∣di sin

(
ei

(
Pmin

Gi − PGi

))∣∣∣ (7)

where, di and ei are the fuel cost coefficients considering the valve-point effects.
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2.1.3. Piecewise Quadratic Cost Functions

Due to the different fuel sources (coal, natural gas and oil), their fuel cost functions can be
considered as a non-convex problem which is given as:

F(PGi) =


ai1 + bi1PGi + ci1P2

Gi Pmin
Gi ≤ PGi ≤ PG1

ai2 + biPGi + ciP2
GiPG1 ≤ PGi ≤ PG2

. . .
aik + bikPGi + cikP2

Gi PGi k−1 ≤ PGi ≤ Pmax
Gi

(8)

where, aik, bik and cik are cost coefficients of the ith generator for fuel type k.

2.2. Operating Constraints

2.2.1. Equality Operating Constraints

The operating equality constrains can be represented as:

PGi − PDi = |Vi|
NB

∑
j=1

∣∣Vj
∣∣(Gij cos δij + Bij sin δij

)
(9)

QGi −QDi = |Vi|
NB

∑
j=1

∣∣Vj
∣∣(Gij cos δij + Bij sin δij

)
(10)

where, PGi and QGi are the generated power at bus i. PDi and QDi are load demand at bus i. Gij and
Bij are the real and imaginary parts of admittance between bus i and bus j, respectively.

2.2.2. Inequality Operating Constrains

The inequality operating constrains can be given as:

Pmin
Gi ≤ PGi ≤ Pmax

Gi i = 1, 2, . . . , NG (11)

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, 2, . . . , NG (12)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, 2, . . . , NG (13)

Tmin
i ≤ Ti ≤ Tmax

i i = 1, 2, . . . , NT (14)

Qmin
Ci ≤ QCi ≤ Qmax

Ci i = 1, 2, . . . , NC (15)

SLi ≤ Smin
Li i = 1, 2, . . . , NTL (16)

Vmin
Li ≤ VLi ≤ Vmax

Li i = 1, 2, . . . , NPQ (17)

where, Pmin
Gi and Pmax

Gi are the minimum and maximum generated active power limits of ith generator,
respectively. Vmin

Gi and Vmax
Gi are the lower and upper output voltage limits of ith generator, respectively.

Qmin
Gi and Qmax

Gi are the minimum and maximum generated reactive power limits of ith generator,
respectively. Tmin

i and Tmax
i are the lower and upper limits of regulating transformer i. Qmin

Ci and Qmax
Ci

are the minimum and maximum injected VAR of ith shunt compensation unit. SLi is the apparent
power flow in ith line while Smin

Li is the maximum apparent power flow of this line. Vmin
Li and Vmax

Li are
the lower and upper limits of voltage magnitude load bus i, respectively.
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The dependent state variables can be considered in OPF solution using the quadratic penalty
formulation as:

Fg(x, u) = Fi(x, u) + KG

(
PG1 − Plim

G1

)2
+ KQ

NPV
∑

i=1

(
QGi −Qlim

Gi

)2
+ KV

NPQ
∑

i=1

(
VLi −V lim

Li

)2

+KS
NTL
∑

i=1

(
SLi − Slim

Li

)2 (18)

where, KG, KQ, KV , KS and KS are the penalty factors. xlim is the limit value that can be given as:

xlim =

{
xmax; x > xmax

xmin; x < xmin (19)

where, xmax and xmin are the upper and lower limits of the dependent variables, respectively.

3. Developed Grey Wolf Optimizer

3.1. Grey Wolf Optimizer

GWO is a robust swarm-based optimizer inspired by the social hierarchy of grey wolves [27].
The pack of grey wolves has a special social hierarchy where the leadership in the pack can be divided
into four levels; alpha, beta, omega and delta. Alpha wolf (α) is the first level in the social hierarchy
hence it is the leader that guides the pack and the other wolves follow its orders. Beta wolf (β) is being
in the second level of leadership that helps the alpha wolf directly for the activities of the pack. Delta (δ)
wolves come in the third level of hierarchy where, they follow α and β wolves. The rest of wolves are
the omegas (ω) that always have to submit to all the other dominant wolves. Figure 2 illustrates the
social hierarchy ranking of wolves in GWO. In the mathematical model of GWO, the fittest solution is
considered as the alpha (α), where, the second and third best solutions are called beta (β) and delta (δ),
respectively. Finally, omega (ω) are considered the rest of the candidate solutions. However, the GWO
based on three steps:

A. Encircling prey.
B. Hunting the prey.
C. Attacking the prey.

Figure 2. Social hierarchy of wolves in GWO.
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3.1.1. Encircling Prey

The grey wolves encircle the prey in hunting process that can be mathematically modeled as:

D =
∣∣∣C× Xp(i,j)(t)− X(i,j)(t)

∣∣∣ (20)

X(i,j)(t + 1) = Xp(i,j)(t)− A×D (21)

where, t is the current iteration, Xp is the prey position vector, and X indicates the position vector of a
grey wolf. A and C are coefficient vectors that can be calculated as:

A = 2a× r1 − a (22)

C = 2× r2 (23)

where, a is a value can be decreased linearly from 2 to 0 with iterations. r1 and r2 are random numbers
in range [0, 1].

3.1.2. Hunting the Prey

In hunting process, the pack is affected by α, β and δ. Hence, the first three best solutions are
saved as best agents (α, β, δ) and the other search agents are updated their positions according to the
best agents as:

D =
∣∣∣C× Xp(i,j)(t)− X(i,j)(t)

∣∣∣ (24)

Dα =
∣∣∣C1 × Xα(i,j) − X(i,j)

∣∣∣ (25)

Dβ =
∣∣∣C2 × Xβ(i,j)

− X(i,j)

∣∣∣ (26)

Dδ =
∣∣∣C3 × Xδ(i,j)

− X(i,j)

∣∣∣ (27)

X1(i,j) = Xα(i,j) − A1 × (Dα) (28)

X2(i,j) = Xβ(i,j)
− A2 ×

(
Dβ

)
(29)

X3(i,j) = Xβ(i,j)
− A3 × (Dδ) (30)

X(i,j)(t + 1) =
X1(i,j) + X2(i,j) + X3(i,j)

3
(31)

where, i is number of populations (vectors) and j is number of variables (individuals). A1, A2 and A3

are random vectors. The step size of the ω wolves is expressed in Equations (25)–(27), respectively.
The final location of the ω wolves is formulated in Equations (28)–(31).

3.1.3. Attacking the Prey

The last stage in hunting is attacking the prey when the prey stopped. This can be achieved
mathematically by reducing the value of a gradually from 2 to 0, consequently, A is varied randomly
in range [−1, 1].

3.2. Developed Grey Wolf Optimizer

DGWO technique is presented as a new version for the conventional GWO. In this technique,
the exploration and exploitation processes of GWO is enhanced. The exploration process is enhanced
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by integration a random mutation to find new searching regions to avoid the local minimum problem.
The random mutation is applied as follows:

Xnew
(i,j) = L(i,j) + R

(
U(i,j) − L(i,j)

)
(32)

where, R is a random number over [0, 1]. Xnew
(i,j) is a new generated vector. L and U are the lower

and upper limits of control variables, respectively. In the exploitation of DGWO, the search process
is focusing on the promising area by updating the search agents around the best solution (Xα(i,j) ) in
logarithmic spiral function as:

Xnew
(i,j) =

∣∣∣X(i,j)(t)− Xα(i,j)(t)
∣∣∣× ebt cos(2πq) + Xα(i,j)(t) (33)

where:

Xα(i,j) : the best position (alpha wolf position).

b: is a constant value for defining the logarithmic spiral shape.
q: is a random number [−1, 1].

For balancing the exploration during the initial searching process and exploitation in the final
stages of the search process, an adaptive operator is used which changed dynamically as:

K(t) = Kmin +
Kmax − Kmin

Tmax
× t (34)

The procedures of DGWO algorithm for solving the OPF problem can be summarized as follows:

(1) Initialize maximum number of iterations (Tmax) and search agents (N).
(2) Read the input system data.
(3) Initialize grey wolf population X as:

Xn = xmin
n + rand(0, 1)

(
xmax

n − xmin
n

)
(35)

where, n = 1, 2, 3 . . . , j, xmin
n and xmax

n are the minimum and maximum limits of control variables
which are predefined values. rand is a random number in range [0, 1].

(4) Calculate the objective function for all grey wolf population using Newton Raphson load
flow method.

(5) Determine Xα(i,j) , Xβ(i,j)
, Xδ(i,j)

(first, second, and third best search agent).

(6) Update the location of each search agent according Equations (24)–(31) and calculate the objective
function using Newton Raphson load flow for the updated agents.

(7) Update the values of a [2:0], A and C according Equations (22) and (23).
(8) Update the adaptive operator, K according to Equation (34)
(9) IF K < rand, update the position of search agent based on random mutation according to

Equation (32) ELSE IF K > rand, update the position of search agent locally in spiral path using
Equation (33) END IF Fitness (Xnew

(i,j)) < Fitness (X(i,j))

X(i,j) = Xnew
(i,j)

ELSE, END where, Fitness
(

X(i,j)

)
is the objective function of the position vector n while Fitness

(Xnew
(i,j)) is the objective function of the updated position vector j.

(10) Repeat steps from (4) to (9) until the iteration number equals to its maximum value.



Energies 2018, 11, 1692 8 of 16

(11) Find the best vector (Xα(i,j) ) which include the system control variables and its related
fitness function.

However, the OPF solution process using the DGWO is shown in Figure 3.

Figure 3. The solution process of OPF problem using DGWO.



Energies 2018, 11, 1692 9 of 16

4. Simulation Results

The DGWO is validated using the IEEE 30-bus test system. More details about this system can be
found in [31]. The developed code has been written using MATLAB 2015 and the simulation run on a
PC equipped with a core i5 processor, 2.50 GHz and 4 GB RAM. The upper and lower operating ranges
and coefficients of generators are given in Table 1. The upper and lower limits of the load bus voltage
are 1.05 p.u. and 0.95 p.u., respectively. The upper and lower limits of VAR compensation units are
0.00 p.u. and 0.05 p.u., respectively. The working voltage ranges of PV buses is [0.95, 1.1] p.u while the
allowable range of transformer taps is [0.9, 1.1].The limits of transmission line power flows are given
in [24]. The parameters of DGWO technique are selected as; number of populations = 50, maximum
iteration = 100, b = 1, Kmin = 0.00001 and Kmax = 0.1. In this study, 100 runs have been performed for all
the test cases to calculate the best cost, the worst cost and the average cost.

Table 1. Generator data coefficients.

Bus No. Pmax
G (MW) Pmin

G (MW) Qmin
G (MVar)

Cost Coefficients
Prohibited Zones

a b c

1 250 50 −20 0 2.0 0.00375 (55–66), (80–120)
2 80 20 −20 0 1.75 0.0175 (21–24), (45–55)
5 50 15 −15 0 1.0 0.0625 (30–36)
8 35 10 −15 0 3.25 0.00834 (25–30)

11 30 10 −10 0 3.00 0.025 (25–28)
13 40 12 −15 0 3.00 0.025 (24–30)

4.1. Case1: OPF Solution without Considering the Valve Point Effects

In this case, the quadratic fuel cost effect is taken as an objective function to be minimized as
given in Equation (6). The generator data for this case are listed in Table 1. The optimal control
variables for this case obtained by GWO and DGWO techniques are listed in 4th and 5th columns
of Table 2, respectively. The obtained fuel cost using GWO and DGWO are 801.259 $/h and 800.433 $/h,
respectively. Table 3 gives the fuel costs obtained by GWO, DGWO and other optimization techniques.
From Table 3, it can be observed that the obtained results using DGWO are better than those obtained
by the others reported optimization techniques in terms of the best, the worst and the average fuel
costs. The convergence characteristics of GWO and DGWO for this case are shown in Figure 4. It is
clear that DGWO has stable and rapid convergence characteristic.

Figure 4. Convergence characteristics of fuel cost (Case 1).
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Table 2. Optimal control variables for different cases obtained by GWO and DGWO.

Variables
Limit Case 1 Case 2 Case 3

Min. Max. GWO DGWO GWO DGWO GWO DGWO

P1 (MW) 50 250 171.094 176.949 212.633 219.801 140.00 140.00
P2 (MW) 20 80 48.615 48.519 25.684 28.358 54.992 55.000
P5 (MW) 15 50 21.123 21.326 17.612 15.047 34.930 24.105
P8 (MW) 10 35 22.068 21.571 14.185 10.000 25.008 35.000
P11 (MW) 10 30 15.479 12.026 10.651 10.000 16.934 18.239
P13 (MW) 12 40 13.665 12.001 13.751 12.000 18.223 17.664
V1 (p.u) 0.95 1.1 1.080 1.083 1.087 1.090 1.077 1.073
V2 (p.u) 0.95 1.1 1.062 1.063 1.062 1.065 1.064 1.060
V5 (p.u) 0.95 1.1 1.030 1.031 1.023 1.032 1.035 1.032
V8 (p.u) 0.95 1.1 1.036 1.035 1.035 1.035 1.044 1.040

V11 (p.u) 0.95 1.1 1.080 1.060 1.051 1.099 1.062 1.049
V13 (p.u) 0.95 1.1 1.054 1.050 1.060 1.037 1.036 1.060

T11 0.90 1.1 0.982 0.977 1.0128 0.948 1.023 0.994
T12 0.90 1.1 1.026 1.013 0.908 1.025 1.008 0.978
T15 0.90 1.1 0.989 0.934 0.986 0.970 1.019 0.971
T36 0.90 1.1 0.981 0.975 0.976 0.981 0.959 0.975

Q10 (MVar) 0.00 5.00 2.144 1.695 3.170 3.277 0.986 1.251
Q12 (MVar) 0.00 5.00 2.929 3.394 2.143 2.367 3.996 3.157
Q15 (MVar) 0.00 5.00 1.400 4.777 1.959 1.228 2.978 2.433
Q17 (MVar) 0.00 5.00 3.526 4.153 1.126 4.660 2.148 4.831
Q20 (MVar) 0.00 5.00 2.954 3.738 2.369 3.585 4.139 4.462
Q21 (MVar) 0.00 5.00 3.588 4.941 2.016 3.603 2.878 4.653
Q23 (MVar) 0.00 5.00 2.974 3.567 1.532 3.560 3.603 3.043
Q24 (MVar) 0.00 5.00 3.688 4.996 1.675 4.603 1.377 4.467
Q29 (MVar) 0.00 5.00 3.259 2.200 2.378 3.232 3.628 2.439
PLoss(MW) NA NA 8.6428 8.9921 11.1151 11.805 6.6860 6.6079

VD (p.u) NA NA 0.7285 0.8784 0.7055 0.8589 0.6170 0.8825
Lmax (p.u) NA NA 0.1299 0.1279 0.1328 0.1281 0.1307 0.1280

Fuelcost ($/h) NA NA 801.259 800.433 830.028 824.132 646.426 645.913
Computational time (s) NA NA 53.6 37.8 41.70 41.5 52.4 47.2

PLoss: Power losses, Lmax: Voltage stability index, VD: Summation voltage deviations.

Table 3. Simulation results of Case 1.

Algorithm Best Cost Average Cost Worst Cost

DGWO 800.433 800.4674 800.4989
GWO 801.259 802.663 804.898

MSA [14] 800.5099 NA NA
SOS [24] 801.5733 801.7251 801.8821
ABC [17] 800.6600 800.8715 801.8674
TS [22] 802.290 NA NA

MDE [23] 802.376 802.382 802.404
IEP [15] 802.465 802.521 802.581
TS [15] 802.502 802.632 802.746
EP [16] 802.62 803.51 805.61

TS/SA [15] 802.788 803.032 803.291
EP [15] 802.907 803.232 803.474
ITS [15] 804.556 805.812 806.856
GA [9] 805.937 NA NA

4.2. Case 2: OPF Solution Considering the Valve Point Effects

In this case, the OPF problem is solved considering the valve point effect as given in Equation (7).
The optimal control variables obtained by the DGWO are given in 6th and 7th columns of Table 2,
respectively. The minimum fuel costs obtained by GWO and DGWO are 830.028 $/h and 824.132 $/h,
respectively. Table 4 gives the fuel costs obtained by DGWO, GWO, and other techniques under the
same conditions (control variable boundaries, dependent variables limits and system constraints).
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From Table 4, it can be observed that the obtained results from DGWO are better than those
obtained by GWO and the other techniques. Figure 5 shows the convergence characteristics of the
minimum fuel cost of the GWO and DGWO. From this figures, it can be observed that the DGWO is
converged faster than GWO.

Table 2 gives the active power losses, voltage stability index and summation of voltage deviations.
From this table, it can be observed that some values are increased for DGWO compared with GWO,
this due to these values are not considered as objective functions. As it is well known that the
optimization of single objective function probably not lead to enhance the other functions.

Figure 5. Convergence characteristics of fuel cost (Case 2).

Table 4. Comparison of the simulation results of Case 2.

Algorithm Best Cost Average Cost Worst Cost

DGWO 824.132 824.295 824.663
GWO 830.028 844.639 852.388

SOS [24] 825.2985 825.4039 825.5275
BSA [25] 825.23 827.69 830.15

SFLA-SA [20] 825.6921 NA NA
SFLA [20] 825.9906 NA NA
PSO [20] 826.5897 NA NA
SA [20] 827.8262 NA NA

4.3. Case 3: OPF Solution Considering Piecewise Quadratic Fuel Cost Function

In this case, piecewise fuel cost function is taken as an objective function as given in Equation (8).
In this case, two generation units at buses 1 and 2 are represented by piecewise quadratic cost
functions [16]. The generated active power and the generation unit coefficients for this case are given
in Table 5. The optimal control variables obtained by GWO and DGWO are listed in 8th and 9th
columns of Table 2, respectively. The minimum piecewise fuel costs obtained by GWO and DGWO
are 646.426 $/h and 645.913 $/h, respectively. The piecewise fuel costs obtained by DGWO, GWO,
and other techniques given in Table 6. From Table 6, it can be observed that the obtained results from
DGWO are better than those obtained by GWO and the other techniques in terms of the best, the worst
and the average piecewise fuel costs. Figure 6 shows the convergence characteristics of the minimum
fuel cost of the GWO and DGWO for this case. It is clear that DGWO has fast and stable convergence
characteristic compared with GWO.
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Figure 6. Convergence characteristics of fuel cost (Case 3).

Table 5. Cost coefficients of generators (Case 3).

Bus No.
Output Power Limit (MW) Cost Coefficients

Min. Max. a b c

1
50 140 55.0 0.70 0.0050

140 200 82.5 1.05 0.0075

2
20 55 40.0 0.30 0.0100
55 80 80.0 0.60 0.0200

Table 6. Comparison of the simulation results of Case 3.

Algorithm Best Cost Average Cost Worst Cost

DGWO 645.9132 645.993 646.095
GWO 646.426 647.432 648.681

GSA [18] 646.8480 646.8962 646.9381
Lévy LTLBO [26] 647.4315 647.4725 647.8638

PSO [13] 647.69 647.73 647.87
BBO [19] 647.7437 647.7645 647.7928

TLBO [26] 647.8125 647.8335 647.8415
MDE [23] 647.846 648.356 650.664
ABC [17] 649.0855 654.0784 659.7708
EP [16] 650.206 654.501 657.120
TS [15] 651.246 654.087 658.911

TS/SA [15] 654.378 658.234 662.616
ITS [15] 654.874 664.473 675.035

5. Conclusions

In this paper, DGWO has been proposed to efficiently solve the OPF problem and avoid the
stagnation problems of the traditional GWO. This technique is based on modifying the grey wolf
optimizer by employing a random mutation for enhancing its exploration process. This modification
provides a flexibility to search in new areas. Moreover, the new generated populations are updated
around the best solution in a spiral path to enhance the exploitation process and focus on the most
promising areas. In the proposed technique, two equations should be added to the traditional GWO,
the first equation is related to the random mutation and the second one for the spiral path
updating process. The results obtained by the proposed algorithm have been compared with those
obtained by the conventional GWO and other well-known optimization techniques. From the results
obtained, it can be concluded that:
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- The proposed technique has successfully performed to find the optimal settings of the control
variables of test system.

- Different objective functions (quadratic fuel cost minimization, piecewise quadratic cost
minimization, and quadratic fuel cost minimization considering the valve point effect) have
been achieved using the proposed algorithm.

- The superiority of DGWO compared with the conventional GWO and other well-known
optimization techniques has been proved.

- DGWO has a fast and stable convergence characteristic compared with the conventional GWO.

In the future work, the proposed algorithm will be applied in other planning and expansion
studies in power systems with thermal and renewable generation units considering the uncertainties
of load.
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Nomenclature

ABC Artificial bee colony algorithm
BSA Backtracking search algorithm
DGWO Developed grey wolf optimizer
GA Genetic algorithm
GWO Grey wolf optimizer
LP Linear programming
MSA Moth swarm algorithm
OPF Optimal power flow
QP Quadratic programming
TS Tabu search
MFO Moth-flame algorithm
ITS Improved Tabu Search
A1, A2, A3 Random vectors
x The state variables vector
L, U The lower and upper boundary of control variables
QG The reactive power output of generators
t The current iteration
Tmax The maximum number of iterations
PDi, QDi The active and reactive load demand at bus i
δij Phase difference of voltages
VL The voltage of load bus
VG The voltage of generation bus
NPQ Number of load buses
di, ei The fuel cost coefficients of the ith generator unit with valve-point effects
NTL Number of transmission lines
R Random number
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rand Random value
G Transmission line conductance
B Transmission line susceptance
Xp The prey position vector
k Adaptive operator
b Constant value
KG, KQ, KV , KS, KS Penalty factors
Xα, Xβ, Xδ First, second, and third best search agents
max, min Superscript refers to maximum and minimum values
BBO Biogeography-based optimization
DE Differential evolution
EP Evolutionary programming
GSA Gravitational search algorithm
MDE Modified differentia evolution
NLP Nonlinear programming
PSO Particle swarm optimization
SFLA Shuffle frog leaping algorithm
SOS Symbiotic organisms search
TLBO Teaching–learning-based optimization
IP Interior point
F The objective function
gi, hj The equality and inequality constraints
u The control variables vector
m, p Number of equality and inequality constraints
QC The injected reactive power of shunt compensator
PG1 The generated power of slack bus
PG The output active power of generator
SL The apparent power flow in transmission line
T Tap setting of transformer
NG Number of generators
NC Number of shunt compensator
NT Number of transformers
NPV Number of generators PV buses
ai, bi, ci The cost coefficients of ith generator.
NPV Number of generation buses
I Current
V Magnitude of node voltage
R, X, Z Resistance, reactance, impedance
P, Q, S Active, reactive, apparent powers
X The location of the present solution
q A random number
Xnew New generated vector
α, β, δ, ω Alpha, beta, delta, omega fittest solutions
C, C1, C2, C3 Random vectors
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