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Abstract: The purpose of the paper is to explore the relative biases in the estimation of the Full BEKK
model as compared with the Diagonal BEKK model, which is used as a theoretical and empirical
benchmark. Chang and McAleer et al., 2017 show that univariate GARCH is not a special case of
multivariate GARCH, specifically, the Full BEKK model, and demonstrate that Full BEKK, which,
in practice, is estimated almost exclusively, has no underlying stochastic process, regularity conditions,
or asymptotic properties. Diagonal BEKK (DBEKK) does not suffer from these limitations, and hence
provides a suitable benchmark. We use simulated financial returns series to contrast estimates of the
conditional variances and covariances from DBEKK and BEKK. The results of non-parametric tests
suggest evidence of considerable bias in the Full BEKK estimates. The results of quantile regression
analysis show there is a systematic relationship between the two sets of estimates as we move across
the quantiles. Estimates of conditional variances from Full BEKK, relative to those from DBEKK are
relatively lower in the left tail and higher in the right tail. The BEKK model is a commonly applied
multivariate volatility model frequently used in modelling and forecasting volatilities in financial
applications. Our results suggest that it is subject to considerable bias and this should be considered
by potential users.

Keywords: DBEKK; BEKK; regularity conditions; asymptotic properties; non-parametric; bias;
qantile regression

JEL Classification: C13; C21; C58

1. Introduction

Conditional volatility models are the most widely estimated univariate and multivariate models
of time-varying volatility (or dynamic risk) applied to financial data, in the high frequency data
domains that are measured in days, hours and minutes. The stochastic processes, regularity conditions
and asymptotic properties of these popular univariate conditional volatility models, such as GARCH
(see Engle [1] and Bollerslev [2]) and GJR (see Glosten and Runkle [3]), are well established in the

Energies 2018, 11, 1627; doi:10.3390/en11071627 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2707-3835
http://dx.doi.org/10.3390/en11071627
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/11/7/1627?type=check_update&version=2


Energies 2018, 11, 1627 2 of 19

literature. Nevertheless, McAleer and Hafner [4] raised caveats about the existence of the stochastic
process and statistical properties underlying exponential GARCH (EGARCH) (see [5,6]).

The situation with respect to multivariate conditional volatility models is considerably different.
For example, the Full BEKK model, (see Baba and [7], and Engle and Kroner [8]) is subject to uncertainty
regarding the existence of its underlying stochastic processes, regularity conditions, and asymptotic
properties. These properties have either not yet been established, or are simply assumed rather than
derived, yet these conditions and properties are essential for the existence of the likelihood function,
and hence valid statistical analysis of the empirical estimates. This means that when the model is
estimated its coefficients and statistical properties are subject to uncertainty and may not be valid.
These limitations do not apply to the DBEKK model, which is used as a benchmark in this study.

The focus of this paper is to explore the potential and empirical biases that may exist in the typical
estimation of the multivariate Full BEKK model, as referenced in the Rats statistical software (Estima
1560 Sherman Ave, Suite 1029 Evanston, IL 60201, USA).

We use three simulated sets of daily returns derived from ten years of daily data, from 5 March
2007 to 3 March 2017, for Google , IBM and Microsoft. (Data accessed on 6 March 2017, in Perth, Western
Australia). The original adjusted return series were downloaded from Yahoo Finance. The random
simulations, created in R, are done in blocks, including five lags so as to preserve autocorrelations
and ARCH effects. We use the estimated coeffcients of the conditional variances and conditional
covariances derived from Diagonal BEKK (DBEKK), which has appropriate regularity conditions and
statistical properties, as the benchmark.

McAleer and Lieberman [9] showed that the QMLE of the parameters of DBEKK models are
consistent and asymptotically normal, so that standard statistical inference for testing hypotheses
is valid. These are compared with estimates of the same coefficients using the Full BEKK model.
Non-parametric tests reveal statistically significant bias in the Full BEKK coefficient estimates for the
conditional variances and covariances.

Engle and Kroner [8], in their original extended discussion of multivariate ARCH models, suggest
that: “Very little is currently known about the properties of maximum likelihood estimators in
univariate GARCH models, let alone in multivariate GARCH-in-mean models, despite the fact that
this estimator permeates the multivariate GARCH-in-mean literature”. This issue is a central focus of
the current paper, which is developed from the fact that, in the current extant literature, the relevant
statistical properties required for the estimation of full BEKK models are assumed rather than proven.
This is not the case for the DBEKK model, so we apply the former as a lense, which can be used to
assess potential biases in the latter, the BEKK model.

It is important, for both investment purposes and in the interests of informed financial policy
making, that any limitations and biases in the estimation and application of the BEKK model
are understood. In practice, the model is frequently utilised. For example, in recent studies,
Gounopoulos [10] used a BEKK model to examine linkages between stock returns and currency
exposures of a sample of US, UK, and Japanese banks and insurance companies. Long and Zhang [11],
similarly apply a BEKK model to analyze the conditional time-varying currency betas in five developed
and six emerging financial markets. Caporale and Spagnolo [12] test the impact of exchange rate
uncertainty on net equity and net bond flows and on their dynamic linkages applying a BEKK model.
Cardona and Agudelo [13] use a BEKK model to explore volatility transmission effects between US
and Latin American financial markets.

The paper is divided into four sections. The introductory section is followed by Section 2,
which describes the data sets, their statistical characteristics, and the models and empirical methods
used. Section 3 presents the empirical results, and Section 4 provides some concluding remarks.
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2. Data and Research Method

2.1. Data

The original data series comprised ten years of daily price-adjusted data, from 5 March 2007 to
3 March 2017, for Google, IBM and Microsoft, which were downloaded from Yahoo Finance.
Descriptive statistics for the three original series, each comprising 2518 observations, are shown
in Table 1.

Table 1. Descriptive statistics for daily adjusted-return series.

Statistic IBM Google Microsoft

MEAN 0.000355292 0.000526422 0.000432804
MEDIAN 0.000505522 0.000267708 0.000221015

SD 0.0141556 0.0186157 0.0177392
SKEWNESS −0.185381 0.608522 0.184534
KURTOSIS 5.36075 11.9078 9.48851

The statistics show that the three series display characteristics that are typical of financial return
series, displaying skewness and excess kurtosis. Plots of the original sample of daily adjusted returns
are shown in Figure 1. The QQplots of the series shown in Figure 2 reveal that they have fat tails and
do not conform to a normal distribution.

The original three series are stationary, as confirmed by the Augmented Dickey–Fuller tests using
constant and trend, and also display significant ARCH effects. The results of these tests are shown in
Table 2.

Table 2. Base series unit root and ARCH tests.

Statistic IBM Google Microsoft

ADF test with constant −28.8918 −10.0804 −29.7647
ADF test with constant and trend −28.8934 −10.1019 −29.7852

ARCH TEST alpha(0) 0.000145 0.000257 0.000210
ARCH TEST alpha(1) 0.290848 0.337997 0.373119

Note: All tests are significant at the 1% level.

Figure 1. Plots of return series.
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Figure 2. QQplots of return series.

2.2. Research Models, Simulations and Tests

2.2.1. Univariate Conditional Volatility Models

Chang and McAleer [14] show that Full BEKK has no underlying stochastic process, regularity
conditions, or asymptotic properties. They point out that, in the development of GARCH, the conditional
mean of financial returns for commodity i, in a financial portfolio of m assets, can be developed as follows:

yit = E(yit | It−1) + εit, 1 = 1, 2, ..., m. (1)

In Equation (1) above, the returns, yit, represent the log difference of financial asset prices, It−1 is
the information set for all prices at time t− 1, E(yit | It−1) is the conditional expected returns, and εit
is a conditionally heteroscedastic error term. The conditional volatility specifications are based on the
stochastic specification presumed to underlie the return shocks, εit. Chang and McAleer [14] consider
the random coefficient autoregressive process underlying the returns shocks εit, as shown below:

εit = φitεit−1 + ηit, (2)

where φit ∼ iid(0, αi), αi ≥ 0, ηit ∼ iid(0ωi), ωki > 0, ηit = εkit/
√

hit is the standardised residual,
and hit is the conditional volatility of asset i. Tsay [15] suggested the following formulation for the
conditional volatility of asset i as an ARCH process:

E(ε2
it | It−1) ≡ hit = ωi + αiε

2
it−1, i = 1, 2, ..., m, m > 1. (3)

A lagged dependent variable, hit−1, is typically added to Equation (3) to improve the empirical fit:
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E(ε2
it | It−1) = ωi + αiε

2
it−1 + βihit−1, βi ∈ (−1, 1). (4)

The specification in Equation (2) suggests that αi and ωi should be positive because they are the
unconditional variances of two different stochastic processes. Equation (4) is a GARCH(1,1) model
for asset i (see Bollerslev [2]). The stability condition requires that βi ∈ (−1, 1). Given that the
stochastic process in Equation (2) follows a random coefficient autoregressive process, under normality
(non-normality) of the random errors, the maximum likelihood estimators (quasi-maximum likelihood
estimators, QMLE) of the parameters will be consistent and asymptotically normal.

2.2.2. Multivariate Conditional Volatility Models

The multivariate extension of the univariate ARCH and GARCH models is given in Baba et al. [7]
and Engle and Kroner [8]. The relationship between the returns shocks and the standardised residuals,
in the multivariate case, can be written as ηit = εit/

√
hit.

The multivariate extension of Equation (1) can remain unchanged by assuming that the three
components are now m× 1 vectors, where m is the number of financial assets. Chang and McAleer [14]
consider a vector random coefficient autoregressive process of order one as:

εt = φtεt−1 + ηt, (5)

where εt and ηt are m× 1 vectors, φt is an m×m matrix of random coefficients, φt ∼ iid, (0, A), A is
positive definite, ηt ∼ iid, (0, C), where C is an m×m matrix.

In the case where A is a diagonal matrix, with aii > 0 for all i = 1, ..., m, and | bij |< 1| for
all j = 1, ..., m, so that A has dimension m × m, and McAleer and Lieberman [9] showed that the
multivariate extension of GARCH(1,1) from Equation (5) is given as the Diagonal BEKK model,
namely:

Qt = CC
′
+ Aεt−1ε

′
t−1 A

′
+ BQt−1B

′
, (6)

where A and B are both diagonal matrices. It is essential for the matrix multiplication of εt−1ε
′
t−1 by

A that A is diagonal and positive definite, given that the former is an m×m matrix. If this is not the
case, Equation (6) could not be derived from the vector random coefficient autoregressive process in
Equation (5).

It was shown in McAleer and Lieberman [9] that the QMLE of the parameters of the DBEKK
model are consistent and asymptotically normal, so that standard statistical inference for testing
hypotheses is valid. However, Chang and McAleer [14] demonstrate that this is not the case for the
Full BEKK model. They consider element i of Equation (5), which can be written as:

εit =
m

∑
j=1

φijtεijt−1 + ηit, i = 1, 2, ..., m, m > 1, (7)

which is not equivalent to Equation (2) unless φijt = 0, ∀ j 6= i.
Chang and McAleer [14] point out that Equation (7) is not a random coefficient autoregressive

process because of the presence of another m− 1 random coefficients. Furthermore, Equation (7) is not
invertible because the random processes cannot be connected to the data, which requires m equations,
as shown in Equation (5). This means that the stochastic process underlying univariate ARCH is not a
special case of that underlying multivariate ARCH, unless φijt = 0, ∀ j 6= i.

As a result, Chang and McAleer [14] suggest that, the case of a Full BEKK model, namely where
there are no restrictions on the off-diagonal elements in φt, and hence no restrictions in the off-diagonal
elements in A, is not possible if univariate ARCH is to be a special case of its multivariate counterpart,
Full BEKK. This suggests that Full BEKK does not exist, except by assumption.

Given the above result, plus the fact that Full BEKK is frequently estimated in practice and is
incorporated in many commercial econometric statistical packages, the focus in this paper is to explore
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whether there is any evidence of bias in the coefficients estimated in Full BEKK, as compared with
DBEKK. We use DBEKK as a benchmark because the mathematical and statistical conditions of DBEKK
have been established.

We conduct simulations generating simulated financial return series and use them as inputs to
estimate both DBEKK and Full BEKK, from which we can compare the estimates of the conditional
variances and covariances. The null hypothesis is that the two sets of estimates should not differ
systematically. The method of generating the simulated financial return series is discussed below.

2.2.3. Simulated Return Series

We use the three financial return series for Google, IBM, and Microsoft, and draw on code from
several packages in the R library to randomly sample the original time series in blocks of five lags
to ensure that we retain the autocorrelation structures to maintain the presence of ARCH effects.
The timeSeries, boot and meboot packages prove to be of interest.

Plots of the simulated series based on the three stocks are shown in Figure 3, and the descriptive
statistics of the simulated financial return series are shown in Table 3.

Figure 3. Simulated time series of returns.

The simulations have similar characteristics to the base series. IBM has the lowest excess kurtosis
of the set of simulations, as would be expected, given that the IBM original return series had relatively
low kurtosis in relation to the other two series. Augmented Dickey–Fuller tests confirmed that all the
simulated series are stationary, and all displayed highly significant ARCH effects.

The simulated series have fat tails and are not Gaussian, as the QQplots for the first set of
simulations of the three series shown in Figure 4 reveal.
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Table 3. Descriptive statistics of the simulated series.

Median Mean St. Dev Skewness Ex. Kurtosis

Google Sim 1 0.000123242 0.000434784 0.0185023 0.387022 10.1534
Google Sim 2 0.000105152 0.000944741 0.0200021 1.68098 15.8985
Google Sim 3 0.000167354 0.000493751 0.0185772 0.354081 12.2140

IBM Sim 1 0.000312301 0.000332920 0.0139928 −0.308625 3.76076
IBM Sim 2 0.00103512 0.000972290 0.0136369 0.101544 4.52981
IBM Sim 3 0.000422372 0.000472666 0.0140378 −0.0305346 6.05965

Microsoft Sim 1 0.000339290 0.000732968 0.0186249 0.797044 10.8807
Microsoft Sim 2 0.000336076 0.000118718 0.0172592 −0.185154 9.83281
Microsoft Sim 3 7.86705e-005 0.000284365 0.0195287 0.312275 11.3979

Figure 4. QQplots of Series 1 of the simulations.

2.3. Tests and Optimisation Prodedures

Empirical estimation of the DBEKK and FullBEKK models was based on the Estima Rats
econometric software. In the empirical analysis which follows, we report the results of fitting the
multivariate GARCH models, DBEKK and FullBEKK, to the simulated financial return series. This type
of estimation procedure involves seeking the solution to an unconstrained minimization problem:

min
θ

f (x, θ), (8)

where x are the data and θ is a vector of models to be chosen to minimise the objective function f (x, θ).
In the case of GARCH models, this will be a negative log-likelihood function. Typically, no closed-form
expression for f (x, θ) is available or for its partial derivatives, and so the solution minimisation process
is usually achieved by the use of numerical methods. Hurn et al. [16] point out that there are two broad
approaches to the construction of a minimisition algorithm: methods that rely on function values, or
algorithms that use the derivatives of the function.
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If we use an algorithm based on gradients to minimise f (x, θ), then we are assuming that all first
and second derivatives exist. The gradient vector, G(θ), and the Hessian matrix, H(θ), of the function,
f (x, θ), can be defined as:

G(θ) =
δ f (x, θ)

δθ
, H(θ) =

δ2 f (x, θ)

δθδθ
′ . (9)

The minima of the objective function occur at parameter values where the gradient is zero and the
associated Hessian matrix is positive definite. The estimator, θ̂, of the parameter vector, θ, should satisfy
the condition:

G(θ̂) = 0. (10)

We can start with a guess, θ̂k, which is assumed to be near the optimal value θ at which a
minumum is attained. A Taylor series expansion of G(θ̂) about θ̂k is given as:

G(θ̂) = G(θ̂k + (θ̂ − θ̂k)) = G(θ̂k) + H(θ̂k)(θ̂ − θ̂k) + 0(θ̂ − θ̂k)
2.

If we replace G(θ̂) in Equation (10) by the previous expression (9), and ignore all terms of order
two and above, it follows that:

θ̂ ≈ θ̂k − H(θ̂k)
−1G(θ̂k).

Using this result, the next guess for θ̂ is:

ˆθk+1 = θ̂k − H(θ̂k)
−1G(θ̂k). (11)

This is referred to as a ‘full Newton step’ which would be taken close to the location of the
minimum. However, further away from the minimum, this step may not be guaranteed to reduce the
value of the function, so the usual convention is to use a smaller step:

ˆθk+1 = θ̂k − αk H(θ̂k)
−1G(θ̂k), (12)

where αk is chosen to control the step size and to ensure that the function is reduced at each iteration.
All gradient-based algorithms employ the general iterative scheme set out in Equation (12),

and differ only in their approximation of the Hessian matrix at each iteration. T.M. Christensen
and Lindsay [16] point out that a Newton–Raphson procedure computes the Hessian matrix directly,
the Method of Scoring uses the Information matrix (negative of the value of the Hessian matrix),
and the BHHH algorithm, (Berndt and Hausman [17]) approximates the Hessian by the outer product
of the gradient vector. BHHH provides an approximation of the Hessian matrix that is guaranteed to
be positive definite, and so is a popular choice in many econometric packages.

The estimation process used in this paper is BHHH, but there are several caveats. T.M. Christensen
and Lindsay [16] point out that the treatment of constraints on parameters, choice of starting values,
specification of termination criteria and analytical versus numerical gradients can materially alter the
final output of a minimisation algorithm. A subsequent comment on this paper by McCullough [18]
suggests that default options for a nonlinear solver are not likely to produce a correct answer, and that
the answer produced by a nonlinear solver is not necessarily correct.

McCullough and Vinod [19] question the baseline accuracy of many commonly used econometric
packages, and note that there is often a trade-off between computational speed and statistical accuracy.
McCullough and Renfro [20] explore the interaction between benchmarks, software standards,
and econometric theory, using the GARCH model as a case study, and caution against the uncritical
use of standard econometric packages.

Despite these various issues, the paper adopts a consistent framework in the estimation methods
adopted to compare DBEKK with Full BEKK. We rely upon the estimation procedures in Rats and the
BHHH algorithm to fit the two models. These are then used to predict the daily condition variances
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and covariances generated by the two models. We then use quantile regression to analyse the two sets
of estimates using the DBEKK estimates as the baseline benchmark.

2.4. Quantile Regression

Quantile Regression is modelled as an extension of classical OLS (Koenker and Bassett [21]).
In Quantile Regression, the conditional mean as estimated by OLS is extended to similar estimation of
an ensemble of models of various conditional quantile functions for a data distribution. Therefore,
Quantile Regression can better quantify the conditional distribution of (Y|X). The central special
case is the median regression estimator that minimises a sum of absolute errors. Estimates of the
remaining conditional quantile functions are obtained by minimizing an asymmetrically weighted
sum of absolute errors, where the weights are functions of the quantile of interest. This makes Quantile
Regression a robust technique, even in the presence of outliers. Taken together, the ensemble of
estimated conditional quantile functions of (Y|X) offers a much more complete view of the effect of
covariates on the location, scale and shape of the distribution of the response variable.

For parametric estimation in Quantile Regression, quantiles as proposed by Koenker and Bassett [21]
can be defined through an optimisation problem. In order to solve an OLS regression problem, a sample
mean is defined as the solution of the problem of minimising the sum of squared residuals, in the same
way the median quantile (0.5%) in Quantile Regression is defined through minimising the sum of
absolute residuals. The symmetrical piecewise linear absolute value function assures the same number
of observations above and below the median of the distribution.

The other quantile values can be obtained by minimizing a sum of asymmetrically weighted
absolute residuals, giving different weights to positive and negative residuals. Solving the following:

minξεR ∑ ρτ(yi − ξ), (13)

where ρτ() is the tilted absolute value function, gives the τth sample quantile with a solution. Taking the
directional derivatives of the objective function with respect to ξ (from left to right) shows that this
problem yields the sample quantile as its solution.

After defining the unconditional quantiles as an optimisation problem, it is easy to define the
conditional quantiles similarly. Taking the least squares regression model as a base to proceed, for a
random sample, y1, y2, . . . , yn, solving:

minµεR

n

∑
i=1

(yi − µ)2 (14)

gives the sample mean, as an estimate of the unconditional population mean, EY. Replacing the scalar,
µ, by a parametric function µ(x, β), and then solving:

minµεRp

n

∑
i=1

(yi − µ(xi, β))2 (15)

gives an estimate of the conditional expectation function, E(Y|x).
Proceeding in the same way for Quantile Regression, in order to obtain an estimate of the

conditional median function, the scalar, ξ, in the first equation is replaced by the parametric function,
ξ(xt, β), and τ is set to 1/2 . The estimates of the other conditional quantile functions are obtained by
replacing absolute values by ρτ(), and solving:

minµεRp ∑ ρτ(yi − ξ(xi, β)). (16)

The resulting minimization problem, when ξ(x, β) is formulated as a linear function of parameters,
can be solved efficiently by linear programming methods. We use quantile regression to compare the
relative behaviour of the conditional variances across the quantiles, as predicted by the two models.
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3. Empirical Results

We estimated both DBEKK and Full BEKK using the simulated financial return series. The estimates
from DBEKK are used as the benchmark, given that it has established statistical regularity conditions.
We decided to keep the comparison tests as simple as possible and first estimated a two-variable
version of the DBEKK and Full BEKK models using the the three sets of simulated return series in
pairs. This was then followed by a single three-variable set of estimates, in order to verify that the
same pattern of results exists. The null hypothesis is that Diagonal and Full BEKK are equivalent
when the off-diagonal coefficients in Full BEKK are zero, so the asymptotic tests are statistically
valid. We proceeded by estimating the coefficients for the conditional variances and the conditional
covariances for the two models, and then used non-parametric sign tests on the differences between
the two sets of estimates.

The estimates of the constants, ARCH effects and conditional variances for the two models are
shown in Table 4. DBEKK and Full BEKK fitted to the pairs of simulated series were highly significant,
and all but three pairs of the fifty-four coefficients estimated in the models, and presented in Table 4,
were significant at the 1% level. (The insignificant coefficients are marked with an asterisk ( *) in
Table 4.) The coefficients of the conditional covariances are shown in Table 5. The majority of these
estimates are insignificant, so we concentrated our analysis on the conditional variances.

We then undertook a set of non-parametric sign tests on the values of the estimated coefficients,
reported in Table 4. We ran the tests in a number of different formats, both on the full set of coefficients
reported in Table 4, and the full set minus the three pairs of insignificant estimates. The results of the
sign tests are reported in Tables 6 and 7, which suggest that there are no significant differences in the
values of the coefficients for the constants, ARCH effects and the conditional variances estimated for
the two variables. However, these tests treat the coefficients in isolation, and regard them as being
independent, which is not the case when they are combined into a DBEKK or Full BEKK model.
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Table 4. Variable coefficient estimates for DBEKK and full BEKK.

DBEKK Full BEKK

C (1,1) C (2,2) A (1) A (2) B (1) B (2) C (1,1) C (2,2) A (1,1) A (1,2) A (2,1) A (2,2) B (1,1) B (2,2)
IBMVI, GOOGV1 0.00893 0.01681 0.3773 0.46698 0.67011 0.01026 * 0.00894 0.01681 0.37976 0.02095 * 0.00392 * 0.46380 0.66628 0.01287 *
IBMV2, GOOGV2 0.00739 0.01747 0.32571 −0.59969 0.77078 0.02727 * 0.00746 0.01570 0.30726 0.13081 −0.01782 * 0.59406 0.77047 −0.36849
IBMV3, GOOGV3 0.008325 0.01185 0.47073 0.32044 0.65976 0.70551 0.01269 * 0.00002 * 0.46101 −0.04771 * 0.01276 * 0.18860 0.67095 0.81205
GOOGV1, MSV1 0.013884 0.01253 0.36731 0.47581 0.056591 0.58379 0.01665 0.01116 0.43057 0.07513 -0.10471 0.43840 0.10125 * 0.646048
GOOGV2, MSV2 0.01651 0.011449 −0.47029 0.53336 −0.39279 0.53336 0.01366 0.00003 0.041332 0.07426 0.09744 * 0.76597 0.84413 0.32680
GOOGV3, MSV3 0.00835 0.011846 0.47073 0.32044 0.65976 0.70551 0.00752 −0.01070 0.44772 0.06484 * 0.02899 * 0.30716 0.70504 0.73385

IBMV1, MSV1 0.00906 0.00906 0.35582 0.55170 0.67042 0.49239 0.00909 0.01282 0.36532 0.06623 −0.03269 * 0.53945 0.66093 0.48406
IBMV2, MSV2 0.00760 0.01170 0.32290 0.57413 0.76189 0.48309 0.00738 0.01145 0.31417 0.07554 −0.03147 0.52961 0.76531 0.50461
IBMV3, MSV3 0.00830 0.01263 0.421447 0.52233 0.69487 0.585204 0.00797 0.01253 0.42744 −0.06357 0.01946 * 0.53773 0.69503 0.56645

NB: All the coefficients in the above table are sigificant at the 1% level except those indicated by *.

Table 5. Conditional covariance coefficient estimates for DBEKK and Full BEKK.

DBEKK Full BEKK

C (2,1) C (2,1) A (1,2) A (2,1) B (1,2) B (2,1)
IBMVI, GOOGV1 −0.00011 * −0.00052 * 0.02095 * 0.00392 * 0.02271 * −0.04056 *
IBMV2, GOOGV2 0.00153 0.00003 * 0.13081 −0.01782 * 0.04062 * 0.05223 *
IBMV3, GOOGV3 0.00043 * 0.02107 * −0.04771 * 0.01276 * 0.10412 * −0.28249 *
GOOGV1, MSV1 −0.00024 * −0.00168 0.07513 −0.10471 −0.16666 0.13603
GOOGV2, MSV2 −0.00019 * −0.01597 * 0.07426 * 0.09744 0.34576 * −0.33889
GOOGV3, MSV3 0.00043 * 0.00337 * -0.05325 * 0.00331 * 0.09699 * −0.12799 *

IBMV1, MSV1 0.00019 * 0.00226 0.06623 −0.03270 * -0.20763 0.04362 *
IBMV2, MSV2 −0.00005 * −0.00018 * 0.07555 −0.03148 −0.08764 * 0.09885
IBMV3, MSV3 0.000208 * −0.00223 * −0.06358 0.01947 −0.02675 * −0.09230

NB: All the coefficients in the above table are sigificant at the 1% level except those indicated by *.
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Table 6. Sign Tests of the differences in estimates produced by DBEKK and FULL BEKK: all coefficients.

Sign Test for difference between DBEKK and BEKK
Number of differences n = 53

Number of cases DBEKK > BEKK: W = 28 (52.83%)
Under the null hypothesis of no difference, W follows Bin (543, 0.5)

Probability (W <= 28) = 0.708434
Probability (W >= 28) = 0.391923

Sign Test for difference between DBEKK and BEKK Wilcoxon Signed-Rank Test
Number of differences n = 53

Null hypothesis: the median difference is zero
W+ = 739, W− = 745

(0 differences: 1, non-zero ties: 0)
Expected value = 742
Variance = 13,488.5

Z = −0.0215257
P (Z < −0.0215257) = 0.491413
Two- tailed p-value = 0.982826

Table 7. Sign Tests of the differences in estimates produced by DBEKK and FULL BEKK: significant coefficients.

Sign Test for difference between DBEKK and BEKK
Number of differences n = 48

Number of cases DBEKK > BEKK: W = 26 (54.17%)
Under the null hypothesis of no difference, W follows Bin (48, 0.5)

Probability (W <= 26) = 0.76456
Probability (W >= 26) = 0.332733

Sign Test for difference between DBEKK and BEKK Wilcoxon Signed-Rank Test
Number of differences n = 48

Null hypothesis: the median difference is zero
W+ = 618, W− = 606

(0 differences: 1, non-zero ties: 0)
Expected value = 612

Variance = 10,106
Z = 0.0547108

P (Z < 0.0547108) = 0.478184
Two- tailed p-value = 0.956369

DBEKK and Full BEKK are multivariate GARCH models that are used for forecasting conditional
volatility. The crucial issue for purposes of risk management is how the forecasts of conditional
volatility derived from the two models compare. These are vital components for assessing risk, and
might be used to compute the Value at Risk (VaR) of a portfolio of financial assets, for example.

The simulated financial return samples for the nine variables contain ten years of daily data,
or 2581 data points. We filter these through the DBEKK and Full BEKK models, and obtain
corresponding estimates of the conditional variance projections, for each simulated security, from the
two models. These forecasts of the conditional variances are then compared using non-parametric sign
tests. The results for each simulated security are shown in Table 8.

The sign tests in Table 8 are based on the null hypothesis that the median difference in the
conditional variances produced by the two models, DBEKK and Full BEKK, for the simulated securities,
is zero. The null hypothesis is strongly rejected in all cases, and the differences are highly significant.
We also ran sign tests, not reported, based on the null hypothesis that there was no difference in
the conditional variances predicted by the two models. These results also strongly rejected the null
hypothesis in all cases.



Energies 2018, 11, 1627 13 of 19

Table 8. Sign Tests of differences in the predicted conditional variances of DBEKK and FULL BEKK.

Security Number of Differences Z Score Probability

IBMV1/GOOGV1 2518(IBMV1CV) z = 8.66177 P (Z > 8.66177) = 0
IBMV1/GOOGV1 2518(GOOGV1CV) z = 8.66177 P (Z > 8.66177) = 0
IBMV2/GOOGV2 2518(IBMV2CV) z = −70.7228 P (Z < −70.7228) = 0
IBMV2/GOOGV2 2518(GOOGV2CV) z = −17.8438 P (Z < −17.8438) = 1.61378 × 10−71

IBMV3/GOOGV3 2518(IBMV3CV) z = −178.968 P (Z < −178.968) = 0
IBMV3/GOOGV3 2518(GOOGV3CV) z = −178.682 P (Z < −178.682) = 0

IBMV1/MSV1 2518(IBMV1CV) z = 10.0413 P (Z > 10.0413) = 0
IBMV1/MSV1 2518(MSV1CV) z = 21.2183 P (Z > 21.2183) = 0
IBMV2/MSV2 2518(IBMV2CV) z = 27.6135 P (Z > 27.6135) = 0
IBMV2/MSV2 2518(MSV2CV) z = 9.78013 P (Z > 9.78013) = 0
IBMV3/MSV3 2518(IBMV3CV) z = 25.524 P (Z > 25.524) = 0
IBMV3/MSV3 2518(MCV3CV) z = 41.8977 P (Z > 41.8977) = 0

GOOGV1/MSV1 2518(GOOGV1CV) z = 4.39668 P (Z > 4.39668) = 5.49587 × 10−6

GOOGV1/MSV1 2518(MSV1CV) z = −21.4004 P (Z < −21.4004) = 6.62768 × 10−102

GOOGV2/MSV2 2518(GOOGV1CV) z = −169.726 P (Z < −169.726) = 0
GOOGV2/MSV2 2518(MSV2CV) z = −178.718 P (Z < −178.718) = 0
GOOGV3/MSV3 2518(GOOGV3CV) z = 36.0083 P (Z > 36.0083) = 0
GOOGV3/MSV3 2518(MSV3CV) z = −17.9135 P (Z < −17.9135) = 4.62876 × 10−72

While it is valuable to know that the two models produce different predictions of the conditional
variances, it is also of interest to know whether or not there are systematic differences in the predictions
of the conditional variances. We explore this issue by means of quantile regression. The advantage of
quantile regression is that we can explore the relationship between the two sets of predictions from
DBEKK and Full BEKK at particular quantiles. We regress the predicted conditional variances from the
Full BEKK model on the corresponding predictions from DBEKK for each of the simulated securities,
in the pairs of securities modelled. We treat the predictions of conditional variances from the Full
BEKK model as the dependent variable. The results of these quantile regressions are shown in Table 9.

Table 9. Quantile regression of predicted conditional variances for Full BEKK.

Security
Quantile Slope Coefficients

0.05 0.25 0.50 0.75 0.95

IBMV1/GOOGV1(IBMCV) 0.970853 0.995444 1.00706 1.01274 1.02605
IBMV1/GOOGV1(GOOGCV) 0.952430 0.974888 0.987685 0.998475 1.01715
IBMV2/GOOGV2(IBMV2CV) 0.862003 0.894723 0.913300 0.930500 0.966278

IBMV2/GOOGV2(GOOGV2CV) 0.860421 0.962226 0.993431 1.02805 1.15073
IBMV3/GOOGV3(IBMV3CV) 1 0.328928 0.328928 0.416581 0.462995 0.532234

IBMV3/GOOGV3(GOOGV3CD) 0.922288 0.956421 0.985430 1.01335 1.01855
IBMV1/MSV1(IBMV1CV) 0.949942 1.01037 1.03986 1.06483 1.12862

IBMV1/MSV1 0.854267 0.931472 0.959137 0.989454 1.00981
IBMV2/MSV2(IBMV2CV) 0.861948 0.951856 0.987461 1.03175 1.13855
IBMV2/MSV2(MSV2CDV) −49.6363 −5.29685 −1.97048 9.20840 18.2802
IBMV3/MSV3(IBMV3CV) 1.00633 1.05196 1.07648 1.09911 1.15981
IBMV3/MSV3(MSV3CV) 0.940177 0.998115 1.03939 1.06727 1.12067

GOOGV1/MSV1(GOOGV1CV) 0.0831902 0.660919 1.22251 1.36371 1.52337
GOOGV1/MSV1(MSV1CV) 0.753483 0.837598 0.900926 1.06852 1.20022

GOOGV2/MSV2(GOOGV2CV) 1 0.00744599 0.00762628 0.00729433 0.0188172 −0.0147150
GOOGV2/MSV2(MSV2CV) 0.977758 1.58318 1.92646 2.03505 2.17220

GOOGV3/MSV3(GOOGV3CV) 2 0.911108 0.921100 0.954618 1.03009 1.09428
GOOGV3/MSV3(MSV3CV) 0.867499 0.917009 0.955980 0.988218 1.01098

Notes: All the slope coefficients across the quantiles estimated using robust errors are significant at the 1%
level. 1 Problems with convergence encountered in the Full BEKK model. 2 Estimation of the Full BEKK
model in this case failed to converge using BHHH, so we switched to BFGS.
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Table 9 reveals a distinct pattern of an increase in the slope coefficients as we move across
the quantiles from the lowest 0.05 quantile to the highest 0.95 quantile. The most extreme case is
the prediction of the conditional variances for the relationship between IBMV2 and MSV2. In the
0.05 quantile, the conditional variance prediction by Full BEKK is 50 times lower than for DBEKK,
and, in the 0.095 quantile, it is 18 times higher (though there were convergence issues encountered
in the Full BEKK estimation in this case). Even so, the difference across these two extreme quantiles
usually varies by between 10 and 20 percent. This is still very large if we intend to use the models to
predict a portfolio VAR.

If we use the predictions of DBEKK as the benchmark, then application of the Full BEKK model
to the same data set may underestimate risk in the lowest quantile and overestimate risk in the highest
quantile. In the eighteen examples, seven of the total estimates suggest risk in the 0.05 quantile will be
lower by 10 percent or more when estimated by Full BEKK, as opposed to DBEKK. Similarly, in nine of
the total cases, the estimate of risk in the 0.095 quantile is 10 percent or more, when estimated by Full
BEKK, as compared with DBEKK. Thus, there are considerable discrepancies in the predictions of
conditional volatility based on these applications of the two models.

These discrepancies in the regression slope coefficients are apparent in Figures 5 and 6, which
present graphs of the estimated slope coefficients across the quantiles for the pairs of simulated
securities considered. The quantile regression bounds estimated at the 0.95 level are shown around
the quantile slope estimates in each figure. The horizontal lines, in the centre of the figures, show the
ordinary least squares regression slopes for the regressions of conditional variances for each security,
regressed on the conditional variances for the same security, when considered in the same pairwise
estimates produced by DBEKK. The ordinary least squares slope coefficients are not very informative,
and merely suggest whether the predicted conditional variances from Full BEKK are relatively above
or below those from DBEKK. There is considerable variation in the figures, but most of them are
slightly below one.

The quantile regression analyses are much more informative. The lines in Figures 5 and 6 link the
slope coefficients estimated at the 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles, when the predictions of the
conditional variances from Full BEKK are regressed on those from DBEKK (Figure 6). In all cases, except
for one, shown in Figures 5 and 6, the estimates at the lowest 0.05 quantile reveal a relationship between
the two sets of estimates that is markedly different from that suggested by ordinary least squares,
which captures the average relationship. The relationship is markedly different, at this quantile,
frequently by ten to twenty percent.

Another startling feature is that all the slopes depicted in Figures 5 and 6 are strongly positive, in
that the estimated slope coefficients all increase, with one exception, from the lowest to the highest
quantile. Thus, the conditional variances estimated from the Full BEKK model, are much higher,
at the 0.95 quantile, often by 20 percent or more, than the conditional variance estimated by the
DBEKK model.

These results have strong implications if we try use the two multivariate models to estimate
portfolio risk. The analysis reported in the paper, on these simulated financial return series,
suggests that the use of the Full BEKK model will underestimate conditional variances in the left-hand
tail of the portfolio return distribution, relative to DBEKK, and overestimate it in the right-hand tail of
the distribution.

These results are subject to certain caveats. We have estimated the models using the Estima Rats
econometric package, and used the default settings when fitting the models. We have not changed any
of the tolerances in the algorithms used to fit the models, or changed the settings for the initialization of
the algorithms used to commence the models. We have also instructed the program to use the BHHH
optimization procedure to fit the models. All the models have been fitted using a Gaussian distribution,
and the estimates would be different if we used a t-distribution. (We also did some analysis using
the t-distribution, which is not reported in the paper, that revealed a virtually identical pattern of
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relationships across the quantiles to those that that are reported in the paper). The intention was to use
a consistent approach to the fitting of the models and then to explore the consistency of the results.

Figure 5. Quantile regression slope coefficients of conditional variance from Full BEKK regressed on
DBEKK estimates (first 10 pairs).

We also estimated DBEKK and Full BEKK using three variables jointly, in this case, GOOGV1,
IBMV1, and MSV1, just to check that similar behaviour was displayed when we employed a trivariate
estimation procedure. The results are shown in Table 10.

It is evident in Table 10 that many of the additional terms included in the Full BEKK model are not
statistically significant, at least in this simulated data set. We also ran a quantile regression analysis of
the conditional variances produced by Full BEKK, regressed on the conditional variances producd by
DBEKK, using these three securities. The results are shown in Table 11. Plots of the quantile regression
slope coefficients are shown in Figure 7.
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Figure 6. Quantile regression slope coefficient estimates of conditional variance from Full BEKK
regressed on DBEKK estimates (remaining pairs).

Table 10. Variable coefficient estimates for DBEKK and Full BEKK, GOOGV1, IBMV1, and MSV1.

DBEKK

C (1,1) 0.01226 0.02926
C (2,1) −0.00029 * −0.00119 *
C (2,2) 0.01312 0.00083 *
C (3,1) −0.000001 * 0.00364 *
C (3,2) 0.00011 * 0.00785 *
C (3,3) 0.00902 0.00747 *
A (1) 0.28346 0.47788
A (2) 0.48530 0.48004
A (3) 0.34639 0.36256
B (1) 0.69899 0.28255 *
B (2) 0.54312 0.80864
B (3) 0.67893 0.78892

A (1,2) - 0.26978
A (1,3) - 0.02999 *
A (2,1) - −0.03014 *
A (2,3) - −0.01886 *
A (3,1) - 0.11740 *
A (3,2) - 0.17046 *
B (1,2) - −0.42607 *
B (1,3) - −0.09707 *
B (2,1) - 0.00375 *
B (2,3) - 0.01354 *
B (3,1) - −0.15853 *
B (3,2) - −0.16545 *

NB: All the coefficients in the above table are sigificant at the 1% level except those indicated by *.
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Figure 7. Quantile regression slope coefficient estimates of conditional variance from Full BEKK
regressed on DBEKK estimates for GOOGV1, MSV1, and IBMV1.

Table 11. Quantile regression results, predicted conditional variance from Full BEKK as the dependent
variable, GOOGV1, MSV1, and IBMV1 regressed on predicted conditional variance from DBEKK.

Security
Quantile

0.05 0.25 0.5 0.75 0.95

GOOGV1 Conditional Variance 0.178998 0.656654 1.97967 2.69374 2.95327
MSV1 Conditional Variance 0.651730 0.973131 1.13849 1.81488 2.62494
IBMV1 Conditional Variance 1.03471 1.15279 1.28522 1.42100 1.71742

NB: All the coefficients in the above table are sigificant at the 1% level.

It can be seen in Table 11 and in Figure 7, respectively, that exactly the same pattern of results
emerges, when we estimate DBEKK and Full BEKK on three securities jointly, as previously the
case with pairs of securities. The conditional variance estimates for Full BEKK, relative to DBEKK,
are comparatively lower in the 0.05 quantile, increase across the quantiles, and are relatively higher in
the 0.95 quantile. If the estimates were the same, the slope coefficient would be unity.

We used the DBEKK model as a benchmark, given that the statistical properties of this model
have been established. The results, using this benchmark, suggest that there is an observable and
relative bias in the predictions of the conditional variances from the Full BEKK model. This has serious
practical implications about the use of Full BEKK for risk management and modelling purposes.

4. Conclusions

This paper explored the relative biases in the estimation of the Full BEKK model, as compared with
the Diagonal BEKK model, which is used as an empirical benchmark. Chang and McAleer [14] showed
that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model,
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and demonstrate that Full BEKK, which, in practice, is estimated almost exclusively in the literature,
has no underlying stochastic process, regularity conditions, or asymptotic properties. Diagonal BEKK
(DBEKK) does not suffer from these limitations, and hence provides a suitable benchmark.

We used simulated financial returns series to contrast the estimates of the conditional variances
from DBEKK and Full BEKK. The results of thr non-parametric tests on their values shows evidence
of considerable bias in the Full BEKK estimates relative to those of DBEKK. The results of quantile
regression analysis showed there was a systematic relationship between the two sets of estimates as
we moved across the quantiles. Estimates of conditional variances from Full BEKK, relative to those
from DBEKK, are relatively lower in the left tail and higher in the right tail. The phenomenon appears
to be all-pervasive in estimates reported in the simulated financial return series. This result has serious
practical implications for the use of Full BEKK as a risk management tool.

In the introduction, we cited studies that employ the BEKK model to explore volatility
transmission, and financial market linkages, to name a few applications. It is important that investors
and financial policy makers are fully aware of the limitations of the full BEKK model, before they seek
to apply the results of any analysis incorporating its findings to real world issues.
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