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Abstract: This study presents a mathematical model that designs a reliable multi-modal transportation
network for a biofuel supply chain system while site-dependent facility failure and congestion are
taken into consideration. The proposed model locates the multi-modal facilities and biorefineries and
determines the optimal production, storage, and routing plans in such a way that the overall system
cost is minimized. We propose a hybrid Constraint generation-based Rolling horizon algorithm to
solve this challenging NP-hard problem. The performance of this algorithm is tested in a example
case study with numerical analysis showing that the hybrid algorithm can find near-optimal solutions
to large-scale problem instances in a reasonable amount of time. Results indicate that the effect of
congestion reduces the usage of multi-modal facilities in the biofuel supply chain network while
bio-refineries and multi-modal facilities tend to move away from coastal areas when disruption
probabilities are taken into consideration.

Keywords: biofuel supply chain network; multi-modal facilities; constraint generation algorithm;
rolling horizon heuristic

1. Introduction

The biofuel industry in the United States is growing at a fast pace. Bioethanol production increased
from 1.15 billion gallons in 2000 to 15.08 billion gallons in 2017 [1]. Simultaneously, biodiesel production
is increasing sharply, producing almost 107 million gallons only in September, 2015. The new US
Renewable Fuels Standard (RFS) sets an annual production target of 36 billion gallons of biofuel,
consisting of mainly ethanol and biodiesel, by 2022 [2]. Designing a robust biofuel supply chain
network is of special importance, given this projected increase in production. The efficiency and
reliability of a biofuel supply chain network will be determined by the performance of an integrated
biofuel production and transportation system that not only operates well under normal conditions but
also hedges against risk of disruption and/or congestion [3,4].

Designing an efficient and robust biofuel supply chain is challenging due to the physical
characteristics of biomass (e.g., seasonality, uncertainty, and widely dispersed supply) [5]. For instance,
corn stover is only available from early September to November, while woody biomass is available
all year round with the exception of three months in the winter. Overall, early September through
late November is the peak biomass production season in the US, and more biomass is expected to
ship through multi-modal facilities during those time periods of the year. This peak seasonality
not only congests the facilities, but also impacts overall biomass supply chain efficiency [6].
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Moreover, there is a significant increase in grain transportation for U.S. railways during the last
few years. Grain transportation increased by 26 percent in 2014 compared to 2013 and 25 percent
compared to the average of the three years (2011–2013) [7]. This increase in grain transportation
has a ripple effect on the overall supply chain structure, resulting in increased road traffic and
air pollution. Another detrimental effect of congestion is that the quality of biomass degrades
with time and may become unusable if the time needed to reach destination points increases [6].
Therefore, congestion must be taken into consideration when designing a biofuel supply chain.

Congestion management has received attention from the research community over the last few
years. Grove and O’Kelly [8] first investigated the relationship between hub-and-spoke networks
and congestion by simulating the daily operations of a single assignment hub-and-spoke network.
Elhedhli and Hu [9] introduced a non-linear congestion term in the objective function of an uncapacitated
hub location problem which they later extended to a capacitated hub-and-spoke network design
problem [10]. Most recently, Camargo et al. [11] modeled the congestion as a convex cost function
and developed a mixed integer nonlinear programming model for a multiple allocation hub-and-spoke
network design problem. The authors successfully solved as many as 81 nodes by using a generalized
Benders decomposition algorithm. A handful of studies [12,13] focused on the impact of congestion
under demand uncertainty; however, this area remains vastly uninvestigated by the biofuel supply chain
research community where feedstock seasonality and uncertainty can cause severe network congestion.
Bai et al. [14] first introduced the traffic congestion factor in the traditional facility location model to
decide the optimal location of refineries and the flow of biomass and ethanol in the transportation
network. Later, Hajibabai and Ouyang [15] proposed an integrated mathematical model that focused
on minimizing the total cost of facility construction, roadway capacity expansion, and biomass/biofuel
transportation delay due to congestion. Few studies elaborated on the significance of congestion pricing
on various aspects of decision making. Interested readers can refer to the studies by De Palma and
Lindsay [16] and Friesz et al. [17] for more details.

Similar to facility congestion, transportation infrastructure, particularly those bearing multi-modal
traffic, may be vulnerable to various disruption risks, such as natural disasters (e.g., 2005 Hurricane
Katrina, 2008 China and 2009 Haiti earthquake [18,19]) and human-caused disasters (e.g., 2003 US
Northeast blackout, 2010 Gulf of Mexico oil spill [20,21]). Furthermore, some areas are recognized
as disaster prone areas. For instance, Figure 1 shows that in total 39 different storms affected North
Carolina between 2000 and 2008 [22].

Figure 1. Total storms affecting North Carolina between 1851 and 2012 [22].
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Daskin [23] was the first to consider facility unavailability in a maximal covering location problem.
The author then extended this study to formulate a maximum expected covering location problem
where the demand is not readily met as the facilities capable of fulfilling the demand is busy in
serving other customers [24]. This work was further extended by Drezner [25] to develop a reliable
p-median facility location problem. Snyder and Daskin [26] proposed an integer programming model
for the stochastic fixed charge p-median location problem assuming that the facility disruptions occur
independently and with equal probability. Later, Cui et al. [27] extended this work by creating
both discrete and continuous models where disruption probabilities are dependent on specific sites.
Location design models explored by An et al. [28] for several types of emergency service facilities under
probabilistic facility disruption risks to reduce the expected cost of losing service. Parvaresh et al. [29]
developed a bi-level game model by formulating a multiple allocation p-hub median problem under
intentional disruptions. The primary objective of the study was to determine the hubs, failure of which
would diminish service efficiency to the greatest extent. Darayi et al. [30] integrated a multi-commodity
network flow formulation with an economic interdependency model to quantify the multi-industry
impacts of a disruption in a transportation network. The goal of the study was to measure the
vulnerability of a multimodal freight transportation network and assess the importance of network
components using the vulnerability analysis.

In the biofuel supply chain literature, the number of studies that consider the effect of biorefinery
disruption are scarce. Li et al. [31], Wang and Ouyang [32], and Huang and Pang [33] studied failure
risks at biorefineries but ignored the fact that disruption can simultaneously occur at multi-modal
facilities. Please note that the biofuel supply chain system from biomass production to bio-refineries
can be viewed as a hub-and-spoke transportation network. Please note that most of the prior
studies (e.g., [34–40]) assume that the transportation hubs are always functioning and will never
fail, which cannot adequately describe the real-world scenarios. A few studies focus on managing
and rescheduling rail and port operations during different disrupted scenarios (e.g., [41–43]).
A system dynamics approach was proposed by Peng et al. [44] to analyze the behavior of disrupted
disaster relief supply chain by simulating the uncertainties associated with predicting post-seismic
road network and delayed information. Kim and O’Kelly [45] proposed a single and multiple
allocation reliable p-hub location model where each arc and each hub is assigned a reliability factor.
Marufuzzaman et al. [46] and Marufuzzaman and Eksioglu [47] proposed an optimization model to
examine the impact of disruption risks at multi-modal facilities and biorefineries in a biofuel supply
chain network. Poudel et al. [48] proposed a pre-disaster planning model while considering the failure
probability of links between multi-modal facilities. Bai et al. [49] investigated the impact of failure
risks at biorefineries and at intermediate transportation hubs in the biofuel supply chain network.
Through experimentation it was observed that the number of biorefineries was directly proportional
to the probability of disruption. Authors also found that the cost of a biorefinery had significant impact
on the optimal decisions.

To fill this gap in the literature, this paper studies the impact of facility disruption along with
network congestion in the context of a biofuel supply chain network. We propose an optimization model
that determines the optimal location of biorefineries and multi-modal facilities while simultaneously
determining the production, storing, and routing plans in such a way that the overall system cost is
minimized under normal and disrupted scenarios. To tackle the complexity of this problem, we develop
a hybrid decomposition algorithm that combines Constraint generation algorithm with a Rolling
horizon heuristic. The proposed algorithm is validated by developing a example case study. We use the
states of Mississippi and Alabama as a testing ground for this study. The outcomes of this study provide
several managerial insights such as the optimal deployment of multi-modal facilities and biorefineries,
amount of biomass transported via multi-modal facilities/highways, and the impact of disruption and
congestion on biofuel supply chain performance.
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The paper is organized as follows: Section 2 formulates the mathematical model; Section 3
introduces the solution algorithms; Section 4 presents numerical results and draw managerial insights;
and finally, Section 5 provides conclusions and future research directions.

2. Problem Description and Model Formulation

The main objective of this paper is to build a reliable biofuel supply chain network that takes
multi-modal facility disruption along with facility congestion into account. The aim is to build
biorefineries and use multi-modal facilities among candidate facility locations to produce, store,
and transport biomass/biofuel in such a way that the overall system cost is minimized under both
normal and disrupted scenarios. Additionally, our model attempts to minimize facility congestion
caused by feedstock seasonality and facility unavailability. Figure 2 presents the structure of the supply
chain network consisting of two biomass supplier, three multi-modal facilities, two biorefineries,
and three markets for biofuel production.

Figure 2. Network representation of biofuel supply chain.

2.1. Nonlinear Problem Formulation

Let us denote a biofuel supply chain network G(N ,A), where N denotes the set of nodes and A
denotes the set of arcs. Set N consists of the set of harvesting sites I , the set of candidate multi-modal
facilities J , the set of biorefineries K, and the set of markets for biofuel G i.e., N = I ∪ J ∪ K ∪ G.
Similarly, set A can be partitioned into four disjoint subsets i.e., A = A1 ∪ A2 ∪ A3 ∪ A4 where,
A1 represents the set of arcs connecting harvesting sites I with multi-modal facilities J ,A2 represents
the set of arcs connecting multi-modal facilities J with biorefineriesK,A3 represents the set of arcs that
directly connect harvesting sites I with biorefineries K, and A4 represents the set of arcs connecting
biorefineries K with markets G.

Transportation distance along arcs A1 are relatively short; therefore, trucks are preferred to ship
biomass along these arcs and its unit transportation cost is denoted by cijt. On the other hand, transportation
distance along with shipping volumes in arcs (j, k) ∈ A2 are high. Thus, transportation mode such as
rail can be used to ship biomass along these arcs. Cargo containers are usually used to transport biomass
between the multi-modal facilities, and the loading and unloading of biomass in the cargo container incurs
a fixed cost of ξ jkt. The unit cost along arcs (j, k) ∈ A2 are denoted by cjkt. Therefore, the unit transportation
cost along arcs {(i, j), (j, k)} can be represented by cijkt=cijt+cjkt. We further denote cikt as the unit truck
transportation cost of biomass along arcs (i, k) ∈ A3. These arcs are preferred when the harvesting sites
i ∈ I are located close to the biorefineries k ∈ K and thus, direct shipments of biomass using trucks are
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considered cheaper over multi-modal facilities. Finally, trucks are used to ship biofuel along arcsA4 by
incurring a unit cost of ckgt.

Let us consider l ∈ L be the set of capacities for multi-modal facilities and biorefineries and T be
the set of time periods. In this model, we denote sit as the amount of biomass available at site i ∈ I
in time t ∈ T and bgt as the demand for biofuel at market g ∈ G in time period t ∈ T . The unmet
biofuel demand at market g ∈ G in time period t ∈ T can be substituted by paying a unit penalty
cost of πgt. If the unit cost of delivering biofuel exceeds this threshold cost (πgt), it will be beneficial
to use substitution rather than producing biofuel at a higher cost. Locating a biorefinery of capacity
l ∈ L at each location k ∈ K incurs a fixed set up cost Ψlk. Similarly, using a multi-modal facility
of capacity l ∈ L at each location j ∈ J in time period t ∈ T costs ηl jt. Some other key parameters
used in the model formulation are: φ as the conversion rate (ton/gallon) from raw biomass to biofuel;
biofuel inventory holding cost hkt, and biofuel production cost plkt.

We assume that each facility j ∈ J ⋃K can disrupt independently in a given time period t ∈ T .
The corresponding site-dependent failure probability is denoted by {qjt}j∈J ⋃K,t∈T . When either
multimodel facility or biorefinery disrupts, we assume that the biomass will be routed through
an emergency carrier by paying an additional penalty cost which is much higher than the regular
transportation cost. To capture this case, we assume that the emergency carrier will cost β (β > 1)
times more than the regularly scheduled cost cijkt. Tables 1 and 2 summarize the notation that we
use in this model. We now define the following location and allocation decision variables for our
optimization problem.

Table 1. Description of the sets.

Symbol Description

I Set of harvesting sites (farms)
J Set of multi-modal facilities
K Set of potential locations for biofuel plants
G Set of markets
L Set of capacities
T Set of time periods

The first set of decision variables Y := {Yl jt}l∈L,j∈J ,t∈T ∪ {Ylk}l∈L,k∈K determine the size and
location to use/open multi-modal facilities and biorefineries, i.e.,

Yl jt =

{
1 if the multi-modal facility j of capacity l is used in time period t
0 otherwise;

∀l ∈ L; j ∈ J ; t ∈ T .

Ylk =

{
1 if a biorefinery of capacity l is opened at location k
0 otherwise;

∀l ∈ L; k ∈ K.

The second set of variables Z := {Zjkt}j∈J ,k∈K,t∈T identifies the number of containers used
between multi-modal facilities j and k in period t. The remaining set of decision variables
determine how to route, produce, and store the biomass in the biofuel supply chain network.
Let X := {Xijkt}i∈I,j∈J ,k∈K,t∈T ∪ {Xikt}i∈I,k∈K,t∈T ∪ {Xkgt}k∈K,g∈G,t∈T denote the flow of biomass
through the multi-modal facilities and highways to biorefineries, and biofuel from biorefineries to the
customer demand points. Variables P := {Plkt}l∈L,k∈K,t∈T represent the amount of biofuel produced at
biorefinery k of size l in period t. Variables H := {Hkt}k∈K,t∈T represent the amount of biomass stored at
biorefinery k in period t, and U := {Ugt}g∈G,t∈K represents the amount of unsatisfied demand in market
g in period t. Multi-modal facilities are congested during the peak harvesting seasons of biomass (early
September till late November). This congestion in multi-modal facility leads to a dramatic increase in
the total supply chain cost. The impact of congestion on total cost becomes more severe when the total
flow of feedstock Xijkt approaches the capacity ccap

lj of a multi-modal facility j ∈ J which is modeled here
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as M/M/1 queuing system. Under steady-state conditions, the system-wide average waiting time for

the entire network can be represented as ∑j∈J ∑t∈T

(
∑i∈I ∑k∈K Xijkt

∑l∈L ccap
lj Yljt−∑i∈I ∑k∈K Xijkt

)
[10]. Here, for a facility

j ∈ J , when the amount of feedstock Xijkt increases, the ratio of the equation will increase exponentially
which will address the impact of congestion realistically in the model formulation. Now, considering c0 as

the congestion factor, the system-wide congestion cost becomes ∑j∈J ∑t∈T c0

(
∑i∈I ∑k∈K Xijkt

∑l∈L ccap
lj Yljt−∑i∈I ∑k∈K Xijkt

)
.

This non-linear cost function is now added in the objective function to account for the congestion cost.
The following is an Mixed-Integer Nonlinear Programming (MINLP) formulation of the problem referred
to as model [DR].

[DR] Minimize
Y,Z,P,H,U

∑
l∈L,k∈K

ΨlkYlk + ∑
t∈T

(
∑

l∈L,j∈J
ηl jtYl jt + ∑

(j,k)∈A2

ξ jktZjkt + ∑
l∈L,k∈K

plktPlkt + ∑
k∈K

hkt Hkt+

∑
i∈I ,j∈J ,k∈K

cijkt((1− qjt)(1− qkt)Xijkt + β(qjt + qkt − qjtqkt)Xijkt) + ∑
(i,j)∈A3

⋃A4

cijtXijt

+ ∑
j∈J

c0

(
∑i∈I ∑k∈K Xijkt

∑l∈L ccap
lj Yl jt −∑i∈I ∑k∈K Xijkt

)
+ ∑

g∈G
πgtUgt

)

Subject to

∑
k∈K

Xikt + ∑
j∈J ,k∈K

Xijkt ≤ sit ∀i ∈ I , t ∈ T (1)

φ

∑
i∈I

Xikt + ∑
(i,j)∈A1

Xijkt + Hk,t−1 − Hkt

 = ∑
l∈L

Plkt ∀k ∈ K, t ∈ T (2)

∑
g∈G

Xkgt ≤ ∑
l∈L

Plkt ∀k ∈ K, t ∈ T (3)

∑
k∈K

Xkgt + Ugt = bgt ∀g ∈ G, t ∈ T (4)

∑
i∈I ,k∈K

Xijkt ≤ ∑
l∈L

ccap
lj Yl jt ∀j ∈ J , t ∈ T (5)

∑
i∈I

Xijkt ≤ vcapZjkt ∀(j, k) ∈ A2, t ∈ T (6)

Plkt ≤ pcap
lk Ylk ∀l ∈ L, k ∈ K, t ∈ T (7)

Hkt ≤ ∑
l∈L

hcap
lk Ylk ∀k ∈ K, t ∈ T (8)

∑
l∈L

Ylk ≤ 1 ∀k ∈ K (9)

∑
l∈L

Yl jt ≤ 1 ∀j ∈ J , t ∈ T (10)

Ylk ∈ {0, 1} ∀l ∈ L, k ∈ K (11)

Yl jt ∈ {0, 1} ∀l ∈ L, j ∈ J , t ∈ T (12)

Zjkt ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T (13)

Xijkt, Xikt, Xkgt, Plkt, Hkt, Ugt ≥ 0 ∀l ∈ L, i ∈ I , j ∈ J , k ∈ K, g ∈ G, t ∈ T (14)

The objective function of [DR] minimizes the total expected system cost under both normal
and disrupted conditions. More specifically, the first, second, and third terms represent respectively
the total set-up cost of locating biorefineries, usage cost of multi-modal facilities, and the fixed cost
associated with transporting cargo containers between the multi-modal facilities. The fourth and
fifth terms represent the production and inventory holding cost at the biorefinieries. The sixth term
is the regular transportation cost, which is weighted by (1− qjt)(1− qkt), the probability that both
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facilities operate normally along each route (i, j, k). When either or both multi-modal facility j ∈ J
and biorefinery k ∈ K disrupt, which occurs at a probability of (qjt + qkt − qjtqkt), biomass Xijkt will
flow through that route at a higher variable cost βcijkt. This is reflected by the seventh term of the
objective function. The eighth term is regular transportation cost along the arc A3 and A4. The ninth
and tenth terms represent the congestion cost and the penalty cost for the biomass supply shortage.

Table 2. Input parameters.

Symbol Description

ηl jt Fixed cost of using a multi-modal of capacity l ∈ L at location j ∈ J in time period t ∈ T

Ψlk Fixed cost of opening a biorefinery of capacity l ∈ L at location k ∈ K

ξ jkt Fixed cost of a cargo container for transporting biomass along arc (j, k) ∈ A2 in period t ∈ T

clkt Unit flow cost along arc (l, k) ∈ A in period t ∈ T

plkt Unit production cost at a biofuel plant of size l ∈ L located at k ∈ K in period t ∈ T

hkt Unit inventory cost at biofuel plant k ∈ K in period t ∈ T

πgt Unit penalty cost of not satisfying demand of market g ∈ G in period t ∈ T

sit Amount of biomass available at site i ∈ I in period t ∈ T

bgt biofuel demand of market g ∈ G in period t ∈ T

ccap
lj Biomass storage/handling capacity of an multi-modal facility of size l ∈ L at location j ∈ J

hcap
lk Biomass storage capacity of a biofuel plant of size l ∈ L at location k ∈ K

vcap Cargo container capacity

pcap
lk Production capacity of a biofuel plant of size l ∈ L at location k ∈ K

φ Conversion rate from biomass to biofuel

c0 Congestion factor

qjt Failure probability of multi-modal facility j ∈ J ⋃K in time period t ∈ T

Constraints (1) indicate that the amount of biomass shipped from supplier i ∈ I in period t ∈ T
is limited by its availability. Constraints (2) are the flow conservation constraints at biorefineries.
Constraints (3) indicate that the amount of biofuel delivered to the market is limited by the amount
produced in period t ∈ T . Constraints (4) indicate that the demand for biofuel can be fulfilled
either through the distribution network or through substitute products available in the market.
Constraints (5) indicate that the total amount of biomass shipped through a multi-modal facility is
limited by its capacity ccap

lj . Constraints (6) count the number of containers needed for shipping biomass

on each arc (j, k) ∈ A2. Constraints (7) set biofuel production capacity (pcap
lk ) limitations at a biorefinery.

Constraints (8) set biomass storage limitations (hcap
lk ) at a biorefinery. Constraints (9) and (10) ensure

that, at most one multi-modal facility/biorefinery of capacity l ∈ L is operating in a given location
j ∈ J ⋃K. Finally, constraints (11) and (12) are the binary constraints, (13) are the integer constraints,
and (14) are the standard non-negativity constraints.

2.2. Model Linearization

The objective function of model [DR] contains a nonlinear congestion cost function. We use the
technique proposed by Elhedhli and Wu [10] to linearize this congestion term. To do this, let us now
consider a new decision variable M := {Mjt}j∈J ,t∈T as follows.

Mjt =
∑i∈I ∑k∈K Xijkt

∑l∈L ccap
lj Yl jt −∑i∈I ∑k∈K Xijkt

(15)
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Equation (15) can be further reduced as follows:

∑
i∈I

∑
k∈K

Xijkt =

( Mjt

1 + Mjt

)
∑
l∈L

ccap
lj Yl jt = ∑

l∈L
ccap

lj

( Mjt

1 + Mjt

)
Yl jt ∀j ∈ J , t ∈ T

We now introduce another continuous variable R := {Rl jt}l∈L,j∈J ,t∈T as follows:

Rl jt =

( Mjt

1 + Mjt

)
Yl jt ∀l ∈ L, j ∈ J , t ∈ T (16)

Given that ∑l∈L Yl jt = 1, the above equation becomes

∑
l∈L

Rl jt =
Mjt

1 + Mjt
∀j ∈ J , t ∈ T (17)

In the condition when Yl jt = 0 constraints (17) forces Rl jt = 0, which is enforced by using
an additional constraints 0 ≤ Rl jt ≤ Yl jt ∀l ∈ L, j ∈ J , t ∈ T .

Lemma 1. The function ∑l∈L Rl jt(Mjt) =
Mjt

1+Mjt
is concave in Mjt ∈ (0, ∞).

Proof. While differentiating the function Rl jt w.r.t. Mjt, we get the first derivative, δ
δMjt

(Rl jt) =

1/(1 + Mjt)
2 > 0, and the second derivative, δ2

δM2
jt
(Rl jt) = −2/(1 + Mjt)

3 < 0. The first derivative is

positive while the second derivative is negative and it proves that the function Rl jt(Mjt) is concave
in Mjt.

Lemma 1 shows that function Rl jt(Mjt) is concave and can be approximated by a set of tangent
cutting planes as shown below [50]

Mjt

1 + Mjt
= Minh∈H

[ Mjt(
1 + Mh

jt
)2 +

( Mh
jt

1 + Mh
jt

)2]

which is equivalent to

Mjt

1 + Mjt
≤

Mjt(
1 + Mh

jt
)2 +

( Mh
jt

1 + Mh
jt

)2

∀j ∈ J , t ∈ T , h ∈ H (18)

where {Mh
jt}j∈J ,t∈T ,h∈H are the set of points used to approximate Equation (18). The value of

{Yl jt}l∈L,j∈J ,t∈T is finite; therefore, the value that variable {Mjt}j∈J ,t∈T provides is also finite.
This implies that the setH should be finite. Equation (19) is now derived from (17) and (18) as follows:

∑
l∈L

Rl jt ≤
Mjt(

1 + Mh
jt
)2 +

( Mh
jt

1 + Mh
jt

)2

∀j ∈ J , t ∈ T , h ∈ H (19)

The linearized objective function [LDR] for model [DR] now becomes:
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[LDR]Minimize
Y,Z,P,H,U

∑
l∈L,k∈K

ΨlkYlk + ∑
t∈T

(
∑

l∈L,j∈J
ηl jtYl jt + ∑

(j,k)∈A2

ξ jktZjkt + ∑
l∈L,k∈K

plktPlkt + ∑
k∈K

hktHkt+

∑
i∈I ,j∈J ,k∈K

cijkt((1− qjt)(1− qkt)Xijkt + β(qjt + qkt − qjtqkt)Xijkt) + ∑
(i,j)∈A3

⋃A4

cijtXijt

+ ∑
j∈J

c0Mjt + ∑
g∈G

πgtUgt

)

Subject to (1)–(4), (6)–(13), (19), and

∑
i∈I ,k∈K

Xijkt ≤ ∑
l∈L

ccap
lj Rl jt ∀j ∈ J , t ∈ T (20)

Rl jt ≤ Yl jt ∀l ∈ L, j ∈ J , t ∈ T (21)

Xijkt, Xikt, Xkgt, Plkt, Hkt, Rl jt, Mjt, Ugt ≥ 0 ∀l ∈ L, i ∈ I , j ∈ J , k ∈ K, g ∈ G, t ∈ T (22)

3. Solution Methodology

This section discusses solution techniques for solving the linearized model [LDR]. Our resulting
model [LDR] is an extension of the fixed charge, uncapacitated facility location problem which is
known to be anNP-hard problem [51]. Therefore, commercial solvers, such as CPLEX, fail to solve the
large scale instances of this problem. In this section, we propose solution techniques such as Constraint
generation algorithm, Rolling horizon algorithm, and an integration of Constraint generation with
Rolling horizon to solve model [LDR]. The aim is to produce a high-quality solution in solving model
[LDR] in a reasonable amount of time.

3.1. Constraint Generation Algorithm

In model [LDR], (19) generate large number of constraints. Therefore, it is really challenging to
solve model [LDR] while considering all constraints at once. This motivates us to develop a Constraint
Generation (CG) algorithm that can efficiently solve model [LDR] despite generating a large number of
constraints through (19). The algorithm, extensively studied in [52], proceeds by sequentially solving
a series of integer programs with a subset of the constraints obtained from (19) and added thereafter
as needed.

The process stops when the algorithm finds a solution for the sub-problem which does not violate
any constraints within some accepted tolerance in the full problem [DR]. Otherwise, a new set of points
and thus a new set of constraints/cuts are generated which are added to [LDR] in the next iteration.

Let LBq and UBq denote a lower and upper bound of the original problem at iteration q.
We further let v[LDR] be the solution of the objective function value of [LDR] and (Yq, Zq, Pq, Hq, Uq)

be its optimal solution. The following proposition provides the lower bound of the CG algorithm.

Proposition 1. For any given subset of points {Mh
jt}Hq⊂H (23) provides a lower bound of the optimal objective

function value of [DR].

LBq =v[LDR](Hq)

= ∑
l∈L,k∈K

ΨlkYq
lk + ∑

t∈T

(
∑

l∈L,j∈J
ηl jtY

q
ljt + ∑

(j,k)∈A2

ξ jktZ
q
jkt + ∑

l∈L,k∈K
plktP

q
lkt + ∑

k∈K
hktHq

kt+

∑
i∈I ,j∈J ,k∈K

cijkt((1− qjt)(1− qkt)Xq
ijkt + β(qjt + qkt − qjtqkt)Xq

ijkt) + ∑
(i,j)∈A3

⋃A4

cijtX
q
ijt

+ ∑
j∈J

c0Mq
jt + ∑

g∈G
πgtU

q
gt

)

(23)
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Proof. [LDR(Hq)] is the relaxed version of problem [DR]. Thus, the optimal objective function value
v[LDR(Hq)] obtained from Equation (23) provides the lower bound to the optimal objective value of
[LDR]. Since problem [LDR] is an approximation for problem [DR], solution v[LDR(Hq)] will also
provide a valid lower bound for optimal objective function value of [DR].

Proposition 2. For any given subset of points {Mh
jt}Hq⊂H (24) provides an upper bound for the optimal

objective function value of [DR].

UBq = ∑
l∈L,k∈K

ΨlkYq
lk + ∑

t∈T

(
∑

l∈L,j∈J
ηl jtY

q
ljt + ∑

(j,k)∈A2

ξ jktZ
q
jkt + ∑

l∈L,k∈K
plktP

q
lkt + ∑

k∈K
hktHq

kt+

∑
i∈I ,j∈J ,k∈K

cijkt((1− qjt)(1− qkt)Xq
ijkt + β(qjt + qkt − qjtqkt)Xq

ijkt) + ∑
(i,j)∈A3

⋃A4

cijtX
q
ijt

+ ∑
j∈J

c0

( ∑i∈I ∑k∈K Xq
ijkt

∑l∈L ccap
lj Yq

ljt −∑i∈I ∑k∈K Xq
ijkt

)
+ ∑

g∈G
πgtU

q
gt

)

(24)

Proof. Any solution feasible to [LDR(Hq)] also provides a feasible solution to [DR] since all the
constraints of [DR] are also contained by [LDR(Hq)]. Thus, the objective function value of [DR]
evaluated at (Yq, Zq, Pq, Hq, Uq) as shown in Equation (24), provides an upper bound for the optimal
objective value of [DR].

The algorithm continues until the gap between the lower and upper bound falls below a tolerance
level ε; otherwise, a new set of points {Mhnew

jt } are generated using the current solution (shown below)
and the process continues. The overall algorithm is shown in Algorithm 1.

Mhnew
jt =

∑i∈I ∑k∈K Xq
ijkt

∑l∈L ccap
lj Yl jt −∑i∈I ∑k∈K Xq

ijkt
(25)

Algorithm 1 Constraint Generation Algorithm.

q← 1; UBq−1 ← +∞; LBq−1 ← −∞

Choose an initial set of points {Mh
jt}h∈Hq to approximate function

(
Mh

jt

1+Mh
jt

)
while (UBq−1 − LBq−1)/UBq−1 > ξ do

Solve [LDR(Hq)] and obtain its optimal solution (Yq, Zq, Xq, Pq, Hq, Mq, Uq)
Update the lower bound: LBq ← [LDR(Hq)]
Update the upper bound UB← min{UBq−1, UB(Yq, Zq, Xq, Pq, Hq, Mq, Uq)} using Equation (24)

Generate a new set of points Mhnew
jt =

∑i∈I ∑k∈K Xq
ijkt

∑l∈L Ccap
lj Yl jt−∑i∈I ∑k∈K Xq

ijkt
; ∀j ∈ J , t ∈ T

Hq+1 ← Hq ⋃ {Mhnew
jt }

q← q + 1
end while

3.2. Rolling Horizon Heuristics

Solving [LDR(Hq)] is still considered challenging since the problem is a special case of a capacitated
facility location problem which is known to be anNP-hard problem [51]. Therefore, in this section we
introduce a heuristic approach based on the rolling horizon scheme suggested by Balasubramanian and
Grossmann(2004) [53] and Kostina et al. (2011) [54]. This approach decomposes problem [LDR(Hq)] into
a series of smaller subproblems with a few consecutive time periods and solves each subproblem with
initial set of points {Mh

jt} j∈J ,t∈T ,h∈H. The algorithm terminates once all the subproblems are investigated.
The overall algorithm is shown in Algorithm 2.
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Algorithm 2 Rolling Horizon (RH) Heuristic.

tr
0 = 0, r ← 1, Nr, terminate← false

while (terminate = false) do
Set:

Yl jt ∈ {0, 1} and Zjkt ∈ Z+ for t0
s ≤ t ≤ t0

s + Ns

0 ≤ Yl jt ≤ 1 and Zjkt ∈ R+ for t > t0
s + Ns

Solve the approximate sub-problem [LDR(Hq)(s)] using CPLEX
if(t0 > |T |) then

stop← true
else

Fixing the values of {Yl jt}l∈L,j∈J ,t∈T and {Zjkt}j∈J ,k∈K,t∈T for t < t0
s

end if
r ← r + 1

end while

Let t0
s denote the starting time for subproblem s and Ns be the total number of time periods

on subproblem s. We can set a fixed or variable size of Ns for each subproblem. Each approximate
subproblem of the Rolling horizon algorithm is denoted by [LDR(Hq)(s)]. Now, for each iteration
approximate subproblems are solved by setting variables as:

• Yl jt ∈ {0, 1} and Zjkt ∈ Z+ for t0
s ≤ t ≤ t0

s + Ns

• 0 ≤ Yl jt ≤ 1 and Zjkt ∈ R+ for t > t0
s + Ns

The values of Yl jt and Zjkt for t < t0
s are fixed to the values found when solving approximate

subproblem s + 1, and the steps involved on the iteration are as follows.

Step 1: Initialize starting time period to t0
s , length of time interval to N; set s→ 1.

Step 2: Solve the approximate subproblem [LDR(Hq)(s)] using CPLEX.
Step 3: if t0 > |T|, then Stop; else, set s→ s + 1, go to Step 2:.

3.3. Constraint Generation with Rolling Horizon Heuristic

We now propose a hybrid algorithm which integrates the Rolling horizon approach within the
Constraint generation framework. Solving the subproblems [LDR(Hq)] of the Constraint generation
algorithm is still considered challenging. The motivates us to employ Rolling horizon algorithm to
solve the subproblems [LDR(Hq)] of the Constraint generation algorithm. The aim is to provide high
quality feasible solution for subproblem [LDR(Hq)] in a reasonable amount of time. The steps involved
in solving model [DR] using the proposed Constraint Generation with Rolling Horizon Heuristic is
shown in Algorithm 3.
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Algorithm 3 Constraint Generation with Rolling Horizon Heuristic.

q← 1; UBq−1 ← +∞; LBq−1 ← −∞ ,tr
0 = 0, r ← 1, Nr, terminate← false

Choose an initial set of points {Mh
jt}h∈Hq to approximate function

(
Mh

jt

1+Mh
jt

)
while (UBq−1 − LBq−1)/UBq−1 > ξ do

while (terminate = false) do
Set:

Yl jt ∈ {0, 1} and Zjkt ∈ Z+ for t0
s ≤ t ≤ t0

s + Ns

0 ≤ Yl jtn ≤ 1 and Zjktn ∈ R+ for t > t0
s + Ns

Solve the approximate sub-problem [LDR(Hq)(s)] using CPLEX
if(t0 > |T |) then

stop← true
else

Fixing the values of {Yl jt}l∈L,j∈J ,t∈T and {Zjkt}j∈J ,k∈K,t∈T for t < t0
s

end if
r ← r + 1

end while
Obtain optimal solution of [LDR(q)] (Yq, Zq, Xq, Pq, Hq, Mq, Uq)
Update the lower bound: LBq ← [LDR(Hq)]
Update the upper bound UB← min{UBq−1, UB(Yq, Zq, Xq, Pq, Hq, Mq, Uq)} using Equation (24)

Generate a new set of points Mhnew
jt =

∑i∈I ∑k∈K Xq
ijkt

∑l∈L Ccap
lj Yl jt−∑i∈I ∑k∈K Xq

ijkt
; ∀j ∈ J , t ∈ T

Hq+1 ← Hq ⋃ {Mhnew
jt }

q← q + 1
end while

4. Case Study

This section presents a computational study on model [DR] to test our algorithms and to draw
managerial insights. We use the state of Mississippi and Alabama as a testing ground for our study.
The case study demonstrates how the model and the solution algorithms proposed in this study can
be applied to a real-world supply chain network design problem.

4.1. Data Description

Biomass Supply and Demand: Biomass availability (i.e., corn stover and woody biomass) in
Mississippi and Alabama are obtained from the Knowledge Discovery Framework (KDF) database
of United States Department of Energy [55]. Every year these two states produce about 6.85 million
tons (MT) of biomass from 99 different counties. The counties that produce more than 10,000 tons of
biomass each year are only considered in this study. Figure 3a shows the distribution of the densified
biomass available in this region.

We set the total biofuel demand as 500 million gallons per year (MGY) for the planning horizon [7].
We have identified 149 counties from the region as the demand area and the centroid of those counties
is considered as the demand point.

Investment Costs: In this study we consider a total of 53 potential multi-modal facilities and
43 potential biorefinery locations. We used existing multi-modal and inter-modal facilities as potential
multi-modal facilities. The potential biorefinery locations are selected based on the prior literatures
applied to our test region ([37,38]). Figure 3b shows the locations and distribution of potential
multi-modal facilities and biorefineries in this region. The annualized fixed cost for a rail ramp of
capacity 1.05 million ton per year (MTY) is estimated to be $54,949 per year [56]. Based on this
information, we estimate the investment costs for other rail ramp capacities. We consider five different
rail ramp capacities (l = 0.55 MTY, 0.65 MTY, 0.75 MTY, 0.85 MTY, and 1.00 MTY). The annualized fixed
cost for facilities are considered based on a lifetime span of 30 years and assuming a discount factor of
10%. The annualized fixed costs for a biorefinery with a 45 million gallon per year (MGY) capacity is
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set to be $1.59 million [46,57]. This cost is estimated based on a lifetime of 20 years, and a discount
factor of 15% is assumed. We consider five different biorefinery sizes (l = 20 MGY, 40 MGY, 60 MGY,
100 MGY, and 150 MGY). Please note that the actual fixed cost may vary by location; however, we use
a common fixed cost as a reasonable approximation.

(a) Supply sites

1 
 

 
 

 

(b) Potential multi-modal facilities

1 
 

 
 

 

(c) Potential bio-refineries

Figure 3. Biomass distribution and potential location of multi-modal facilities and bio-refineries.

Transportation Costs: We consider that truck and rail are the two modes of transportation
available for transporting biomass from multiple sources to destination points. Trucks are used to
transport biomass from a feedstock supplier i ∈ I to a multi-modal facility j ∈ J . Trucks can further
be used to transport biomass directly from a feedstock supplier i ∈ I to a biorefiney k ∈ K and biofuel
from biorefinery k ∈ K to market g ∈ G. Table 3 presents the cost estimations and some of the technical
factors which are considered in this study. The unit truck transportation (cij) costs are calculated based
on the following Equation [58]:

cij =

(
td + tt

s1

)
dij

δ
cap
1

+ γ ∀i ∈ I , j ∈ J (26)

where td represents distance-dependent transportation cost ($/mile/truckload) such as expenses
including fuel, insurance, maintenance, and permitting costs, tt represents time-dependent cost
($/hr/truckload) including labor and capital costs. Both costs td and tt vary with traveling distance
dij. Please note that the loading and unloading cost γ is treated as fixed transportation cost and
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does not depend on traveling distance. All of these costs are estimated for a semi-truck with a load
capacity δ

cap
1 = 18 tons [59,60] and average traveling speed s1 = 40 miles per hour is assumed. In case

of disrupted scenarios, we multiply a penalty term (i.e., 1.5) with cij in order to calculate the unit
cost for truck transportation (cik). We also calculate the unit transportation cost (ckg) of biofuel from
biorefinery k ∈ K to market g ∈ G. Finally, rail transportation cost is obtained from a study by
Gonzales et al. [61] where the authors set $2248 as the fixed shipment cost per rail car and $1.12 as the
unit variable transportation cost per mile traveled. We have used Arc GIS Desktop 10 to present the
existing transportation network in this region. The network includes railways as well as local roads,
urban roads, and major highways in the states of Mississippi and Alabama.

Table 3. Description of the sets and parameters.

Items Value Unit References

General assumptions:

Plant operating days 350 days Assumed
Penalty cost 5 /gallon [62]
Transportation related

For biomass transportation:

Truck capacity 18 ton [58]
Loading/unloading 5 /ton [58]
Time dependent 34 /hr/truckload [58]
Distance dependent 1.20 /mile/truckload [58]

For biofuel transportation:

Truck capacity 8000 gallon [62]
Loading/unloading 0.02 /gallon [62]
Time dependent 29 /hr/truckload [62]
Distance dependent 1.20 /mile/truckload [62]

Inventory cost:

Biorefinery 0.336 /gallons Assumed

Conversion rate:

Cornstover-biofuel 73.71 gallons/dt [63]
Woody biomass biofuel 71.49 gallons/dt [63]

Estimating Disruption Probabilities: Failure probabilities of multi-modal facilities are obtained
from a study by Marufuzzaman et al. [46]. The authors consider three major types of natural disasters
i.e., hurricane, floods, and droughts that frequently impact the Southeast region of United States.
Figure 4 demonstrates the estimated disruption probabilities of the candidate multi-modal facilities
where the size of the circle is proportional to its disruption probability. Results show that the failure
probability of multi-modal facilities are not uniform throughout the year. For instance, late August
until late September is the peak hurricane season in this region. Therefore, the multi-modal facilities
located near the coastal regions of Mississippi and Alabama are more prone to disaster during this
time period of the year.
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Figure 4. Disruption probability of multi-modal facilities [46].

4.2. Experimental Results

4.2.1. Analyzing the Impacts of Congestion Cost on System’s Performance

Figure 5 shows the impact of congestion cost (c0) on a biofuel supply chain network performance.
It is observed that the number of multi-modal facilities, containers transported between the facilities,
and total amount routed through highways are significantly impacted by the changes in congestion cost.
For instance, the number of multi-modal facilities used decrease by 12%, 22%, and 43% if congestion
cost (c0) increases from $0 to $10 thousand, $100 thousand, and $1 million, respectively. Please note
that no multi-modal facilities are used if the congestion cost increases to $10 million. We observe
the similar trend for the number of containers transported between the multi-modal facilities and
biorefineries. Experimental results indicate that the number of containers transported between the
multi-modal facilities and biorefineries decreases by 75% for an increase in congestion cost from $10
thousand to $1 million (shown in Figure 5b). Moreover, it is observed that the number of containers
used during peak season (i.e., (t5 − t7)) decreases sharply with an increase in congestion cost. This in
turn increases the biomass transportation through highways. As it can be observed from Figure 5c that
as the congestion cost increases, routing more biomass through highways are preferred compared to
rail transportation.
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Figure 5. Impact of different congestion cost on system performance. (a) Multi-modal facilities;
(b) Containers transported.; (c) Biomass shipped via highways.

4.2.2. Impacts of Different Risk Levels on System’s Performance

This section presents the impact of different risk levels (i.e., different value of {qjt}j∈J ⋃K,t∈T ) on
the biofuel supply chain network performance. To evaluate the impact of risk levels, we conducted
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experiments considering the original disruption probabilities from the study by Marufuzzaman et al. [46]
for the risk averse case and disregarded the disruption probability for the risk-neutral case on different
biomass available seasons (i.e., peak and low production season). In the experiment we set t = 1 for
the month of May. Corn stover is typically harvested during September until November in a given year.
Forest residues are harvested all year around, except during the winter (December to February) due to
humid weather. Thus, September to November are considered as the peak biomass production season for
this region since both feedstock types are available during this time period of the year. We consider March
to mid-August as a low biomass production season since only woody biomass is available during that time
period of the year. Figure 6 depicts the risk-neutral scenario of the biofuel supply chain network under
various biomass available seasons: peak and low biomass production season. It is obvious from Figure 6
that when the decision maker adopts a risk-neutral attitude, bio-refineries away from the multi-modal
facilities are selected. Additionally, it is important to note that as there is no extra cost in the risk-neutral
scenario, the model selects bio-refineries away from the multi-modal facilities. Results indicate that at
the peak biomass production season more multi-modal facilities are open than low biomass production
season (shown in Figure 6a,b). More specifically, the model opens three additional multi-modal facilities
in Lawrence, Lamar, and Pike county to cope with high feedstock availability in the peak biomass
production season.

Figure 7 demonstrates the risk-averse scenario of the biofuel supply chain network under peak
and low biomass production seasons. It is clear from Figure 7 that when the decision maker adopts
a risk averse attitude, the model decides to select the bio-refineries in northwest Mississippi that
are close to their multi-modal facilities. The low disaster prone area (Figure 4) and high availability
of biomass (Figure 3a) are the main reasons for selecting bio-refineries and multi-modal facilities
in the northwest. Moreover, in the low biomass production season the model decides to close one
multi-modal facility in Newton county (Figure 7b).

It is clear from Figures 6 and 7 that when the decision maker adopts the risk averse scenario the
amount of unsatisfied demand Ugt increases. The model decides to fulfill some portion of the demand
using substitute products rather than establishing biorefinaries near the higher disaster prone areas.
We observe that at risk averse scenario, the amount of unsatisfied demand Ugt increases by 17.5% and
15.1% during peak season (t = 7) and low season (t = 12), respectively, over the risk neutral scenario.
In summary, these results indicate that adopting different risk levels has impact on the biofuel supply
chain under peak and low biomass production seasons.

1 

 

 

 

 

(a) Peak season (t = 7)

1 

 

 

 

 

(b) Low season (t = 12)

Figure 6. Network representation under risk neutral scenario.
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(b) Low season (t = 12)

Figure 7. Network representation under risk averse scenario.

4.2.3. Impact of Different Disruption Scenarios on System Performance

To quantify the benefits of designing a reliable and congested biofuel supply chain system,
we create different realistic tornado scenarios (shown in Figure 8). We assume that the tornado hits in
the coastal region of Mississippi and Alabama. The intensity of color determines the impact of the
tornado and higher intensity represents higher chance of facility failure in that zone. We assume that
the multi-modal facilities and biorefineries located within the affected region will fail and cannot be
used for production/distribution for the entire season. The length and area of the affected region will
vary based on the strength and path of the tornado strikes. This experiment sets the length at 200 miles
on a straight path by assuming that a medium tornado strikes the coast as illustrated in Figure 8.

We now solve our model [LDR] using these simulated disruption scenarios and compare to
the case with a minimum cost model. Please note that the minimum cost model does not consider
disruption and congestion and can be obtained by setting {qjt}j∈J ⋃K,t∈T = c0 = 0.0 into the objective
function of model [LDR]. Experimental results indicate that under normal conditions, the reliable and
congested model provides 10.3% higher cost as compared to the minimum cost model. However, if a
tornado strikes, the reliable and congested model solution outperforms the minimum cost model.
Under such circumstances, the total system cost provided by the minimum cost model increases by
24.67% whereas the reliable and congested model only increases by 5.28%. Moreover, the unit biofuel
delivery cost changes from $5.55 (reliable and congested model) to $6.09 (minimum cost model) if
disruption and associated congestion factors are taken into consideration.

(a) Congested and reliable model (b) Minimum cost model

Figure 8. Network representation of different disruption scenarios on system performance.
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4.2.4. Impacts of Supply Change on System’s Performance

Figure 9 shows the impact of supply changes on the biofuel supply chain network performance.
It is observed that the number of multi-modal facilities, the containers transported between the
multi-modal facilities and biorefineries, and total amount routed through highways are significantly
impacted by the biomass supply changes. For instance, while considering the facility congestion
cost (c0) of $20,000 in the modeling process, a 20% increase in supply increases the total number of
multi-modal facilities by 30.61% while a 20% decrease in supply results in a 28.95% decrease of the
total number of multi-modal facilities used by the biomass supply chain netwrok. A similar trend
can be observed for the number of containers transported between the multi-modal facilities. A 20%
increase in supply results in a 20.14% increase in the total number of containers while a 20% decrease in
supply results in a 22.7% decrease in total number of containers transported between the multi-modal
facilities and biorefineries. The results further indicate that the biomass transportation via highway
increases with an increase in biomass supply. Moreover, it is observed that during the peak biomass
production season (t5 − t7), the total number of containers and the amount routed through highways
increases sharply from previous time periods.
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Figure 9. Impact of supply changes on system performance. (a) Multi-modal facilities; (b) Containers
transported; (c) Biomass shipped via highways.

4.2.5. Comparison between Minimum Cost, Reliable, Congested, and Reliable and Congested Model

Figure 10 demonstrates the change in network structure while solving model [DR] under multiple
settings: (a) considering neither disruption probability {qjt}j∈J ,k∈K = 0 nor congestion c0 = 0
(minimum cost model), (b) only considering disruption probability, (c) only considering congestion,
and (d) considering both disruption probability and congestion. It is observed that when the failure
probability of facilities are not taken into account then the model selects biorefineries in the coastal
regions (shown in Figure 10a). However, if failure probabilities are taken into account, biorefineries tend
to be located further away from the coasts and become more centralized around the multi-modal hubs
(shown in Figure 10b). Moreover, if congestion of multi-modal facilities is taken into consideration, it is
observed that the number of multi-modal facilities decrease while increasing their capacity (shown in
Figure 10c). When both failure probabilities and effect of congestion are taken into consideration,
then most of the multi-modal facilities do not change their location but biorefineries shift their location
away from coastal regions (shown in Figure 10d).

The above experiments have a clear impact on the unit delivery cost for biofuel. The unit cost of
biofuel is calculated as $4.41/gallon while failure probability and congestion of multi-modal facilities
are not taken into consideration. However, the unit cost increases to $4.49/gallon if congestion is
considered and $4.58/gallon if failure probability of facilities are taken into consideration. When both
the effect of congestion as well as probability of disruption are taken into account, unit cost jumps to
$4.74/gallon. Results indicate that a supply chain structure robust against congestion and disruption
incurs 7.3% additional unit cost of biofuel than if neither were considered while designing the supply
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chain network. Including the effect of disruption in the model increases unit cost more than that of
congestion. Specifically, unit cost of biofuel increases 3.85% when disruption probability is considered,
while this value is only 1.82% when congestion is considered. This is a clear indication that more
investment is required to design a reliable biofuel network which is not vulnerable to sudden disruption
than designing a network not susceptible to congestion of facilities.
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(a) Minimum cost model
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(d) Reliable and congested model

Figure 10. Network representation of minimum cost, reliable, congested, and reliable and congested model.

4.2.6. Analyzing the Performance of the Solution Algorithm

We now present our computational performance in solving model [LDR] using the algorithms
proposed in Section 3. The algorithms are terminated when at least one of the following
criteria is met: (a) the gap between the upper and lower bound falls below a threshold limit ε,
i.e., ε = |UB− LB|/UB× 100%, (b) the maximum time limit is reached i.e., tmax = 3600 s, and (c) the
maximum iteration limit is reached i.e., n = 500. We generated various problem sizes by varying
the number of supply sites | I |, potential multi-modal facilities | J |, potential biorefineries | K |,
total customers | G |, and the length of the planning horizon | T |. Table 4 gives an overall idea about
the size and characteristics of the overall problem solved.

Table 5 reports the error gap (Gap), and the running time (CPU) of the algorithms proposed in
this study. Note that the boldface values in the table indicate the best solutions for that instance among
the proposed approaches. We calculate the error gaps of Rolling Horizon [RH] algorithm and hybrid
Constraint Generation with Rolling Horizon algorithm [CG+RH] using the lower bound obtained
from the Constraint Generation [CG] algorithm. This is because algorithms [RH] and [CG+RH] only
generate upper bounds for model [DR]. Results indicate that the [RH] algorithm provides a solution
with less than 1.0% error gap for only 5 out of 24 problem instances. On the other hand, [CG] solves
19 out of 24 problem instances with less than 1.0% error gap. However, algorithm [RH] produces the
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reported solution 9.73% faster than algorithm [CG]. Moreover, it is observed that a balance between
faster computation time and solution quality can be achieved by solving problem [DR] using [CG+RH]
algorithm. Experimental results indicate that algorithm [CG+RH] solves 22 out of 24 problem instances
with less than 1% error gap, and on average provides solutions 46.62% faster than [CG] and 40.86%
faster than [RH].

Table 4. Problem size of the test instances.

Case |I| |J | |K| |G| |L| |T | Binary
Variables

Integer
Variables

Continuous
Variables

Total
Variables

Total
Constraints

1 50 25 40 100 5 6 950 6000 338,040 344,990 9160
2 50 25 40 100 5 12 1700 12,000 676,080 689,780 18,280
3 50 25 40 100 5 18 2450 18,000 1,014,120 1,034,570 27,400
4 50 25 40 100 5 24 3200 24,000 1,352,160 1,379,360 36,520
5 99 53 86 149 5 6 2020 27,348 2,839,410 2,868,778 33,686
6 99 53 86 149 5 12 3610 54,696 5,678,820 5,737,126 67,286
7 99 53 86 149 5 18 5200 82,044 8,518,230 8,605,474 100,886
8 99 53 86 149 5 24 6790 109,392 11,357,640 11,473,822 134,486
9 150 75 100 200 5 6 2750 45,000 6,964,800 7,012,550 52,900
10 150 75 100 200 5 12 5000 90,000 13,929,600 14,024,600 105,700
11 150 75 100 200 5 18 7250 135,000 20,894,400 21,036,650 158,500
12 150 75 100 200 5 24 9500 180,000 27,859,200 28,048,700 211,300
13 200 100 125 250 5 6 3625 75,000 15,343,500 15,422,125 85,025
14 200 100 125 250 5 12 6625 150,000 30,687,000 30,843,625 169,925
15 200 100 125 250 5 18 9625 225,000 46,030,500 46,265,125 254,825
16 200 100 125 250 5 24 12,625 300,000 61,374,000 61,686,625 339,725
17 250 125 150 300 5 6 4500 112,500 28,627,200 28,744,200 124,650
18 250 125 150 250 5 12 8250 225,000 57,163,800 57,397,050 248,550
19 250 125 150 350 5 18 12,000 337,500 86,017,500 86,367,000 374,550
20 250 125 150 350 5 24 15,750 450,000 114,690,000 115,155,750 499,350
21 300 150 175 400 5 6 5375 157,500 47,993,700 48,156,575 172,075
22 300 150 175 400 5 12 9875 315,000 95,987,400 96,312,275 343,975
23 300 150 175 400 5 18 14,375 472,500 143,981,100 144,467,975 515,875
24 300 150 175 400 5 24 18,875 630,000 191,974,800 192,623,675 687,775

Table 5. Comparison between different solution approaches.

Case [RH] [CG] [CG + RH]

GAP (%) CPU (sec) GAP (%) CPU (sec) GAP (%) CPU (sec)

1 0.23 35.23 0.54 44.32 0.35 41.03
2 0.64 74.36 0.43 86.54 0.24 78.35
3 0.71 114.47 0.42 134.31 0.47 98.63
4 0.34 142.32 0.24 154.24 0.32 114.67
5 0.67 256.61 0.78 312.57 0.49 146.58
6 1.19 345.61 0.44 345.2 0.23 167.37
7 1.78 542.37 0.26 686.61 0.67 231.23
8 2.03 674.31 0.64 787.24 0.34 274.32
9 1.04 315.45 0.55 325.22 0.54 146.36

10 1.86 562.36 0.85 597.66 0.68 244.16
11 2.15 783.35 0.58 946.35 0.49 354.96
12 2.48 849.84 0.84 1211.66 0.81 466.84
13 1.26 395.44 0.71 518.64 0.44 185.65
14 2.22 813.77 0.47 966.22 0.56 388.62
15 2.53 882.36 0.69 1329.87 0.63 516.13
16 5.64 3600.00 3.68 3600.00 0.87 1165.58
17 1.89 619.66 0.75 756.42 0.46 275.64
18 2.44 861.41 0.63 1201.54 0.68 498.88
19 5.36 3600.00 3.46 3600.00 0.67 1264.2
20 6.36 3600.00 4.65 3600.00 1.16 3600.00
21 2.31 835.46 0.87 1278.35 0.78 401.22
22 2.79 962.43 0.98 1409.55 0.83 612.51
23 7.63 3600.00 4.68 3600.00 0.81 1724.54
24 9.68 3600.00 5.69 3600.00 1.23 3600.00

Average 2.72 1169.45 1.41 1295.52 0.61 691.56
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5. Conclusions

This study investigates the impact of facility congestion and disruption in the context of a biofuel
supply chain network. A mixed-integer non-linear programming model is developed and later
linearized to determine the optimal location of facilities (i.e., multi-modal, biorefineries) for production
and storage and shipment routes of biomass in such a way that the cost of congestion and disruption
are minimized. A hybrid Constraint generation coupled with Rolling horizon algorithm is proposed to
solve the optimization problem in a reasonable amount of time. Computational results indicate that the
model locates biorefineries at areas with low disruption risks. Moreover, as the disruption probability
becomes high, the model tends to locate fewer facilities and satisfy the remaining demand either by
trucks or purchasing from outside market. Similarly, with the increase in congestion cost, the number
of multi-modal facilities as well as the total number of containers used to transport biomass decreases
and impacts the overall supply chain activities.

In summary, the major contributions of this study to the existing literature are manifold.
First, our optimization approach considers both facilities disruption along with associated congestion
under the same decision making framework. Second, we propose customized solution approaches to
solve our optimization model. Finally, the modeling results are experimentally validated by developing
a example case study. The findings can be used by decision makers to design and manage a reliable,
non-congested biofuel supply chain network.

This research opens up several future research opportunities. It will be interesting to investigate how
our model behaves under different system uncertainties (e.g., biomass supply and demand uncertainty,
technology uncertainty). Further, in addition to considering facility uncertainty, the transportation link that
connects multiple facilities may also be disrupted and congested during the time of a natural catastrophe
(e.g., hurricane, tornado). These issues will be addressed in future studies.
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