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Abstract: A new single-phase transformerless current source inverter is proposed in this paper.
The proposed inverter can achieve leakage current reduction, which is crucial for the conventional
current source inverter. The basic concept of the proposed solution is to develop the new inverter
by the duality principle from the voltage source inverter. The theoretical analysis is carried out to
determine the switching states of the proposed inverter for the leakage current reduction. Also, a new
modulation strategy is presented to achieve the optimized switching states. Finally, the experimental
results are presented. Comparing with conventional single-phase current source inverter, the leakage
current can be significantly reduced by the proposed inverter, which verifies the effectiveness of the
proposed solution.
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1. Introduction

Power generation with solar energy is one of the most attractive solutions towards the utilization
of renewable energy sources [1]. Typically, the inverter is used to interface the solar photovoltaic (PV)
panel to the grid via a transformer. This kind of transformer is bulky, low-efficient and not cost-effective.
This is the reason why transformerless PV inverters have been developed in recent years [2–4].
In practice, however, leakage current would arise due to a lack of galvanic isolation. The leakage
current leads to the electromagnetic interference and potential safety issues [5,6]. Therefore, the VDE
standard specifies that the leakage current should be less than 300 mA. Otherwise, the grid-connected
inverter should be disconnected from the grid. Typically, the inverter is used to interface the PV panel
and grid.

In order to solve the above mentioned problem, many solutions have been proposed in
the last decades. To reduce the common-mode voltage (CMV), the novel modulation methods
have been proposed [7–14]. An improved modulation with modified reference was proposed
in [7]. Another modified modulation for reducing the CMV with specified vectors was proposed
in [8]. Lian et al. reduce the CMV by introducing the average-value-reduction space vector
modulation method. It applies the specified switching states with less CMV. Bradaschia et al. [15,16]
proposed effective methods to reduce leakage current which only need additional fast-recovery
diodes. To increase the optional switching states, the extra switch can also be added to the system.
The principle of this method is to isolate the PV array and the grid during the zero switching
states [17–24]. The methods may result in extra cost, losses, and increases control complexity.
However, the electromagnetic interference (EMI) filter that is used to improve the output current
quality could be removed from system if the leakage current is eliminated effectively. Thus, the cost of
the EMI filter will be saved and the size of the inverter will be decreased. Miveh et al. [25–27] proposed
four-wire inverters which only need extra neutral wire. For this reason, the direct current (DC)-link
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midpoint connects with the neutral point of the grid, and the voltages between the PV array and the
ground are limited to a constant value. So, the leakage current can be reduced effectively. Some scholars
proposed inverters which connect the PV array terminal with the grid terminal. The voltage between
the PV array and the ground is clamped. Therefore, the leakage current can be reduced [28–32].

The two-stage power conversion would be complicated and have a low efficiency. An alternative
solution is proposed using the current source inverter [33–36]. However, the leakage current could not
be well suppressed with the conventional current source inverter, which is the motivation of the paper
in solving this problem.

The objective of the paper is to present a new single-phase transformerless current source
inverter with leakage current reduction. Like the VH6 inverter [3], the proposed inverter only needs
a bidirectional switch which in serial with the alternating current (AC) side. When the inverter works
in zero switching states, the extra switch will work to isolate the PV array and the grid. The rest
paper is organized as follows. Section 2 provides the theoretical analysis as to why the conventional
single-phase current source inverter fails to reduce the leakage current. The new solution for the
leakage current reduction is presented in Section 3. The simulation and experimental results are
provided in Section 4.

2. Conventional Current Source Inverter

The conventional single-phase current source inverter is illustrated in Figure 1, which consists
of four switches in an H-bridge format. Therefore, it is called a CH4 inverter. In order to evaluate
the leakage current reduction capability, the common-mode loop model is established, as shown in
Figure 2.
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Figure 1. The CH4 inverter. 
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Figure 2. Circuit model of the CH4 inverter. 

In Figure 2, Vpo and Vno represent the voltage between the positive or negative rail and the ground, 

respectively. They can be regarded as the controllable voltage sources, which are regulated by the 

switching states si (i = 1, 2, 3, 4). Lf1, Lf2, L1, and Lf2 are the input and output inductors, respectively. IL 

is the output inductor current. Vg is the grid voltage. Ia and Ib can be regarded as the controllable 

current sources, which are determined by the switching states si (i = 1, 2, 3, 4).  

Figure 1. The CH4 inverter.
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In Figure 2, Vpo and Vno represent the voltage between the positive or negative rail and the ground,
respectively. They can be regarded as the controllable voltage sources, which are regulated by the
switching states si (i = 1, 2, 3, 4). Lf1, Lf2, L1, and Lf2 are the input and output inductors, respectively.
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IL is the output inductor current. Vg is the grid voltage. Ia and Ib can be regarded as the controllable
current sources, which are determined by the switching states si (i = 1, 2, 3, 4).

Note that the leakage current is mainly determined by the common-mode behavior of the inverter.
Therefore, the differential-model variables, e.g., Ia and Ib, are neglected for simplicity. In this way,
the simplified common-mode loop model can be obtained, as shown in Figure 3.
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Figure 3. Simplified common-mode model of the CH4 inverter.

In Figure 3, the equivalent impedance Z and equivalent voltage Vm can be expressed as follows,
according to Thevenin’s theorem.

Z =
L1 · L2 · s
L1 + L2

(1)

Vm =
L1 · Vno + L2 · Vpo

L1 + L2
= Vcm +

(L2 − L1)(Vpo − Vno)

2(L1 + L2)
(2)

In Equation (2), the Vcm represents the CMV.

Vcm =
(Vpo + Vno)

2
(3)

The Vm would be equal to Vcm on the condition that L1 and L2 have the identical inductances,
which are generally designed the same in practical applications.

The voltage Vpo and Vno can be derived as follows:

Vpo = (L f 1 · s1 − L f 2 · s3)(s2 + s4)s · IL + s1(s2 + s4)Vg

Vno = (L f 1 · s2 − L f 2 · s4)(s1 + s3)s · IL + s2(s1 + s3)Vg
(4)

where:

si =

{
1
0

,
,

when ON
when OFF

(i = 1, 2, 3, 4) (5)

In the condition that L1 = L2 = L and Lf1 = Lf2 = Lf, Vm can be represented as follows:

Vm = Vcm = (s1 · s2 − s3 · s4)s · L f · IL + (2s1 · s2 + s2 · s3 + s1 · s4)
Vg

2
(6)

The leakage current Icm can be derived from Figure 3 as follows:

Icm =
Vm

Z + 1
2CPV ·s

(7)

Then, the common-mode current of Icm can be calculated by using Equations (6) and (7):

Icm =
(s1 · s2 − s3 · s4)s · L f · IL + (2s1 · s2 + s2 · s3 + s1 · s4)

Vg
2

L·s
2 + 1

2CPV ·s
(8)
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From Equation (8), it can be observed that Icm is dependent on many factors, such as the parasitic
capacitance CPV, the grid voltage Vg, input filter inductance L, output filter inductance Lf, and switching
states si. In practice, the switching states vary at a high frequency, which will have an impact on
the CMV.

According to the Equation (6), the switching states and the corresponding CMV is analyzed as follows.
When the switches S1 and S4 are ON, the CMV can be obtained as Equation (9).

Vcm =
Vg

2
(9)

When the switches S1 and S2 are ON, the CMV can be obtained. Considering the voltage drop
across the inductor is much smaller than grid voltage, the CMV is approximately equal to the grid
voltage as follows:

Vcm = L f · s · IL + Vg ≈ Vg (10)

When the switches S2 and S3 are ON, the CMV can be obtained as follows:

Vcm =
Vg

2
(11)

When the switches S3 and S4 are ON, the CMV can be obtained. Note that the voltage drop across
the inductor is much smaller than the grid voltage. Therefore, it can be neglected, and the CMV is
approximately equal to zero as follows:

Vcm = −L f · s · IL ≈ 0 (12)

Based on the above analysis, the switching states and the corresponding voltage are listed in Table 1.

Table 1. The switching states and their voltages.

S1 S2 S3 S4 Vpo Vno Vcm

1 0 0 1 Vg 0 Vg/2
1 1 0 0 Vg Vg Vg
0 1 1 0 0 Vg Vg/2
0 0 1 1 0 0 0

From Table 1, it can be observed that the CMV varies with the switching states in a high-frequency
way. That is the reason why the conventional CH4 inverter fails to reduce the leakage current.

3. New Current Source Inverter

As discussed in the previous section, the leakage current is not able to be reduced by the
conventional current source inverter. In order to solve the problem, a new current source inverter is
proposed in this paper. The idea of the proposed solution is based on the duality principle. Inspired by
the voltage source inverter named VH6 [3], the new current source inverter is proposed.

In Figure 4, the VH6 inverter has two switches in parallel with the AC side to improve the
common-mode behavior, in order to reduce the leakage current. According to the duality principle,
the proposed inverter has an additional switch that is in serial with the upper or lower side of the AC.
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Figure 4. The VH6 inverter.

As shown in Figure 5, different from the VH6 inverter, the proposed inverter only needs one extra
switch. Thus, it is called CH5 inverter.
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Figure 5. The proposed inverter.

In order to demonstrate the leakage current reduction capability of the proposed inverter,
the operation principle and common-mode behavior are presented in this section. Note that the
new inverter in Figure 5 is similar to the original, and thus only the inverter shown in Figure 5a is
discussed for simplicity.

In the zero switching state, the new inverter would operate in the same way as the CH4 inverter,
if the switch S5 is ON. However, when the switch S5 is OFF, the CH5 inverter would operate in
a new mode, and the circuit model is shown in Figure 6. In this new mode, S1 and S2 are turned ON,
and S3 and S4 are turned OFF.
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As shown in Figure 6, the voltages Vpo and Vno would be the same, as shown in Equation (13).
Also, the CMV is half of the grid voltage, as shown in Equation (14). So, this operation mode can be
used as the zero switching state of the inverter to keep the CMV over half of the grid voltage.

Vpo = Vno =
Vg

2
(13)

Vcm =
(Vpo + Vno)

2
=

Vg

2
(14)

Based on the above analysis, the switching states and the corresponding voltage are listed in Table 2.

Table 2. The switching states and their voltages.

Vector S1 S2 S3 S4 S5 Vpo Vno Vcm

I1 1 0 0 1 1 Vg 0 Vg/2
I2 0 1 1 0 1 0 Vg Vg/2
I3 1 1 0 0 1 Vg Vg Vg
I4 0 0 1 1 1 0 0 0
I5 1 1 0 0 0 Vg/2 Vg/2 Vg/2

As shown in Table 2, it can be observed that the high-frequency CMV can be totally eliminated
on the condition that the vectors of I1, I2, and I5 are applied, leaving only the low-frequency grid
voltage. It should be noted that the leakage current is mainly determined by the high-frequency
components of CMV, and the low-frequency component has a slim impact on the leakage current.
Therefore, the vectors of I1, I2 and I5 are used for controlling the proposed inverter.

The control structure of the proposed inverter is shown in Figure 7.
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As shown in Figure 7, the zero crossing detection is used for the grid synchronization to provide
the reference angle for the grid current. The proportional resonant (PR) controller [37] is used
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to regulate the grid current with zero-steady state error. The gating signals are generated by the
modulation strategy. And the detailed modulation procedure is presented, as shown in Figure 8.
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In Figure 8a, during the positive half cycle, the reference vector Iref is synthesized by the active
vector I1 and zero vector I5. While in the negative half cycle, the Iref is synthesized by active vector
I2 and zero vector I5. The process of vector allocation is shown in Figure 8b. m represents the
modulation index. t represents the operation time. Ts represents the switching period. T1 represents
the dwell time of active vector. And T2 represents the dwell time of zero vector. a stands for the
modulation signal which can be obtained from the output variable through the PR controller. As shown
in Figure 8, the dwell time of vectors is allocated based on the modulation signal.

In the positive half cycle, the range of vector angle θ is from 0 to π. Iref can be represented as
Equation (15).

Iref · Ts = T1 · I1 + T2 · I5 (15)

In the negative half cycle, the range of vector angle θ is from π to 2π. Iref can be represented as
Equation (16).

Iref · Ts = T1 · I2 + T2 · I5 (16)

4. Simulation and Experimental Results

The simulation and experimental tests are carried out to verify the effectiveness of the proposed
solution. In the simulation test, the grid voltage is 220 V/50 Hz. The input current source is 12.5 A.
The filter inductance is 2.5 mH. The filter capacitance is 9.4 uF. The switching frequency is 10 kHz.
The grid current is 10 A. And the parasitic capacitance is 75 nF.

Figure 9 shows the simulation results of the conventional CH4 inverter and proposed CH5
inverter. As shown in Figure 9a, influenced by the leakage current, the grid current is superposed with
the high-frequency harmonics. The CMV of the CH4 is shown in Figure 9g; it is obvious that CMV
consists of high-frequency components, which results in the undesirable leakage current, as shown
in Figure 9i. The amplitude of the leakage current is far beyond 300 mA, which fails to comply with
VDE-0126-1-1 standard. On the right, it is the waveforms of proposed inverter that correspond to the
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CH4. As shown in Figure 9b, the high frequency harmonics of the grid current is significantly reduced,
compared with Figure 9a. The CMV is free of any high-frequency harmonics, and thus the leakage
current is significantly reduced well below 300 mA, which meet the VDE-0126-1-1 standard.Energies 2018, 11, x 8 of 12 
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Figure 9. Simulation results of conventional CH4 inverter and proposed CH5 inverter. (a) Grid
current of CH4; (b) Grid current of proposed one; (c) Vpo of CH4; (d) Vpo of proposed one; (e) Vno of
CH4; (f) Vno of proposed one; (g) common-mode voltage (CMV) of CH4; (h) CMV of proposed one;
(i) Leakage current of CH4; (j) Leakage current of proposed one.

In order to further verify the effectiveness of the proposed solution. The experimental prototype
is established. The experimental parameters are listed as follows. The input current source is 8 A.
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The filter inductance is 2.5 mH. The filter capacitance is 9.4 uF. The switching frequency is 10 kHz.
The grid current is 10 A. And the parasitic capacitance is 75 nF. The control and modulation algorithm
are implemented in the DSP (TMS20F28335, Texas Instruments, Dallas, TX, USA) plus FPGA (XC6SLX9
2TQG144, Xilinx, San Jose, CA, USA) digital control platform

Figure 10 shows the experimental results of CH4 inverter and proposed CH5 inverter. It can be
observed that the output currents are unipolar and sinusoidal before and after the filter as shown in
Figure 10a. On the other hand, the CMV is time-varying with high-frequency components as shown
in Figure 10c. Consequently, the leakage current of CH4 inverter is as high as 1.2 A, which fails to
comply with the VDE-0126-1-1 standard, as shown in Figure 10e. On the right, it is the experimental
waveforms of proposed inverter that correspond to the CH4. It can be observed that the high-frequency
components of CMV are significantly suppressed, compared with the experimental results of the CH4
inverter. Consequently, the leakage current of the proposed CH5 inverter is much smaller than
that of CH4 inverter. The amplitude of the leakage current is well below 300 mA, which meets the
VDE-0126-1-1 standard.
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Figure 10. Experimental results of conventional CH4 inverter and proposed CH5 inverter. (a) Grid
current and CMV of the CH4 inverter; (b) Grid current and CMV of the proposed inverter; (c) Vpo and
Vno of CH4; (d) Vpo and Vno of the proposed inverter; (e) Leakage current and CMV of CH4; (f) Leakage
current and CMV of the proposed inverter.

The further dynamic experimental tests are carried out as shown in Figure 11. From 0 to 20 ms,
S5 is kept on. It operates as the CH4 inverter. From 20 to 40 ms, S5 is active with the proposed
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modulation. It operates as the CH5 inverter. The dynamic experimental results show that the leakage
current with the CH5 inverter is much lower than that with the CH4 inverter, which again verifies the
effectiveness of the proposed solution.Energies 2018, 11, x 10 of 12 

 

  
(a) (b) 

Figure 11. The dynamic experimental results from CH4 to CH5 inverter. (a) Vpo and Vno; (b) Leakage 

current and CMV. 

5. Conclusions 

This paper has presented a new single-phase transformer-less current source inverter. It can 

achieve the leakage current reduction which is crucial for the PV inverter. The new current source 

inverter with the improved common mode behavior is established by the duality principle. The 

proposed solution only needs one extra switch to break the common-mode loop of the system for the 

leakage current reduction. Aside from that, a new one-dimensional space vector modulation is 

presented for eliminating the high-frequency common-mode voltage, so as to reduce the leakage 

current. The experimental results reveal that the leakage current can be significantly reduced from 

1.2 to 0.19 A with the proposed solution. Therefore, it is an attractive solution for the single-phase 

transformerless PV systems. It should be noted that IGBT is used for the proposed inverter. There is 

a limitation regarding the switching frequency. With the rapid development of the wide-bandgap 

semiconductors such as the commercially available silicon carbide and GaN power device, the 

switching frequency would be high for a better techno-industrial level, which is the subject of our 

future research. 

Author Contributions: X.G. and J.Z. (Jianhua Zhang) designed the main parts of the study. J.Z. (Jiale Zhou) and 

B.W. helped in the fabrication. 

Funding: This research was supported by the National Natural Science Foundation of China (Grant: 51777181), 

Hundred Excellent Innovation Talents Support Program of Hebei Province (SLRC2017059), and Science 

Foundation for Returned Scholars of Hebei Province (CL201622). 

Acknowledgments: The author would like to thank Yanshan University for supporting this research. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Su, M.; Luo, C.; Hou, X.; Yuan, W.; Liu, Z.; Han, H.; Guerrero, J.M. A Communication-Free Decentralized 

Control for Grid-Connected Cascaded PV Inverters. Energies 2018, 11, 1375. 

2. Xiao, H.; Zhang, L.; Li, Y. An improved zero-current-switching single-phase transformerless PV H6 

inverter with switching loss-free. IEEE Trans. Ind. Electron. 2017, 64, 7896–7905. 

3. Li, W.; Gu, Y.; Luo, H.; Cui, W.; He, X.; Xia, C. Topology review and derivation methodology of single-

phase transformerless photovoltaic inverters for leakage current suppression. IEEE Trans. Ind. Electron. 

2015, 62, 4537–4551. 

4. Guo, X.Q.; Yang, Y.; Zhu, T.Y. ESI: A novel three-phase inverter with leakage current attenuation for 

transformerless PV systems. IEEE Trans. Ind. Electron. 2018, 65, 2967–2974. 

5. Liu, C.; Wang, Y.; Cui, J.; Zhi, Y.; Liu, M.; Cai, G. Transformerless photovoltaic inverter based on 

interleaving high-frequency legs having bidirectional capability. IEEE Trans. Power Electron. 2016, 31, 1131–

1142. 

6. Guo, X.Q.; Jia, X. Hardware-based cascaded topology and modulation strategy with leakage current 

reduction for transformerless PV systems. IEEE Trans. Ind. Electron. 2016, 62, 7823–7832. 

 

poV

noV

CMV

 

CMI

CMV

Figure 11. The dynamic experimental results from CH4 to CH5 inverter. (a) Vpo and Vno; (b) Leakage
current and CMV.

5. Conclusions

This paper has presented a new single-phase transformer-less current source inverter. It can
achieve the leakage current reduction which is crucial for the PV inverter. The new current
source inverter with the improved common mode behavior is established by the duality principle.
The proposed solution only needs one extra switch to break the common-mode loop of the system for
the leakage current reduction. Aside from that, a new one-dimensional space vector modulation is
presented for eliminating the high-frequency common-mode voltage, so as to reduce the leakage
current. The experimental results reveal that the leakage current can be significantly reduced
from 1.2 to 0.19 A with the proposed solution. Therefore, it is an attractive solution for the
single-phase transformerless PV systems. It should be noted that IGBT is used for the proposed
inverter. There is a limitation regarding the switching frequency. With the rapid development of the
wide-bandgap semiconductors such as the commercially available silicon carbide and GaN power
device, the switching frequency would be high for a better techno-industrial level, which is the subject
of our future research.
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