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Abstract: Wind speed forecasting is an indispensable part of wind energy assessment and power
system scheduling. In the modeling of wind speed forecasting, there are problems of insufficiency of
the high input feature dimension, weak pertinence of the model and a lack of consideration about the
redundancy between features. To address these problems, a short-term wind speed forecast method
based on low redundancy feature selection is proposed. Firstly, complementary ensemble empirical
mode decomposition (CEEMD) is used to pretreat the wind speed data to reduce the randomness
and fluctuation of wind speed data. Secondly, conditional mutual information (CMI) is used to
analyze the correlation between the input features on different predicted days and wind speed series.
The feature order based on conditional mutual information is used to reduce the redundancy between
candidate features and establish subsets with candidate features. After that, according to different
candidate feature subsets of different predicted days, the outlier-robust extreme learning machine
(ORELM) is used to carry out the forward feature selection and obtain optimal feature subsets for
different predicted days. Finally, the optimal prediction model is constructed by using the optimal
feature subset and the short-term wind speed forecasting is carried out. The validity and advance of
the new method are verified by measured data through comparison experiments.

Keywords: wind speed forecasting; low redundancy; feature selection; complementary ensemble
empirical mode de-composition

1. Introduction

Wind energy is one of the renewable energy sources that could replace fossil fuels. It has grown
rapidly in the past decades. By the end of 2015, the cumulative installed capacity of wind energy
around the world reached 43.29 GW [1,2]. Large-scale wind energy integration into power grid has
brought operational problems because of the randomness and volatility of wind power generation [3,4].
High precision wind power prediction is one of the solutions for optimizing the power reserves, which
is used to balance the fluctuations of wind power. With the assistance of accurate wind power
forecasting, the stability of power system operation and the adopt capacity for wind power could be
improved [5,6].

Wind speed forecasting is one of the basic components of wind power forecasting. The wind
speed forecasting for the next 30 min to 6 h can be classified as short-term wind speed forecasting [7],
which can meet the need of power producer on managing the grid operations, reducing the negative
impact of wind power volatility in power grid operation [8]. The existing wind speed forecasting
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model construction can be generally divided into three steps: data preprocessing, feature selection and
optimal model construction.

The collected original wind speed data has strong randomness and volatility, the outlier data
contained can influence the training effect of the prediction model. The existing research uses signal
processing to preprocess original wind speed data, which can reduce the effect of outlier wind speed
data on the prediction model [9]. At present, among the signal processing method applied to wind
speed data preprocessing. Empirical Mode Decomposition (EMD) has remarkable self-adaptability
and suitable for processing nonlinear data, but it is prone to modal-mixing issues [10]. To solve the
problem of modal-mixing, Ensemble Empirical Mode Decomposition (EEMD) introduces white noise
signals into the original signals, but the decomposition result is contaminated by noise components [11].
Complementary Ensemble Empirical Mode Decomposition (CEEMD) is an improvement based on
EEMD, which can address the defects of noise components by counteracting the noise components in
the decomposition result with two groups of noise signals which have opposite phase [12]. Therefore,
CEEMD can effectively reduce the randomness and volatility of wind speed data under the premise
that the wind speed signal is not contaminated by noise components.

Feature selection is an effective approach to reduce the feature dimensions of wind speed
forecasting models that can directly improve the prediction accuracy. By introducing as many
meteorological factors as possible, the prediction model can reflect the effect of complex external
conditions on wind speed to a certain extent. However, too many input features also greatly
complicated the model. High redundancy between input features reduced the prediction accuracy
and efficiency of the prediction model. To reduce the prediction complexity, the existing researches
choose the optimal feature subset through feature selection process [13]. Among the existing feature
selection methods, filter methods use some predefined evaluation criteria to evaluate the importance
of features for prediction or classification. On this basis, forward feature selection or backward feature
selection is carried out through a special feature order obtained by correlation analyzing methods. Filter
methods have the characteristics of fast speed and small calculation, which offers strong advantages in
engineering applications [14].

The relevance and redundancy between features can directly affect the result of filter feature
selection methods. Among the correlation analyzing methods, Mutual Information (MI) can analyze the
correlation between feature subset and prediction target, but the result of MI lacks consideration of the
redundancy features inside the feature subset [15]. When analyzing the relevance between a feature and
the predicted object, Conditional Mutual Information (CMI) also considered the redundancy between
the feature and other selected features, so CMI can maintain low redundancy among the feature subset
under the premise of ensuring the feature subset is strongly relevant to the predicted object [16]. With
the assistance of the feature order obtained by CMYI, filter feature selection can effectively improve the
prediction accuracy. Meanwhile, existing studies usually analyze the relationship between wind speed
and related features based on annual historical data, not considering the correlation between wind
speed and complex meteorological factors in different periods of a year, which can’t fully meet the
needs of the wind speed forecasting in the different periods [17].

The methods of wind speed predictor construction can be divided into physical methods,
statistical methods, intelligent methods and hybrid methods [18]. Statistical methods only need
historical data to establish the mapping relationship between input features and time series of wind
speed, and then carry out the prediction through this mapping relationship [19]. Representative
statistical methods include the Kalman filter [20] and autoregressive moving average (ARMA)
methods [21]. The intelligent methods can dig into the potential relationship between the input
feature and the time series of wind speed through historical data, which is more suitable to deal with
complicated relationships than the traditional statistical methods [22]. The intelligent methods include
artificial neural networks [23] and Recurrent Neural Networks (RNNs) [24]. The artificial neural
network methods [23-25] have advantage in constructing nonlinear prediction models, which have
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excellent generalization performance and are suitable for very short-term and short-term wind speed
forecasting [26].

Among the artificial neural network methods, Extreme Learning Machine (ELM) has the
advantages of extremely fast learning speed and generalization performance compared with traditional
neural network, but it easily runs into partial optimization problems [27]. Outlier-Robust Extreme
Learning Machine (ORELM) improves the ELM generalization ability by introducing standard
parameters, and is more suitable for forecasting wind speeds which have characteristics of high
randomness [28].

According to the deficiency of existing methods, a multi-step prediction method based on low
redundancy feature selection is proposed. Firstly, the CEEMD method was used to pretreat the training
set wind speed data. Then, a low redundancy forward feature selection was conducted based on
ORELM and the order of feature importance gained by CMI. Finally, the optimal short-term wind
speed forecasting model is constructed with the optimal feature subset to predict the specific period
wind speed. The feasibility and effectiveness of the new method are proved through the measurement
data of the American wind energy technology center.

2. Structure and Methodology of the New Hybrid Model

The data of training set was pretreated by CEEMD to reduce the effect of outlier data on prediction
model. CMI is used to reduce the redundancy of feature selection results. Construct ORELM predictor
with low redundancy optimal feature subset to improve the generalization ability of the predictor.

2.1. Complementary Ensemble Empirical Mode Decomposition (CEEMD)

CEEMD is an improved method on the basis of EMD and EEMD, the specific iteration of EMD is
generated as follows [29]:

(@) The local maximum and minimum points of the original signal S are connected by a cubic spline
to obtain the upper envelope emax and the lower envelope emin.

(b) The sequence 11 = [emax + €min] /2 is obtained by averaging two envelopes.

(c) The first component h; is obtained by removing m; from S:

h1:S—m1 (1)

(d) Repeat the above steps with /; until the number of extrema and zero crossings is equal or differ
at most by one, and the mean value of emax and ey is zero. The remaining signal is the first
Intrinsic Mode Functions (IMF).

(e) Remove IMF; from the original S and repeat the iterations above until the signal cannot be
decomposed, the remaining signal is the remainder function.

With the assistance of noise signals, EEMD makes up for the defects of EMD’s prone to
model-mixing by using the characteristics of the uniform distribution of the noise spectrum [11].
However, the residue noise during the signal reconstruction is difficult to be tolerated, which affects
the efficiency of EEMD decomposition. The fallowing improvement has been carried out based
on EEMD:

(a) Two groups of white noise signals with the same amplitude N and opposite phase are introduced
into the original signal S respectively, get two generated signals M; = S+ N and M, = S — N;

(b) Decomposition two groups of sequences with EMD method, obtain two groups of IMFs im f1
and imf,p. Then obtain the IMFs of CEEMD by averaging the components of the two groups
of IMFs:

imf = (imfy +imfyp)/2 )
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(c) Repeat the above steps with the data which removed the IMFs until the signal cannot be
decomposed. The remainder function r,(t) is the remainder of the signal, and the final
decomposition result of CEEMD is:

x(t) = Y imfi(t) + () 3
i=1

CEEMD solves the defect of EMD being prone to mode-mixing, and eliminates the effect of white
noise induced by EEMD by frequency domain complementation [30].

2.2. Conditional Mutual Information (CMI)

The CMI method can calculate the correlation between the target feature and the predicted target
with condition of the lowest redundancy between the target feature and the selected features. The MI
method uses the probability density function to define the correlation between variables X and Y,
the formula is as follows [31]:

o oo LY)_
I[(X;Y) _ygx;(P(x,y)l g(P(x)p(y)) @

where P(x) and P(y) represent the marginal probability distribution functions of sample X and Y
respectively. P(x,y) represents the joint probability density function for sample x and sample y.
The larger the MI value of the feature is, the higher the correlation between it and the predicted
target [16].

In the condition of a given discrete random variable Z, the CMI between X and Y can be expressed
as I(X;Y|Z). In the process of wind speed forecasting, assuming that the original feature set is V,
the given condition is the selected feature set V;, CMI between the target variable C and the selected
feature V; is:

I(CVi|Vj) = I(C; Vi) — I(C; V3 V) (5)

where I(C; V;) represents MI between the target variable C and the selected feature V; (the correlation
between features), I(C; V;; V]) represents that the information overlaps between feature V; and feature
Vj meanwhile as the target variable (the redundancy between features).

In conclusion, based on the MI between features and target variables, the CMI method reduces
the redundancy between features as another indicator of feature evaluation. It has not only evaluated
the contribution of features to the accuracy of prediction model, but also ensured the low redundancy
of the corresponding feature arrangement modes. Therefore, CMI can reduce the effect of redundant
information between features on feature selection results.

2.3. Outlier-Robust Extreme Learning Machine (ORELM)

ELM performs the prediction by minimizing the training error, but it is prone to reduce the
generalization performance of the model. ORELM introduces specification parameters C to improve
ELM generalization ability. ORELM uses ¢; — norm to replace ¢, — norm, and converts the target
function from:

min|ly — HB | ©)

to:

. 1,2
minflef, + =182 )

where e = y — HB, y represents the output matrix,  represents the weight matrix between the hidden
layer and the output layer. H represents the hidden layer output matrix.
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When establishing wind speed forecasting model, assuming a data set with N training samples
(xi;,yi),i € [1, N], where x; represents the input matrix, y; represents the output matrix. Assume that
¢(x) represents the activation function, and the number of hidden layer nodes is L. The iterations of
the ORELM algorithm are as follows:

(a) The implicit layer node parameters, namely the weight matrix w; and the threshold b; are
randomly generated, where i € [1, L];
(b) Calculate the output matrix of the hidden layer [32]:

H(Wl,...,WL,Xl,...,XN,b1,...,bL),

(wi-x1+b1) - -g(wp-x1 +bp)
8 1. 1+01 8 L 110 ®)

g(wy-xy+by)---g(wp-xy+br)

(c) Parameter initialization: u = 2N/||y||;, where u represents penalty coefficient, e; = 0,
the Lagrange multiplier A; = 0;

(d) This constraint optimization problem is solved by using the augmented Lagrange multiplier
(ALM) method, execute the following iteration process until the loop parameter k reaches the
maximum number of iterations:

Bri1 = (HTH+ 2/CVI)71HT(Y —er+ A/ )
ex1 = shrink(y — HByq + A/ p, 1/ 1) )
M1 = M+ pu(y — HBjyq — €xq1)

ORELM avoided solving the sparse matrix by converting the ELM’s target function into a
manageable convex relaxation problem. In addition, the ALM method is adopted to deal with
the convex relaxation problem, and the ability of prediction model to deal with discrete data is
strengthened, the generalization performance of ELM is improved [28].

2.4. Forecasting Accuracy Evaluations

For performance evaluation model, using Root-Mean-Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) as the index to evaluate model performance, which are widely used in the
wind speed forecasting field. The RMSE and MAPE are calculated as follows:

1 2
E= | = — % 1
RMS T;(xt Xt) ( 0)
MAPE — li S A BT 11)
- Tt:1 Xt ?

where £; represents the predicted value corresponding to the real wind speed x;, T represents the
number of wind speed samples.

3. The Composition of Data Sets

3.1. The Features of The Input Set

The wind speed at different time periods of a year has different characteristics and is affected
by the surface roughness and air density. Wind shear (1/s) can reflect the surface roughness around
the wind tower and the rate of wind velocity at different heights [33]. Temperature (°C), pressure
(mBar) and humidity are variables that able to influence the air density and can affect wind speed [34].
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Therefore, when building the original feature set, the basic features include wind speed x; (m/s),
temperature T; (°C), relative humidity R; (%), absolute humidity S; (g/Kg), atmospheric pressure P;
(mBar) and wind shear C; (1/s) of the 16 historical time points (15 min of sampling interval), including
the prediction time point t. Meanwhile, the extreme values (max, min), mean, Standard Deviation (std)
and Variance (var) of each feature were counted as supplementary features, the final feature dimension
is 126. The original historical features and their feature numbers are shown in Table 1. The original
statistical features and their feature numbers are shown in Table 2.

Table 1. The original historical feature set and the features’ serial number.

Feature Types Historical Features Numbers
Wind Speed (xt) Xt—1, Xt—2, Xt—3,..., Xt—16 1-16
Temperature (T}) Tt,L Tt72, T3 .. : T 16 17-32
Relative humidity (Ry) Ri—1,Ri—2, Ri—3, ... Ri—16 33-48
Absolute humidity (S¢) Stfl, Stfz, St,3, ., St_16 49-64
atmospheric pressure (Pf) Pi_1,Pi—o Pi3,..  Pi_16 65-80
Wind shear (Ct) Ct—l, Cf_zl Ct—3, o, Ct_lé 81-96

Table 2. The original statistical feature set and the features’ serial number.

Feature Types Statistical Features Numbers
max (X1, Xt Xt—3,... Xt_16); MiN(Xt_1 Xt 2 Xt_3 ..., Xt_16);
Wind speed (x;) mean(x;_q, Xt_p, Xt_3, .., Xt_16); 97-101

std(x;_1, Xt—p, Xt—3,..., Xt—16); var(xs_1, Xr—2, Xt—3,..., Xt—16)

max(Ty 1, Tt Tr—3 ..., Tt—16); min(Tt 1, Ty 5 Tt 3, Ti_16);
Temperature (T}) mean(Ty 1, Tt—o Tt—3, ..., Tt—16); 102-106
std(T;—1, Tt—2, Tt—3,..., Tt—16); var(Ty_1, Tt—o, Tt—3, ..., Tt_16)
max(R¢—1, Rt Rt_3,... Ri_16); min(Ry_1, Rt o Rt_3,... Ri_16);
Relative humidity (R¢) mean(R;_1, Ri—o Ri—3,... Ri_16); 107-111
std(Rt—1, Rt—2, Rt —3,..., Ri_16); var(Ry—1, Rt 2, Ry 3, ... Ri_16)

max(S;_1, St—2, St—3,..., St—16); Min(St_1, St 2, S¢—3, ..., St_16);
Absolute humidity (S;)  mean(S;_1, St_5, St—3, ..., St—16); 112-116
std(St—1, St—2,St-3,..., St—16);var(S¢—1,St-2, St-3,..., St—16)
max(P_q, Pt_p Pt_3,... Pi_16); min(Pt_1, Pt Pr_3 ... Pt 16);
atmospheric pressure (P;) mean(Pr_1, Pt_p Py_3, . Pi_16); 117-121
std(Py_1, Pt Py_3 ..., Pr_16); var(Ps_1, Pt Pi_3, ... Pr_16)
max(Ct 1, Ct—3, Ct—3,...,Ct—16); min(Ct 1, Ct 2 Ct 3 ..., Ct_16);
Wind shear (Ct) mean(Ct,L Ct72, Ct73, .., Ct716)/' 122-126
std(Ci—1, Ct—2, Ct—3 Ci—16);var(Ci_q,Ct—p, Cr_3, ., Ci—16)

,,,,,

,,,,,

Data were collected using measured data from the National Wind Energy Technology Center
(NWTC) M2 wind tower. The geographical location of NWTC and M2 wind tower is shown in
Figure 1 [35]. The region is located in north latitude 39.91° and west longitude 105.29°, the measured
height of the wind speed and temperature is 80 m. The test environment is a personal computer with
16 GB of memory and the Intel(R) Core(TM) i7-6820hk processor which has an operating frequency of
2.7 GHz. The experimental platform is Matlab (R2016a, MathWorks, Natick, MA, USA). The multi-input
and multi-output Strategy (MIMO) is more accurate than the rolling prediction method [7]. Therefore,
the new method adopts the MIMO prediction structure, which is constructed with the optimal feature
subset obtained by low-redundancy forward feature selection, and builds a four-step wind speed
forecasting model that meets the requirements of wind speed forecasting in different time periods (the
step length is 15 min).
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Figure 1. The geographical location of date measurement in NWTC.

3.2. Data Preprocessing

CEEMD is used to pretreat the signals of wind speed time series. The signal is decomposed into a
series of IMFs: IMFy, ..., IMF,. CEEMD parameters are determined by reference to existing literature
and statistical experimental conclusions [7], adding a 5 db signal-to-noise ratio white noise to the
original signal and the number of iteration is 500. If the high-frequency IMF of wind speed signal
fluctuates repeatedly in a very short time, it is indicated that the mode contains more non-cyclical
components. Although the volatile component contains a small amount of wind speed information,
the large number of outliers in the mode can greatly affect the accuracy and stability of the prediction
model. Therefore, CEEMD was used to decompose the wind speed samples to 8 to 10 IMFs, and filter
out the highly volatile IMFs, the remaining IMFs reconstructs the new wind speed time series. Thus,
the effect of outliers on prediction model is reduced, and the prediction accuracy of model is improved.

To compare the pretreatment impact of CEEMD, EEMD and EMD, the wind speed time series of
31 March 2009 is taken as an example. Figure 2 shows the pretreatment results of three decomposition
methods. As shown in Figure 2, the wind speed curve obtained after CEEMD pretreatment reduces
the volatility of wind speed, and is more accurately follow the trend of wind speed than other methods
in the period from 15:45 to 23:45. Wind speed series after EMD and EEMD pretreatment is difficult to
reflect the detailed trend of wind speed.

201
~15r
g
]
3
N
- 10 =
s YN
= - ,
—=— The original curve \ '\
st CEEMD pretreatment curve
—-—- EEMD pretreatment curve
-------- EMD pretreatment curve
0 I I I I I ]
0:00 3:45 7:45 11:45 15:45 19:45 23:45

time (15min)

Figure 2. Wind speed curves reconstructed by different decomposition methods.
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Meanwhile, in order to test the effect of pretreatment to wind speed forecasting accuracy, a wind
speed forecasting experiment is carried out with predictor based on ORELM. The original feature set
is used to construct the input feature set. The annual wind speed sample of 2008 is used as the training
set, and the data from 30 March to 5 April 2009 is used as the test set.

It can be seen from Table 3 that the wind speed sequence obtained after pretreatment with CEEMD
is forecasted and got the highest the accuracy. Compared with raw data, RMSE decreased 0.8437 m/s
and MAPE decreased 13.93%, which proved that CEEMD effectively reduced the effect of outliers on
wind speed forecasting and improves the prediction accuracy.

Table 3. Result of multistep forecasting for wind speed with data before and after pretreatment.

Pretreatment Method EMD EEMD CEEMD Raw Data
MAPE 31.96% 29.79% 24.23% 38.16%
RMSE (m/s) 1.5211 1.4013 1.1465 1.9902

3.3. Data Set Construction

The correlation between wind speed and meteorological factors was different in different time
of year. In order to meet the requirements of wind speed forecasting model in different time periods,
a method of daily low redundancy wind speed features selection is proposed. Expect the data of the
predicted day as target date, the data of k days before and after the target date in the former four years
is selected as training set, then analyze the correlation between features with this data set. Meanwhile,
data of the week before target date is selected as the validation set, which can ensure feature selection
process get feature subsets with strong pertinence based on the meteorological characteristics of
different forecast periods. The validation set can also the optimal feature set guaranteed to the meet of
target date requirements. Figure 3 shows the data set on 6 April 2009 as an example.

2009

Training set on 6th April 2009

'\/ 2009 |_4.6 The target date \'

— q=——————————--
ryTTT T T T T T T T T T T T T L ________________ sy T T = | _______ N
I 2005 | previous k days | 4.6  latter (k-1) days |\| | :
: 2006 | previous k days | 4.6  latter (k-1)days : : |
I 2007 | previous kdays | 46 , latter (k-1) days | ! | 2009, 33045 |
: 2008 | previous k days | 4.6 | latter (k-1) days | : :Va]idaﬁon set on 6th April :
| ) )

Figure 3. Prediction of data set construction on 6 April 2009.

To ensure the new method meets the needs of wind speed forecast at different periods of a year,
one day is selected randomly from each quarter of 2009 as the target for prediction (the test set). To test
the generalization performance of the new method, new method is used to build the optimal prediction
model for every predicted day.

3.4. Data Set Determination

During the training set construction, the parameter of k effects the prediction accuracy and
efficiency of models directly. To obtain the appropriate value of parameter k, multi-step prediction
models was constructed with different parameters k for 364 days (total 52 weeks) in 2009, and series of
statistical experiments was carried out. Figure 4 shows the weekly average error curves with different
values of parameter k.
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tor Q@ (MAPE=25.84% Training time=39s)
1201 9 (MAPE=18.02%, Training time=47s)
T O (MAPE=15.37% Training time=54s)
EIJ —
g 80 ~ (MAPE=13.12%,
60 M Training time=67s)
(MAPE=13.09%,
40 (MAPE=13.0
Training time=92s)
20
0 5 10 15 20 25 30 35 40 45
k

Figure 4. Average weekly error curves with different parameter k.

It can be seen from Figure 4 that the training time of models increases with the increase of
parameter k, and the MAPE elevation of the parameter k in the interval from 30 to 45 is only 0.03%.
In order to ensure the efficiency and accuracy of the new method, the data set with the value of
parameter k is set as 30.

4. Time-Sharing Low Redundancy Feature Selection

4.1. Analysis of Feature Correlation

To analyze the necessity of the feature selection with historical neighborhood data and the
analysis advantage of redundancy feature set gained by CMI, the feature correlation on 21 January,
17 April, 18 July and 7 November 2009 was analyzed according to the Data of Adjacent (AD) and
the Data of the whole Year (YD). Figure 5 shows the after the normalization analysis results of
Pearson Correlation coefficient [36] (PCC), MI and CMLI. Table 4 shows numbers of the most important
30-dimensional features.

As can be seen from Figure 5, the importance of the same type of features varies greatly in
different dates according to the analysis result with AD dataset. For example, in the analysis results of
PCC, feature P; is higher than the rest periods on 17 April significantly. Table 4 shows that the same
correlation analysis method has different importance order for the same feature in different time dates.
The analysis results with YD data sets cannot reflect the differences.

PCC MI CMI
Xt Ti R Se P C: Statistical 1 Xt Ti. R S P C:  Statistical I Xt Ti. R S P C:  Statistical
T T T T T T T

Importance

48 64 80 126

Feature dimension Feature dimension Feature dimension
The feature importance on January 21
(a)
PCC MI CMI

x T. R & P C Statistical x T RS P C Statistical x T: RS P G Statistical
T T T T 1 T T 1 T T

Importance

0

1 16 32 48 64 80 96 126 71 16 32 48 64 80 96 126 "1 16 32 48 64 80 96 126
Feature dimension Feature dimension Feature dimension
The feature importance on April 17"
(b)

Figure 5. Cont.
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Importance

10 of 19

PCC MI CMI
S Pi G Statistical x Ti RS P G Statistical
T T T I T T T T T

x Tt RS P C: Statistical . x Tt R
T T T T T T

Importance

(=]

16 32 48 64 80 96 126 91 16 32 48 64 80 96 126 91 16 32 48 64 80 96 126
Feature dimension Feature dimension Feature dimension
The feature importance on July 18"
(©)
PCC MI CMI

xx T R S P C Statistical | xx T R S P C: Statistical | xx Tt R S P Ci Statistical
T T T T T T T T T T T T T T T T T T

16 32 48 64 80 96 126 01 16 32 48 64 80 96 126 01 16 32 48 64 80 96 126
Feature dimension Feature dimension Feature dimension
The feature importance on November 7"
(d)
PCC MI CMI

Xt T: R: St P: C:  Statistical Xt T R: St P: C:  Statistical Xt T: R St P: C:  Statistical
T T T T T T T

1 T T T T T

16 32 48 64 80 96 126 01 16 32 48 64 80 96 126 01 16 32 48 64 80 96 126
Feature dimension Feature dimension Feature dimension
The feature importance in the whole year
(e)

Figure 5. Results of the features’ correlation analysis. (a) The correlation analysis results on 21 January;
(b) The correlation analysis results on 17 April; (c) The correlation analysis results on 18 July;
(d) The correlation analysis results on 7 November; (e) The correlation analysis results of the whole year.

Table 4 can be used to compare the redundancy analytical capability between features with

different correlation analysis methods. The overlap between features is the redundancy of information,
and the redundancy of the same type of features is higher. As can be seen from Table 4, the historical

wind speed category features x; has the highest frequency.

In the first 30 dimensional feature set on 17 April, the PCC method selected 15 dimensions wind

speed category features, and the MI method selected the 14 dimensions wind speed category features,
while the CMI method only selected the 11 dimensions wind speed category features. Meanwhile, the
CMI method took the standard deviation of absolute humidity (115 dimensional) and the variance of
air pressure (121 dimensional) into the first 30 dimensional feature set to replenish the information on
humidity and air pressure. Similar phenomena occurred in other periods. It can be seen above that
CMI method can improve the information integrity of feature subset.
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Table 4. Feature numbers of the most important 30 dimensions.

11 of 19

Periods of Time Analysis Methods 1-10 Dimensional Features 11-20 Dimensional Features 21-30 Dimensional Features
PCC 1,2,3,4,81,5,82,97,109,6 83,98,114,7,84,8,107,85,9,10 86,108,11,87,12,88,13,14,89,15
21 January MI 1,2,3,81,4,97,82,5,109,98 83,6,114,84,7,107,8,85,9,10 86,108,11,87,12,13,88,14,15,89
CMI 1,2,3,81,4,82,97,5,83,109 98,6,84,114,107,7,121,115,85,8 108,9,86,10,11,87,12,88,13,126
PCC 1,2,3,4,81,5,97,82,109,6 98,83,7,114,84,8,85,9,107,10 86,108,11,12,87,13,88,14,89,15
17 April MI 1,2,3,4,81,97,5,82,98,109 83,6,7,84,114,8,107,85,9,108 10,86,11,87,12,88,13,121,115,14
CMI 1,2,3,81,4,97,82,5,98,109 83,6,84,114,7,115,121,107,85,108 8,9,86,10,87,11,33,34,126,120
PCC 1,2,3,4,81,82,5,97,109,83 6,98,114,84,7,107,85,8,9,86 108,10,87,11,115,12,88,13,89,14
18 July MI 1,2,3,81,4,82,97,5,98,109 83,6,84,114,107,7,85,8,86,9 108,10,87,11,121,115,88,12,13,89
CMI 1,2,3,81,4,82,97,5,98,83 109,6,84,107,114,115,121,7,85,108 8,86,9,10,120,126,87,11,122,116
PCC 1,2,3,4,97,81,5,109,82,6 98,7,83,114,8,84,9,107,10,85 11,12,86,108,13,14,87,15,16,88
7 November MI 1,2,3,4,81,97,5,109,82,98 6,83,114,7,107,8,84,9,85,10 11,86,12,108,13,14,87,15,16,88
CMI 1,2,3,81,4,97,82,5,109,98 83,6,114,84,7,107,8,115,121,108 85,9,10,86,11,12,13,14,87,15
PCC 1,2,3,4,5,97,81,109,6,82 98,7,83,8,114,84,9,10,85,11 107,12,108,86,13,14,87,15,16,88
YD MI 1,2,3,4,81,97,5,82,109,98 6,83,7,114,84,8,107,9,85,10 11,108,86,12,13,87,14,88,15,16
CMI 1,2,3,81,4,97,82,5,98,109 83,6,84,7,114,107,121,115,8,85 9,108,86,10,11,87,12,13,88,14




Energies 2018, 11, 1638 12 of 19

4.2. Forward Feature Selection

The reorder feature gained by PCC, MI and CMI are respectively combined with ORELM, ELM
and Back-Propagation Neural Network [25] (BPNN) for forward feature selection. Parameters of ELM
and BPNN are set according to relevant references [26,27], the specification parameter C of ORELM is
set to 2710 [28].

To compare the effect of the correlation with AD and YD data sets on predictive models, the feature
subset gained with different data sets are combined with the predictors respectively. The forward
feature selection is carried out for different forecast days in the condition of different training set
and same validation set. MAPE is used to evaluate the prediction accuracy of different method with
different feature subset.

Figure 6 shows the error curve of test set in the four predicted days include 21 January, 17 April,
18 July and 7 November 2009, respectively. As shown in Figure 6, the optimal feature subset is
determined by the MAPE. Comparing Figure 6a,b, error curves of feature selection with the AD data
set converged rapidly and achieved the minimum MAPE, while the error curves of feature selection
based on the YD data set converged slowly and the minimum of MAPE is larger.

25 ¢

24 - —— AD-CMI-ORELM-January 21*'

AD-CMI-ORELM-April 17"

22 ——— AD-CMI-ORELM-July 18"
_ AD-CMI-ORELM-November 7"
é 20 1 ® MAPE of the optimal feature subset
g 18 J
E 16 -

14

12+

100770 20 30 40 50 60 70 80 90 100 110 120

Feature dimension
(a)
25
24

—— YD-CMI-ORELM-January 21*'
0t YD-CMI-ORELM-April 17"

——— YD-CMI-ORELM-July 18"
~ 20 f YD-CMI-ORELM-November 7"
% ® MAPE of'the optimal feature subset
% 18 I
= 16
14

100 10 20 30 40 50 60 70 80 90 100 110 120
Feature dimension
(b)
Figure 6. Optimal feature selection curves. (a) Analysis curves with AD data; (b) Analysis curves with

YD data.

Tables 5 and 6 show the prediction effect of predictors based on different optimal feature subsets.
As Tables 5 and 6 show, the optimal MAPE of AD-ORELM decreased by an average of 4.8% compared
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with YD-ORELM, the optimal MAPE of AD-ORELM decreased by an average of 3.5% compared
with YD-ELM, the optimal MAPE of AD-BPNN decreased by an average of 3.7% compared with
YD-BPNN, which proved that analyzing feature correlation with AD data can improve the performance
of feature selection.

Table 5. The optimal feature subsets of different predict days obtained with AD data.

AD-ORELM AD-ELM AD-BPNN
Periods of Time  Analysis Methods
MAPE DIM MAPE DIM MAPE DIM
PCC 10.45% 17 11.56% 14 11.39% 103
21 January MI 10.44% 17 11.33% 21 11.40% 118
CMI 10.34% 18 11.00% 19 11.03% 116
PCC 10.75 22 12.19 10 11.93 34
17 April MI 10.76 23 11.99 18 11.98 90
CMI 10.37 23 11.56 21 11.87 30
PCC 10.20 17 11.73 16 11.88 24
18 July MI 10.23 19 11.82 15 11.97 106
CMI 10.08 19 11.37 17 11.44 44
PCC 11.25 15 12.19 15 12.50 88
7 November MI 11.20 14 12.68 52 12.76 55
CMI 11.02 15 12.51 15 12.64 59

Table 6. The optimal feature subsets of different predict days obtained with YD data.

YD-ORELM YD-ELM YD-BPNN
Periods of Time  Analysis Methods
MAPE DIM MAPE DIM MAPE DIM
PCC 11.11% 106 11.62% 125 11.90% 120
21 January MI 10.93% 113 11.63% 88 11.83% 121
CMI 10.71% 83 11.51% 109 11.62% 68
PCC 11.34% 83 12.77% 53 12.46% 67
17 April MI 11.23% 97 12.72% 20 12.43% 111
CMI 11.23% 38 12.32% 56 12.38% 61
PCC 10.99% 22 12.29% 22 12.34% 21
18 July MI 10.99% 20 12.22% 21 12.29% 29
CMI 10.70% 29 12.16% 16 12.24% 27
PCC 11.52% 81 12.50% 63 12.97% 69
7 November MI 11.42% 62 12.72% 95 12.90% 57
CMI 11.37% 94 12.65% 103 12.81% 75

Meanwhile, AD-CMI-ORELM has the highest prediction accuracy in every predicted days, which
can be preliminarily proved that the redundancy among the features of the optimal feature subset is
reduced by CMI, which improved the prediction accuracy of models.

Table 7 shows types of the optimal features subset obtained by the AD-ORELM method.
In combination with Tables 5-7, it can be seen that the redundancy of feature subsets can be reduced
after appropriate reduction of similar features. This reduction also improved the prediction accuracy.
Meanwhile, adding new types of features with high correlation can enhance the information integrity
of the feature subset and further reduce MAPE of the optimal feature subset.

The CMI method can control the redundant between features in four predicted days accurately.
In the first three predicted days, the feature subsets obtained by CMI introduces the standard deviation
of absolute humidity (115 dimensional) and pressure variance (121 dimensional) in the premise of low
redundancy, makes the optimal subset of features obtained by CMI is more advantageous than those
from MI and PCC in information integrity, and the smaller MAPE is obtained. On 7 November, CMI
ensured that the information integrity in the optimal features subset was achieved, resulting in lower
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MAPE than MI and PCC. In this review, it can be proved that using CMI to carry out low redundancy
forward feature selection can effectively improve the prediction accuracy and reduce the dimension of
feature subsets.

Table 7. The feature variety of the optimal feature subset obtained by AD-ORELM method.

Periods of Time  Analysis Method Historical Features Statistical Features
Xt C: Xt R¢ S Py
PCC 8 4 2 2 1 0
21 January MI 8 4 2 2 1 0
CMI 7 4 2 2 2 1
PCC 10 6 2 3 1 0
17 April MI 11 6 2 3 1 0
CMI 9 6 2 3 2 1
PCC 7 5 2 2 1 0
18 July MI 9 5 2 2 1 0
CMI 7 5 2 2 2 1
PCC 8 3 2 1 1 0
7 November MI 7 3 2 1 1 0
CMI 7 4 2 1 1 0

5. Predictive Effect and Model Comparison

In order to verify the effectiveness and advancement of the new method, the optimal feature
subset selected by the AD data feature selection is combined with different predictors. Meanwhile,
to ensure the comparison results have wider ramifications, Classification and Regression Tree [37]
(CART) which can automatically complete the feature selection process according to the training set
sample and obtain the optimal feature set is used to predict the wind speed samples of different period
of time. Figure 7 shows the prediction curves of the AD-CMI-ORELM method by taking the four
predicted days as examples.

On 21 January, Figure 6 shows that the range of wind speed is very wide (minimum 1.55 m/s to
26.07 m/s), and wind speed increased from 2.43 m/s to 18.52 m/s rapidly, which brought extremely
high requirement to prediction models. In the other three predicted days, the wind speed was less than
10 m/s and there was a plummet in wind speed. In particular, wind speed on 18 July was up to 17 h
in a continuous random fluctuation period below 5 m/s. However, it can be seen from Figure 7 that,
although situations of the four predicted days brought challenges to the prediction model, the new
method can accurately fit the trend of wind speed, which proves the effectiveness and advancement of
the new method.

Table 8 shows the prediction error of predictors construct with different optimal feature subsets.
It can be seen from Table 8 that, no matter in which predicted day, the MAPE and RMSE generated
with the optimal feature subset obtained by CMI are significantly less than the ones based on PCC and
ML This indicates that low redundancy feature subset can effectively improve the prediction accuracy
of the model.

Models established with ORELM generated lower MAPE and RMSE, which proves that ORELM
introduced the specification parameters C and adjusted the target function of ELM effectively reduces
the effect of outlier data on the prediction precision and improves the generalization performance of
the model.
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Figure 7. Predicts curves of the proposed method on different predict days (a) Forecast curve of
21 January; (b) Forecast curve of 17 April; (c) Forecast curve of 18 July; (d) Forecast curve of 7 November.

The comparison experiment proves that the new method can obtain better forecast results
than AD-CART method, which once again proved that the performance of feature selection can
be improved by using adjacent samples as validation set and the effectiveness of ORELM as a predictor.
AD-CMI-ORELM model also obtained the minimum MAPE and RMSE in each prediction day. Take
the experimental result of 21 January as an example. The AD-CMI-ORELM model decreased by
15.81% compared with MAPE of the worst model AD-PCC-ELM, while RMSE decreased by 20.6%.
AD-CMI-ORELM was reduced by 4.6% and RMSE by 11.4%, compared with the suboptimal model
AD-MI-ORELM. There is a similar increase in the other three predicted days, which proves the
effectiveness and advancement of the new method. Meanwhile, due to the frequent and larger
fluctuation of wind speed on 21 January, the RMSE was slightly worse than that of the other three
predicted days.

However, compared with the other methods, the new method still has the same proportion of
improvement, which further proves the effectiveness and advancement of the new method.

In order to further illustrate the effectiveness of the new method, the 7-day data was randomly
selected from each season in 2009 to constitute a test set and verify the prediction effect of different
models. The average error of each model in different seasons is shown in Table 9.

It can be seen from Table 9 that the error indexes of AD-AMI-ORELM model adopted by the new
method still have obvious advantages in the prediction results obtained in all models, and the validity
of the new method is proved again.
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Table 8. Prediction accuracy on different predict days.

AD-ORELM AD-ELM AD-BPNN AD-CART
Periods of Time  Analysis Methods
RMSE (m/s) MAPE DIM RMSE (m/s) MAPE DIM RMSE (m/s) MAPE DIM RMSE (m/s) MAPE DIM

PCC 1.7284 11.42% 17 1.8966 12.84% 14 1.7655 12.51% 103

21 January MI 1.6987 11.33% 17 1.7187 12.52% 21 1.7295 12.44% 118 1.6725 11.03% 32
CMI 1.5056 10.81% 18 1.6244 12.03% 19 1.7083 12.37% 116
PCC 0.5545 9.68% 22 0.5655 11.96% 10 0.5097 11.49% 34

17 April MI 0.5118 9.77% 23 0.5401 11.81% 18 0.6424 11.9% 90 0.5261 9.75% 25
CMI 0.4545 9.17% 23 0.5005 11.43% 21 0.5024 11.41% 30
PCC 0.5054 11.54% 17 0.5481 13.22% 16 0.5468 13.43% 24

18 July MI 0.5021 11.15% 19 0.5476 13.12% 15 0.5015 12.94% 106 0.4855 11.09% 27
CMI 0.4141 11.06% 19 0.4603 12.74% 17 0.4439 12.66% 44
PCC 0.4561 10.37% 15 0.4211 11.49% 15 0.4972 12.28% 88

7 November MI 0.3988 10.45% 14 0.453 11.61% 52 0.4484 11.89% 55 0.372 10.41% 20
CMI 0.3269 9.72% 15 0.3704 10.95% 15 0.4154 11.52% 59

Table 9. Prediction results on all selected predict days.

AD-ORELM AD-ELM AD-BPNN AD-CART
Seasons Analysis Methods
RMSE (m/s) MAPE RMSE (m/s) MAPE RMSE (m/s) MAPE RMSE (m/s) MAPE
PCC 1.3397 11.23% 1.3878 11.82% 1.397 12.06%
Spring MI 1.3474 11.15% 1.3927 11.79% 1.3856 11.92% 1.3482 11.16%
CMI 1.2881 10.72% 1.3241 11.36% 1.3328 11.17%
PCC 0.5894 11.32% 0.6633 12.45% 0.6648 12.45%
Summer MI 0.5911 11.27% 0.6519 12.40% 0.6467 12.49% 0.5872 11.3%
CMI 0.5321 10.84% 0.5864 11.86% 0.5942 11.89%
PCC 0.5290 10.88% 0.5843 11.97% 0.5798 11.98%
Autumn MI 0.5204 10.95% 0.5774 11.96% 0.5760 12.02% 0.4957 10.83%
CMI 0.4684 10.25% 0.5175 11.28% 0.4995 11.46%
PCC 0.9491 11.63% 0.9825 12.54% 0.9858 12.89%
Winter MI 0.9521 11.71% 0.9908 12.75% 0.9832 12.89% 0.943 11.25%

CMI 0.9026 10.93% 0.9493 12.02% 0.9375 12.27%
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In order to explain the difference in the prediction performances of different seasons, Table 10
presents the statistical indicators of wind speed in different seasons. As shown in Table 10, the range
of wind speed is similar in the four seasons, but according to variance value of the wind speed, wind
speed in spring and winter is more volatile and violent. Therefore, the RMSE of the new method in
spring and winter is higher than that in summer and autumn.

Table 10. The statistical indicators of wind speed in different seasons.

Feature Seasons Range of Variation Variance Value
Spring [0.29, 32.48] 22.34
. Summer [0.29, 31.57] 10.30
Wind speed Autumn [0.25, 30.52] 7.12
Winter [0.25, 32.65] 21.76

6. Conclusions

To overcome the lack consider of the redundancy between features in the modeling process and
the variation of wind speed characteristics at different time periods. This paper makes the following
innovations to improve the pertinence and prediction accuracy of wind speed forecasting model:

(1) A low redundancy feature selection is carried out with the CMI method, which reduced the effect
of redundancy between features on prediction accuracy and complexity of a model.

(2) Building prediction model with ORELM, which improves the generalization performance of
the prediction model based on the high prediction efficiency by adding the standard parameter
adjustment training error and output layer weight into the target function of ELM.

(3) The targeted feature selection process and modeling are carried out on different forecast days,
overcomes the shortcoming of carrying out feature selection with annual data, which is difficult
to show the correlation between wind speed and complex meteorological factors in different time
periods, improved the pertinence and prediction of wind speed forecasting model.

The experimental results verified the effectiveness and advancements presented of the
new method.
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