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Abstract: The misalignment of the drive system is one of the important factors causing damage
to gears and bearings on the high-speed output end of the gearbox in doubly-fed wind turbines.
How to use the obtained information to determine the types of the faults accurately has always been
a challenging problem for researchers. Under the restriction that only one kind of signal is used in the
current wind turbine fault diagnosis, a new method based on heterogeneous information fusion is
presented in this paper. The collected vibration signal, temperature signal, and stator current signal
are used as original sources. Their time domain, frequency domain and time-frequency domain
information are extracted as fault features. Taking into account the correlation between the features,
t-distributed Stochastic Neighbor Embedding (t-SNE) is used to reduce the dimensionality of the
original combinations. Then, the fusion features are put into the Least Square Support Vector Machine
(LSSVM), which is optimized by artificial bee colony (ABC) algorithm. The simulation tests show
that this method has higher diagnostic accuracy than other methods.

Keywords: wind turbines; misalignment; fault diagnosis; t-SNE; artificial bee colony algorithm; least
squares support vector machine

1. Introduction

To cope with the global warming trend, most countries have reduced carbon emissions year by
year as one of the requirements of domestic economic and social development [1]. As a clean energy,
wind power is superior to hydropower and nuclear power in energy conservation, and environmental
and ecological protection [2]. In recent years, wind power has been developed rapidly in various
countries, and the installed capacity has increased year after year [3].

Wind farms are generally located in remote areas with abundant wind resources, and the working
environment is complex. The probability of failure of various components in wind turbines is relatively
large [4]. If a key component of the unit fails, it will damage the equipment and even cause the unit
to stop at once, resulting in huge economic losses. Faults of wind turbines include blade failure,
transmission system failure, generator failure, and tower failure. Among them, misalignment of
transmission system is one of the most common failures. In practice, there are many reasons that can
cause the wind turbine transmission system to be misaligned, such as bearing eccentricity, installation
error, misalignment of the coupling, etc. [5]. The drive system of a doubly-fed wind turbine is an
important transmission device to connect the turbine and the generator. The misalignment of the
transmission system will inevitably cause vibration of the wind turbines and endanger the reliability
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of the gears and bearings. Therefore, it is important to monitor and diagnose the misalignment of the
transmission system in doubly-fed wind turbines [6].

Currently, methods of fault diagnosis for rotating machinery drive systems are mainly based
on oil analysis [7], noise monitoring [8], vibration monitoring [9], and stator current analysis [10].
Though the content of the wear debris in the lubricating oil can be detected and analyzed to determine
the degree of some failure, it is inconvenient to extract the grinding debris in the lubricating oil of
the wind turbines at a high-altitude [11]. The principle of fault diagnosis based on noise is that
when a fault occurs, the mechanical noise will increase. However, the wind turbine is a system
with a long transmission chain, and the noise interference is very severe [12]. The diagnostic based
on noise is easily affected by the external environment and the diagnosis results will be inevitably
affected [13]. Therefore, for the fault diagnosis of large-scale rotary mechanical transmission systems
such as wind turbines, vibration-based monitoring and stator current-based analysis are the two
most commonly used methods currently [14]. On the other hand, according to the feedback from
wind farms, misalignment is a common failure of wind turbines [15]. Once misalignment occurs,
the high-speed drive shafts are subject to greater friction and will generate more heat, which can easily
lead to the destruction of lubricating oils and the appearance of gear gluing phenomenon. Hence use
the temperature information to diagnose the wind turbines is also a good method [16,17].

The above mentioned studies are all based on single information such as vibration, stator
current, or temperature to perform wind turbine fault diagnosis. In recent years, there are also
some references to fuse signals to diagnosis. For example, reference [18] had proposed a method
to extract the characteristics of gearbox rotation speed and temperature monitoring data through
kernel principle component analysis (KPCA), then put them into relevance vector machine (RVM)
for training. Reference [19] considered gearbox vibration signal, temperature signal and lubrication
signal as original sources, and used principal component analysis to reduce the dimensionality.
The generator stator current of the wind turbines is very convenient to obtain, and the feasibility
and correctness of using it to diagnose misalignment is proved in literature [20]. At the same time,
in literature [21], the vibration signal was used to diagnose misalignment effectively; in literature [22],
the temperature was used in fault diagnosis. Therefore in this paper, the vibration signal, temperature
signal, and stator current signal are regarded as the original sources, and their time domain, frequency
domain, and time-frequency domain indexes are extracted as fault features. The t-distributed stochastic
neighbor embedding (t-SNE) is used to combine them. The fusing features are put into the least square
support vector machine (LSSVM), which is optimized by artificial bee colony algorithm. Simulation
tests show that this method has higher diagnostic accuracy than other parameter optimization models
and information fusion methods.

2. The Related Theory

2.1. The Concept of Information Fusion

With the development of society, mechanical systems have become more and more complicated.
If only one single sensor is used to obtain information and make judgments, it is very unreasonable
and sometimes may lead to misjudgment [23]. In this situation, information fusion technology came
into being. It is a technique of comprehensive processing for multidimensional information, which
makes up for the insufficiency of traditional relying on single information [24].

The information fusion mainly has three levels of integration, which are data level fusion, feature
level fusion, and decision level fusion [25,26].

• Data Level Fusion. Also called pixel level fusion. It is a comprehensive analysis of raw information.
In this level of fusion, information loss is small, but the calculation is large. Real-time and fault
tolerance are poor, and the level of integration is low. Because of the presence of redundant
information, it may affect the diagnostic accuracy. Data level fusion is generally limited to the
same type of sensor information.
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• Feature Level Fusion. The data from multiple sensors must be preprocessed, forming feature
vectors, which were fused to get the joint feature vector. Feature level fusion is more real-time than
data level fusion. If the selected algorithm is reasonable, the elimination of redundant information
will improve the accuracy of diagnosis.

• Decision Level Fusion. Each sensor’s processing system has completed its decision-making
or classification tasks before fusion. Optimal decisions are made based on certain criteria and
the credibility of decisions through fusion. Decision level fusion is the highest level of fusion.
Its real-time performance and fault tolerance are good, but information loss is large and more
complicated algorithms are needed.

The structures of the three fusions are shown in Figure 1.
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Figure 1. Three kinds of fusion structure. (a) Data Level Fusion; (b) Feature Level Fusion; (c) Decision
Level Fusion.

In this paper, the vibration signal, the temperature signal and the stator current signal are used as
the original sources to achieve feature level fusion.

2.2. Dimension Reduced Feature Fusion Algorithm

Heterogeneous information is highly complementary, and the fusion information generated by
it is more practical. Therefore, using heterogeneous information fusion for fault diagnosis can often
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achieve better diagnostic results than similar information fusion. However, the more signals there are,
the higher dimension of the constructed feature vectors is, which not only increases the computational
complexity, but also brings difficulties to the intuitive fault diagnosis [27]. In order to make better use
of various kinds of information and get good diagnostic results, dimensionality reduction methods
are usually used. The common dimensionality reduction methods include: linear mapping methods
such as PCA, Fisher discriminant analysis (FDA); non-linear kernel mapping methods such as kernel
principal component analysis (KPCA), kernel Fishers discriminant analysis (KFDA); and manifold
learning methods such as Laplacian eigenmaps (LE), local linear embedding (LLE), isometric mapping
(ISOMAP), local preserved projection (LPP), local tangent space alignment (LTSA), and stochastic
neighbor embedding (SNE). Many scholars have applied the manifold learning method to machinery
fault diagnosis, and achieved good results. For example, Wang guode et al. used the LLE algorithm
to reduce the dimensionality of the constructed high-dimensional vectors [28]; Liu hui improved
the effectiveness and robustness of the ISOMAP algorithm [29]; Li feng et al. proposed a dimension
reduction model based on LTSA and applied it to fault diagnosis of deep groove ball bearings [30].
Although the manifold learning algorithm has been applied in the field of mechanical fault diagnosis,
some problems such as non-linear data crowding, which is not clear in low-dimensional manifold
expression, still exist [31]. So in this paper, aiming at the above mentioned deficiencies, the t-distributed
stochastic neighbor embedding (t-SNE) algorithm is mainly studied and applied to the misalignment
diagnosis of wind turbines.

t-SNE [32] is an improved dimension reduction visualization method proposed by Maaten
and Hinton in 2008 based on SNE. The SNE algorithm is a nonlinear dimension reduction method
based on the conditional probability theory [33], which can reduce a high-dimensional data set
to a two-dimensional or three-dimensional data set that can be graphically displayed. The SNE
algorithm has the problems of optimization difficulty in value equations and crowding problems
in low-dimensional manifolds. The t-SNE is improved on the basis of SNE. The symmetry value
equation and t-distribution are used to calculate the similarity between two points in low-dimensional
space instead of Gaussian distribution to solve the problems of low-dimensional space crowding and
parameter optimization.

The specific principle of the t-SNE learning algorithm is [32]: The t-SNE treats coordinates in low
dimensions as t-distributions, while SNE treats sample distributions in high and low dimensions as
Gaussian distributions. The advantage of this approach is to increase the distance between clusters with
large distances further, thus solving the crowding problem. Compared with SNE, t-SNE introduces
a strong rebound force to make the distance between the low-dimensional dissimilar data increase.
The strength of the force between dissimilar data is proportional to the distance in the low-dimensional
space. Thus it is finally realized that data with small distances in low-dimensional space represents
data with certain similarity in high-dimensional space, and data with large distance in low-dimensional
space represents data dissimilar in high-dimensional space.

Its implementation steps are as follows:

(1) Define a high-dimensional data set: x = {x1, x2, . . . , xn}
(2) Compute the complexity parameter of the value equation c:

c = ∑i ∑j pij log
pij

qij
(1)

perp(pi) = 2H(pi) (2)

H(pi) = −∑
j

pj|i log
pj|i
2 (3)

where, pi is the conditional probability of data points (other than xi) with respect to xi, pj|i
is the conditional probability of high-dimensional data, pij is the joint probability density in
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the high-dimensional space, and qij is the joint probability density in the low-dimensional
mapping space.

(3) Define the optimization parameters: the number of iterations T, the learning rate η, the momentum
factor at the tth (t ≤ T) iteration α(t)(0 < α(t) < 1). The value equation c is learned by the
gradient descent method, and the low-dimensional mapping of the high-dimensional data is
finally obtained:

δc
δyi

= 4 ∑
j

(
pij − qij

)(
yi − yj

)(
1 +

∣∣∣∣yi − yj
∣∣∣∣2)−1

(4)

where, yi and yj are the mapping of the high-dimensional data xi and xj in the
low-dimensional space.

In order to speed up the optimization process and prevent trapping into local minima, a relatively
large momentum condition is imposed on the descent process. The current gradient value is summed to
the previous gradient value each iteration and then decays exponentially to determine the coordinates
of the low-dimensional data. The momentum formula is as the following:

y(t) = y(t−1) + η
δc
δy

+ α(t)
(

y(t−1) − y(t−2)
)

(5)

where, y is the data in the low-dimensional space.

2.3. Fault Diagnosis Method and Parameters Optimization

Support vector machine (SVM) can well solve the problems of nonlinearity, high dimensionality,
and local minimum [34], but it also has certain limitations, such as the blindness of parameter
determination, and the solution will become more complex as the training samples increase [35].
In order to solve the shortcomings of SVM, many scholars conducted research and proposed solutions.
Among them, the widely used method is the least square support vector machine (LSSVM) [36].

LSSVM also follows the principle of minimizing structural risk. The equality constraints are used
to replace the inequality constraints in SVM. Linear equations instead of quadratic programming are
used in the solution to the optimization problem. At the same time, the deviation of empirical risk
is changed to a quadratic. The complexity has been reduced, but the operation speed is higher than
SVM [37].

When using a radial basis kernel function, the parameters of LSSVM are few, and only include
the regularization parameter C and the kernel width σ [38]. The parameters of the LSSVM have a very
important role in the performance of the algorithm. Different parameters are selected, and different
classifications may be obtained. How to choose the appropriate regularization parameter C and
kernel width σ has no clear theoretical method at present. Trial method is usually adopted, which
not only takes time and effort, but also the solution of the optimization problem is influenced by
subjective factors, so the problem of parameter selection is one of the hotspots of research [38].
The commonly used selection methods are: cross validation method, grid search method and intelligent
optimization algorithm.

The swarm intelligence algorithm is an intelligent optimization algorithm proposed in recent years.
It simulates the behavior of animals in groups, and utilizes information interaction and cooperation
among individuals to achieve optimization. The swarm intelligence algorithm is easy to implement
and has high efficiency, so it has rapidly become a research hotspot in the optimization field. Many
scholars apply the swarm intelligence algorithm to the parameter optimization of the LSSVM [39].

The swarm intelligence algorithm mainly includes the genetic algorithm, artificial immune
algorithm, particle swarm optimization, artificial fish swarm algorithm, artificial bee colony algorithm,
and so on. Among them, the artificial bee colony (ABC) algorithm is a swarm intelligence optimization
algorithm proposed in recent years. It has many advantages such as good optimization ability,
less control parameters, and is simple, flexible, and easy to implement. Research shows that the
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optimization performance of the artificial bee colony algorithm is better than that of the genetic
algorithm, differential evolution algorithm, and particle swarm algorithm [40]. The optimized SVM
by artificial bee colony algorithm is better than that by genetic algorithm, ant colony algorithm and
standard particle swarm optimization [41]. Therefore, the artificial bee colony algorithm will be used
to optimize parameters in this paper.

The artificial bee colony algorithm [42] imitates the collecting honey process of natural bees.
Each food source corresponds to a collecting bee at the time of initialization. The location of the food
source represents a solution to the optimization problem, and the quality or fitness of each solution
corresponds to the amount of nectar of the food source. The specific principle is: First, initialize a
population containing SN solutions. Each solution xi(i = 1, 2, . . . , SN) is a D-dimensional column
vector, where D represents the number of optimization parameters. The collecting bees search the
neighborhood of the food source, to find new food sources and compare them with the old ones,
adopting greed principle to select food sources with better fitness values. Each collecting bee returns
to the hive after completing a neighborhood search and updating the food source, and shares the food
source information (position and fitness value of solution) with the observing bees through dancing.
Observing bees select the food source according to the information of collecting bees, then use the
greedy criterion to search for neighbors, and select the food source with higher fitness. The observing
bee selects the food source according to the following formula:

pi =
Fi

∑SN
n=1 Fn

(6)

where pi is the probability of observing the bee’s choice of food source, and Fi is the fitness value of
the ith solution.

New food source location is generated according to Equation (7):

vij = xij + φij

(
xij − xkj

)
(7)

where, k ∈ {1, 2, . . . , SN}, j ∈ {1, 2, . . . , D}, k 6= i, φij ∈ [−1, 1], which is a random number used to
control the neighborhoods range of xij. The closer to the optimal solution, the smaller the neighborhood
range is.

If a food source has not been improved after N cycles, then the solution will be abandoned.
The collecting bee in this position is converted to a detecting bee, and then a new solution is randomly
generated according to Equation (8):

xi = xmin + rand(0, 1)(xmax − xmin) (8)

So, the artificial bee colony algorithm includes four steps:
(1) The observing bees find the global optimization of the food source according to Equation (6);
(2) The collecting bees and the observing bees perform the neighborhood searching according to

Equation (7);
(3) All bees compare the old food source with the new food source, and select the better food

source with greedy criterion;
(4) The detecting bees provide random solution to produce food sources according to Equation (8).
Figure 2 shows the implementation of artificial bee colony algorithm.
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3. Signal Acquisition and Feature Extraction

3.1. Signal Acquisition

The premise of the fault diagnosis for the wind turbines is the acquisition of effective fault
information. The methods of obtaining misalignment information can be mainly divided into
two types:

(1) Obtain the misaligned information by collecting data on-site or by creating faults on test bench.
For example, in literature [43], the vibration test system was used to measure the faulty wind turbine.
Relevant time domain and frequency domain analysis were carried to extract the double frequency
feature of the high speed end when misalignment occurred, which provided the basis for misalignment
fault diagnosis of wind turbines. However, the running time of wind turbines is relatively short.
Therefore, the operational data and experience of the wind turbines used in misalignment diagnosis
are relatively scarce. Sometimes, it is difficult to analyze the causes of the defects. For example, it may
not be clear whether the generator is misaligned, unbalanced, loose parts, or shaft bent. In view of
this situation, some scholars use certain physical models to create faults to conduct fault diagnosis
research [44]. However, this is sometimes destructive, and the faults produced are relatively single.
The cost of the experiment is too high.

(2) Obtain the misaligned information by using simulation software. For example, Liu Rongzhen
and Hu Shushan [45] analyzed the mechanism of misalignment of gear couplings, and built a virtual
prototype model of the wind turbine system through embedded Hertz contact theory. The simulation
analysis of the misalignment of the gear coupling under multi-operating conditions showed the
evolution with the change of misalignment.

Simulating the misalignment of wind turbines by software is a cost-effective method. This paper
analyzed the misalignment faults based on the models of wind turbines established by ADAMS 2013,
MATLAB R2014a and Ansys 17.0. The three-dimensional (3D) model of 1.5 MW wind turbine is
established using Solidworks, and the model is then imported into ADAMS 2013, where the Marker
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point was moved according to the type and degree of misalignment. Misalignment failures can be
simulated due to the eccentric mass excitation generated by the center of mass deviating from the center
of rotation (details in literature [46]). The wind turbine models and its control system are established by
MATLAB (details in literature [47]). The vibration and stator current can be extracted from the models.
Also, the high-speed gear shaft and the main shaft of the generator are introduced into Hypermesh to
divide the grid. After reaching the required precision, the model is imported into Ansys Workbench to
get the corresponding temperature signals (details in literature [48]). The correctness of the models
have been verified in the literature [46–48]. This method is simpler and more efficient to operate,
and the simulation process is faster.

3.2. Feature Extraction

3.2.1. Time Domain Feature Extraction

The signal of the transmission system (assuming the signal is a discrete sequence of finite length
x0, x1, x2, . . . , xN−1) contains information of its working status, so some representative time domain
indexes can be selected as the fault features. Changes of them can help determine if faults happened and
what type of misalignment had occurred. The time domain indexes of the signal include dimensional
and dimensionless indexes [49].

(1) Dimensional indexes. The commonly used dimensional indexes include: the variance,
the square root amplitude, the root mean square (RMS) value, the standard deviation and the kurtosis.
Their calculations are:

Variance : σ2 =
1
N

N−1

∑
i=0

(xi − x)2 = xa − x2 (9)

Square root amplitude : xr = (
1
N

N−1

∑
i=0
|xi|

1/2

)2 (10)

RMS : xrms = (
1
N

N−1

∑
i=0

x2
i )

1/2 (11)

Standard deviation : xstd = (
1
N

N

∑
i=1

(xi − x)2)1/2 (12)

Kurtosis : β =
1
N

N

∑
i=1

x4
i (13)

(2) Dimensionless indexes. The dimensionless indexes are insensitive to the changes of the
amplitude and frequency of the signal, that is, they are not related to the working conditions of the
unit. The kurtosis index, waveform index, peak index, pulse index and margin index are commonly
used dimensionless indexes. Their calculations are:

Kurtosis index:

Kr =

1
N

N
∑

i=1
x4

i

x4
rms

(14)

Waveform index:
K =

xrms

x′
(15)

where, the average amplitude is: x′ = 1
N

N−1
∑

i=0
|xi|.

Peak index:
C =

xp

xrms
(16)

where xp represents the peak.
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Pulse index:
I =

xp

x′
(17)

Margin index:

L =
xp

xr
(18)

3.2.2. Frequency Domain Feature Extraction

For complex signals, time domain analysis can extract very limited information. Therefore,
the time domain signal is often transformed to the frequency domain by mathematics, revealing the
frequency composition of the signal, thereby extracting more information of the signal [50].

For a finite-length discrete sequence x(0), x(1), x(2), . . . , x(N − 1), assuming the sampling
frequency is fs, the commonly used frequency domain indexes are as the following.

Center of gravity frequency : FC =
1

2π fs
·
∫ π

0 ωS(ω)dω∫ π
0 S(ω)dω

(19)

Mean square frequency : MSF =
1

4π2 f 2
s
·
∫ π

0 ω2S(ω)dω∫ π
0 S(ω)dω

(20)

Root mean square frequency : RMSF =
√

MSF (21)

Frequency variance : VF = MSF− FC2 =
1

4π2 f 2
s
·
∫ π

0 (ω− 2π fsFC)S(ω)dω∫ π
0 S(ω)dω

(22)

where, S(ω) is the power spectrum of the discrete signal, S(ω) = X(ω)·X(ω), X(ω) =
N−1
∑

i=0
x(i)e−jπω ,

ω is the angular frequency.

3.2.3. Time-Frequency Feature Extraction

In this paper, in terms of vibration signals, the method of image extension is used to improve
Empirical Mode Decomposition (EMD) (see literature [21]), and the energy entropy of the signal is
extracted as the time-frequency domain index after the Improved Empirical Mode Decomposition
(hereinafter referred to as IEMD). The energy entropy is defined as follows [21]:

Assume:

Ei =
w
|ci(t)|

2
dt =

n

∑
k=1

∣∣∣x2
ik

∣∣∣ (23)

E =
n

∑
i=1

Ei (24)

pi =
Ei
E

(25)

where i = 1, 2, 3, . . . , n, xik is the amplitude of each discrete point.
The expression formula of IEMD energy entropy is:

Pi = −
n

∑
i=1

pilgpi (26)

For stator current signals, after performing four-layer dual-tree complex wavelet transform
(DTCWT) on them, the five sub-band signals are obtained. They are then individually reconstructed to
obtain five sub-band reconstruction signals [20]. The energy entropy, sample entropy, and spectral
kurtosis of the five sub-band reconstruction signals are extracted.

The energy entropy formula is Equation (26), mentioned above.
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When the sequence length Nt is finite, the sample entropy of the time series {x(i)} is:

Se(m, r, Nt) = − ln
Bm+1

(r)
Bm

(r)
(27)

where m is the dimension of the vector X(i), r is the given threshold, and Bm
(r)Bm+1

(r) is the average
of the two vectors maximum distance.

The spectral kurtosis formula is:

SK =
S4Y( f )− 2S2

2Y( f )
S2

2Y( f )
(28)

where, S2Y( f ) is the second-order spectral moment of the signal, S
4Y
( f ) is the fourth-order spectral

moment of the signal.

3.2.4. Three Signals Feature Extraction

Table 1 shows a 21-dimensional mixed feature library of vibration signals in the time, frequency,
and time-frequency domain.

Table 1. Mixed feature library of vibration signals.

Feature Library Feature Index

Mixed-domain feature library

Time Domain
root mean square, square root amplitude, variance,
standard deviation, kurtosis, waveform index, peak
index, pulse index, margin index, kurtosis index

Frequency domain center of gravity frequency, mean square frequency,
frequency variance

Time-frequency domain the first eight energy entropy of the IMF (intrinsic
mode function) component of IEMD decomposition

This paper selects the gearbox tooth temperature T1 and the gearbox rotor shaft temperature T2

as the characteristic values of the temperature signals. Construct a two-dimensional feature vector of
the temperature signals: X = [T1, T2].

Table 2 is a 29-dimensional mixed feature library of stator current signals in the time, frequency
and time-frequency domain.

Table 2. Mixed feature library of stator current signals.

Feature Library Feature Index

Mixed-domain feature library

Time Domain
root mean square, square root amplitude, variance,
standard deviation, kurtosis, waveform index, peak
index, pulse index ,margin index, kurtosis index

Frequency domain center of gravity frequency, mean square frequency,
root mean square frequency, frequency variance

Time-frequency domain sample entropy 1–5, energy entropy H1, H2, H3, H4,
H5, spectral kurtosis a1, a2, a3, a4, a5

Therefore, the feature vectors of the three types of information are 52-dimensional.

4. The Fault Diagnosis Implementation and Results

The diagnosis status can be divided into four categories: “0” indicates normal working conditions,
“1” indicates parallel misalignment, “2” indicates angle misalignment, and “3” indicates integrated
misalignment. According to the data obtained from the simulation, each type had 100 samples
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(of which 60 samples are for training and 40 samples are for testing). Fifty-two features were extracted.
Then they are dimension reduced by t-SNE. The fusion features were then taken as the input of the
least squares support vector machine, the diagnosis was performed according to the process shown
in Figure 3. The classification accuracy of training set, testing set and the running time are shown in
Table 3. In order to illustrate the superiority of the method described in this paper, the results of the
same data set using other parameter optimization methods like trial, grid search, PSO (particle swarm
optimization), GA (genetic algorithm), and TUNE (cross-validation) are also listed in Table 3. Table 4
shows the parameters used in various methods.Energies 2017, 10, x FOR PEER REVIEW  12 of 16 
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Figure 3. The fault diagnosis process.

Table 3. Results of different fault diagnosis methods.

Method Running Time (s) Training Set
Classification Accuracy

Testing Set
Classification Accuracy

LSSVM_ABC 42.9409 100% (240/240) 96.25% (154/160)
LSSVM_trial 13.2171 97.0833% (233/240) 93.125% (149/160)

LSSVM_Grid Search 39.0374 100% (240/240) 27.5% (44/160)
LSSVM_TUNE 17.4725 95.4167% (229/240) 93.75% (150/160)
LSSVM_PSO 196.5356 99.1667% (238/240) 94.375% (151/160)
LSSVM_GA 66.7908 92.5% (222/240) 91.875% (147/160)
SVM_ABC 44.1836 99.1667% (238/240) 95.625% (153/160)
SVM_trial 7.5427 93.3333% (224/240) 91.875% (147/160)

SVM_Grid Search 38.1483 98.3333% (236/240) 94.375% (151/160)
SVM_TUNE 23.7067 98.3333% (236/240) 93.75% (150/160)
SVM_PSO 43.4475 95.8333% (230/240) 93.75% (150/160)
SVM_GA 40.9686 100% (240/240) 72.5% (116/160)

BP (Back Propagation) neural network 33.1814 82.5% (198/240) 81.875% (131/160)
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Table 4. Parameters used in various methods.

Method C σ

LSSVM_ABC 3.1355 4.4392
LSSVM_trial 10 1

LSSVM_Grid Search 0.7071 0.0884
LSSVM_TUNE 1.0143 232.1482
LSSVM_PSO 58.2596 99.6819
LSSVM_GA 9.1064 479.2951
SVM_ABC 3.14 4.4384
SVM_trial 1 0.01

SVM_Grid Search 1.4142 0.0884
SVM_TUNE 2.639 0.0544
SVM_PSO 5.4266 0.01
SVM_GA 15.8506 82.3615

The structure of BP is 6-10-4, ‘traingdx’ and ‘learngdm’ algorithms, maximum training step is 500, learning rate is
0.01, and minimum training error is 0.01.

By comparison, the following conclusions can be drawn:
(1) It takes a slightly shorter time when LSSVM is optimized by TUNE, trial, and Grid Search

compared with that by ABC, but the training and testing set classification accuracy of them are not as
high as that by ABC. The time is longer when LSSVM is optimized by PSO and GA compared with
that by ABC, and the training and testing set both have lower classification accuracy than that by ABC.

(2) It takes slightly shorter time when using trial, Grid Search, TUNE, PSO, and GA to optimize
SVM compared with that using ABC. But their classification accuracy of testing set are all lower than
that by ABC, though only the training accuracy of SVM_GA is a little higher.

(3) LSSVM optimized by ABC takes about the same amount of time compared with SVM
optimized by ABC, but the classification accuracy of training and testing set of LSSVM optimized by
ABC is higher.

(4) The training and testing set classification accuracy of LSSVM_ABC is also higher than that of
BP. Its classification accuracy is the best.

In order to illustrate the superiority of the model presented in this paper, different signal features
with the same dimensionality reduction method were used for the same data set. The operating time,
training and testing set accuracy are shown in Table 5.

Table 5. Diagnostic results of different signals.

Signal Selection Running Time (s) Training Set
Classification Accuracy

Testing Set
Classification Accuracy

Vibration signal 43.6846 100% (240/240) 85.625% (137/160)
Temperature signal 43.0802 90.8333% (218/240) 81.25% (130/160)

Electrical signal 43.1965 99.5833% (239/240) 84.375% (135/160)
Vibration signal + temperature signal 43.1038 100% (240/240) 93.75% (150/160)

Vibration Signal + Electrical Signal 43.5408 100% (240/240) 88.75% (142/160)
Temperature signal + electrical signal 43.0321 100% (240/240) 95% (152/160)

Three signals 42.9409 100% (240/240) 96.25% (154/160)

From Table 5, it can be seen:
(1) The classification accuracy of the three kinds of signals is higher than that of others.
(2) The classification accuracy of any two kinds of signals is higher than that of a single signal.
Therefore, fault diagnosis using heterogeneous information fusion can often achieve better

diagnostic results than that of the same kind information.
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5. Conclusions

This paper presents a method for fault diagnosis of a wind turbine transmission system based
on heterogeneous information fusion. The method uses the collected vibration signal, temperature
signal, and stator current signal as original sources, and extracts their time domain, frequency domain,
and time-frequency domain as feature values. The t-SNE is used to eliminate the correlation between
the 52 feature indexes. The fusion features are then put into the LSSVM, which was optimized by the
artificial bee colony algorithm. Simulation tests show that the artificial bee colony optimization model
has higher classification accuracy than other optimization models. In the future study, the decision
level fusion of heterogeneous information will be deeply integrated to improve the accuracy of fault
diagnosis further.
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