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Abstract: According to operational experience of power systems, the outdoor insulation strength can
be reduced due to the effect of rain. Till now, little work has been done to investigate the flashover
performance of air gapped arresters under rain conditions. Therefore, in this paper, experiments were
carried out and the AC flashover performance of 10 kV arresters with different air gap structures was
studied. The experimental results show that, for the tested arresters, the flashover current mainly
flows through the air gaps and zinc oxide varistors under rain conditions. It is also confirmed that the
flashover voltages decrease with the increasing of rain intensity and conductivity. In the windward
direction, the wind can distort the water streams between the air gaps and rise the flashover voltages.
In the leeward direction, if the rod electrode is beyond the range of the plane electrode, the flashover
voltage researches the smallest value when the wind speed is 4 m/s. Analysis and discussions have
been done to explain the experimental results, and the research in this paper may provide reference
to improve the flashover performance of air gapped arresters under rain conditions.
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1. Introduction

With the fast development of power systems in China, some new problems have been found,
and one of them is heavy rain. According to operational experience, electric accidents caused by heavy
rain have been frequently reported [1–5]. Therefore, it is of great significance to study the rain effects
on the insulation performance of the power systems.

Studies have been carried out to investigate the influence of rain on the breakdown and flashover
performance in the power systems. The rain effects on switching impulse spark-over voltage of different
air gaps were studied [6–8]. In [6,7], full-scale experimental setups were carried out, and the breakdown
performances of phase-to-ground and phase-to-phase insulation with different gap lengths in dry
and wet conditions have been compared. The results indicated that the water drops in the shielding
ring should be the main reason for the decrease in breakdown voltage under rain conditions [7].
The effects of rain on the breakdown characteristics of conductor-to-tower air gaps under power
frequency voltages were studied in [8,9], and the breakdown characteristics of rod to plane short air
gaps under different voltages (switching [10], DC [11], AC [12]) have been investigated. It has been
found that rain drops can reduce the insulation strength of the power systems under different kinds of
applied voltages. Flashover performance of insulators under rain conditions was studied in [13,14],
and the effects of rain on the self-cleaning and flashover performance of insulators have been studied
in [4]. The results show that, rational sheds structure can improve the flashover voltage of insulators
under rain conditions.
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According to the existing studies, the breakdown and flashover performance of air gaps and
insulators under rain conditions have been studied by scholars. However, the structure of the air
gapped arresters is more complicate than air gaps and insulators, which have air gaps, silicon rubber
sheds and zinc oxide (ZnO) varistors contained in the arresters. Until now, not much work has been
done to study the flashover performance of air gapped arresters. What’s more, it has been confirmed
that the insulation performance of the electric equipment can be reduced with the increase of rain
conductivity and rain intensity, but the wind effects on the rain flashover performance of the air
gapped arresters has not been studied.

In view of the above, experimental investigations about the AC flashover performance of 10 kV
air gapped arresters have been carried out in this paper. The effects of rain intensity, rain conductivity,
and wind on the air gapped arresters’ flashover characteristics are studied. Finite element methods
are applied to study the electric field distributions of the tested specimens, and analysis has been
made to explain the experimental results. The studies in this paper can give help to the improvement
of insulation performance of air gapped arresters under rain conditions. This paper is organized as
follows:

• Firstly, the test facilities, specimens and procedures are introduced, compared with the existing
work, the rain flashover characteristics of the air gapped arresters are studied, whose structure
and flashover process is more complicated than the air gaps and insulators in the existing papers.

• Secondly, the flashover characteristics of the test specimens are obtained and analyzed. The effects
of rain intensity and conductivity on the flashover performance of the test species were studied.
Compared with the existing studies, the effects of wind speed and direction have been studied.

• Finally, conclusions are made, and some suggestions have been made for the design and type
selection of air gapped arresters.

2. Test Facilities, Specimens and Procedures

2.1. Test Facilities

The experimental test circuit used in this paper is presented in Figure 1. The power is supplied
by an 100 kV/320 kVA test transformer and leaded in through a wall bushing, R0 is the protective
resistor (R0 = 5000 Ω), and the applied voltage is measured by a capacitive voltage divider (C1 = 10 pF,
C2 = 100 pF). As shown in Figure 1, S represents the test specimen, the high voltage terminal of S is
connected to the output of the test transformer, and the low voltage terminal of S is grounded.
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Figure 1. Experimental setup for rain flashover tests. Figure 1. Experimental setup for rain flashover tests.

The rain flashover tests were carried out in a multi-function artificial climate chamber in the State
Grid Corporation of Hunan in Changsha, China. The artificial climate chamber has a diameter of 9 m
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and a height of 12 m. The spraying system in Figure 1 consists of more than 10 fog nozzles, and the
wind velocity regulating system is composed of more than 10 fans placed in a tapering box with
a diffusing honeycomb panel. The atmospheric parameters were measured by means of the PTU200
pressure-temperature-humidity transmitter produced by Vaisala Oyj Company of Finland and the
measured deviations of temperature, relative humidity, and atmospheric pressure are respectively
±0.2 ◦C, ±1% RH and ±0.03 kPa. The rain intensity was measured with the JFZ-01 digital hyetometer
in the high voltage test hall and the WXT520 atmospheric transmitter produced by Vaisala Company
in the field tests. The rain conductivity was measured by the DD-810E conductivity meter. In field
tests, wind velocity was recorded with the AVM-03 anemometer produced by the TES Company of
Taiwan. These facilities can meet the requirements for rain flashover tests [15,16].

2.2. Test Specimens

The test specimens consist of 2 types of 10 kV air gapped arresters, and the profiles of the test
specimens are presented in Figure 2. The test specimens have two parts: the insulation part and the
arrester part. The insulation part is made of epoxy resin and connected with an air gap in parallel.
The arrester part has ZnO varistors contained in it. Both the insulation part and arrester part are
covered by silicone rubber sheds. For the test specimens shown in Figure 2, the structure height is
395 mm, the creepage distance of the insulation part and arrester part is 320 mm, the sheds distance is
32 mm, and the sheds diameters are 132/102 mm. The diameter of the metal fitting (plane electrode)
is 200 mm. The rod electrode of type 1 is just under the edge of the plane metal fitting while the rod
electrode of type 2 is 50 mm beyond the plane electrode. The distances between the plane and rode
electrode of type 1 and type 2 are all 55 mm.

The air gapped arresters in Figure 2 are used to protect distribution lines from lightning
over-voltages. However, under rain conditions, the arresters in Figure 2 may suffer rain flashovers.
Therefore, a series of flashover experiments were carried out to investigate the rain flashover
characteristics of the specimens.
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Figure 2. Profiles of the test specimens.

2.3. Test Procedures

The rain flashover tests were carried out in the climate chamber. Before tests, the specimens were
carefully cleaned up and dried at room temperature. After that, the test specimens were installed
vertically in the chamber. As shown in Figure 1, the top section was connected to the high voltage
lead and the bottom was grounded; in the experiments, a 1 m long conductor is connected to the high
voltage terminal of the test specimens to be more realistic. When the wind speed is 0 m/s, the rain
drops fall almost vertically on the test specimens.
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In artificial tests, according to the operational experience [3], the rain intensity I and the rain
conductivity γ ranged from 0–14 mm/min and 500–2000 µS/cm respectively, the wind speed ranged
from 0–8 m/s. The precipitation rate, the angle of rain spraying of the artificial rain were measured
and checked according to the standardized procedure [15–17].

In all of the tests, step up method was used to investigate the AC flashover voltage of rod-plane
air gapped arresters in rain conditions [12]. The rate of voltage rise was about 3–4 kV/s in artificial
tests. The number of experiments was at least 10, of which the standard deviation was within 5%.
So as to ensure the validity of test data, the rain intensity was verified every 5 min. The breakdown
voltages with a standard deviation more than 5% were ignored. The AC flashover voltage of the test
specimens equals to the mean value of the tested breakdown voltage.

3. Test Results and Analysis

Rain flashover tests were carried out in the artificial climate chamber, and the test results are given
and analyzed in this section, where I is the rain intensity, mm/min; γ is the rain conductivity corrected
to 20 ◦C, µS/cm; v is the wind speed, m/s.

3.1. Effects of Rain Conductivity

According to the experimental results, when wind speed v = 0 m/s, the relationship between
flashover voltage and rain conductivity is shown in Figure 3, from which it can be known that, with the
increase of rain conductivity, the flashover voltage decreases, and the max decent degree is 5.8%.
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According to the studies in [18,19], the influence of the water conductivity can be summarized as
follows: firstly, a higher conductivity can enhance the local field at the head of the avalanche; secondly,
the electrons at the head of the avalanche at the positive side of the drop are faster absorbed by the
drop surface and are therefore less efficient in producing photons for secondary avalanches that could
enhance the space charge of the aborted streamer.

3.2. Effects of Rain Intensity

When the wind speed is 0 m/s, the effects of rain intensity on the flashover performance are
shown in Figure 4. As shown in the figure, with the increasing of rain intensity, the flashover voltage
decreases less than 10%.
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Figure 5 shows the rain flashover process of the test specimens, as shown in the figure,
when v = 0 m/s, I = 9.6 mm/min. Water streams existed under the metal fittings. At the beginning of
the flashover process, local arcs appeared between the water stream and the lower electrode, as the
flashover process went on, the local arc develops along the water stream and the air gaps of the
arresters. From Figure 5, it can be confirmed that, under normal working conditions, the AC voltage
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applied on the 10 kV arresters is 5.8 kV per phase, flashover will not happen under rain conditions.
However, when over-voltages are applied on the arresters, the air gaps are broken down and the ZnO
varistors work in non-linear section [20,21], the flashover path develops through the arc gaps and ZnO
varistors of the arresters and no flashover arc appears on the surface of the arrester part.
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In order to explain the effects of the rain intensity, the finite element method is applied to study
the electric field distributions of the test specimens under rain conditions in the Ansoft software.
The simulation model is shown in Figure 6a, and the simulation parameters are obtained from [22–24],
the relative permittivity of the ZnO varistor, silicone rubber sheds and epoxy resin are 800, 3 and 6
respectively. The metal fitting is set to be ideal conductor. According to the experimental flashover
process in Figure 5 and the simulation model in [12], the following assumptions are made when
building the calculation model:

(1). When v = 0 m/s, no rain droplets exist within the scope of metal fitting, under the edges of
the metal fitting, there are water stream and rain droplets between the metal fitting and rod electrode,
the length of the water stream is set to be 20 mm long, and the rain droplets is 4–6 mm [25].

(2). The test specimens are symmetrical and can be built in a 2-D model. The metal plane of
the test specimen is connected to the high-voltage terminal, and the other side of the test specimen
is grounded.

(3). The simulation region is a 3 m × 3 m rectangle, and the test specimen is in the center of the
simulation region. The lower boundary (ground plane) of the simulation region is set to 0 V, and the
other boundaries are set to be infinite boundaries [26].

(4). The operating voltage frequency of the test specimens is 50 Hz, according to [26], the 50 Hz
AC electric field is quasi-static field and can be considered as static field approximately. Applying
a 5.8 kV DC voltage (root mean square value of phase voltage in 10 kV system) on the high voltage
terminal, and the electric field distribution is obtained and shown in Figure 6b,c.
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As shown in Figure 6b,c, it can be confirmed that, due to the rain effects, the voltage applied on
the arrester part is very small, and the air gap between the electrodes withstands most of the applied
voltage. Thus, the electric field in the air gap between the water streams, rain droplets and electrodes
is much higher. With the increase of rain intensity, the water streams grow longer, which makes the air
gap shorter and easier to be breakdown.

According to the analysis above, based on the flashover model built in [27–29], the equivalent
circuit of the arresters under rain conditions is built and shown in Figure 7, where ZS1 and ZS2 are the
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surface equivalent impedances of the insulation part and arrester part. ZW is the impedance of the
water film, Zg is the impedance of the air gap, and Za is the impedance of the ZnO varistors.

Under rain conditions, according to the equivalent circuit model shown in Figure 7, water streams
exist under the edge of the metal fitting, and the insulation part withstands most of the applied
voltage. When the applied voltage exceeds the air gap breakdown voltage, flashover arc appears,
ZW, Zg become much lower and the arrester part withstand most of the applied voltage. According
to the experimental results above, as the air gap breakdown voltage is always higher than the rated
voltage of the arrester part, when the flashover occurs, Za becomes much smaller, and the flashover
current mainly flows the ZnO varistors of the arrester part. So, as shown in Figure 5, the flashover arc
appears on the insulation part and not observed on the arrester part.
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3.3. Effects of Wind

When I = 9.6 mm/min and γ = 500 µS/cm, the effects of wind on the flashover voltage of the
test specimens is shown in Figure 8. It can be seen that, for the type 1 specimen, the flashover voltage
increases in both windward and leeward direction. For the type 2 specimen, when the air gap is in
a windward direction, the flashover voltage increases with the increasing of wind speed, when the
air gap is in a leeward direction, the flashover voltage decreases before 4 m/s, as the wind speed
continues to increase, the flashover voltage increases.
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When the wind speed is 4 m/s, the flashover path of the test specimens are shown in Figure 9,
compared with Figure 5, it can be known that, in the windward direction, because of the wind effects,
the water streams were broken. ZW and Zg become larger, leading to higher flashover voltages, for type
1, a part of the flashover arc develops along the silicon rubber sheds. However, in the leeward direction,
the flashover paths were influenced little by the wind.

According to Section 3.3, the flashover voltage is largely dependent on the water stream and
air gap length. In this paper, Figure 10 is given to explain the wind effects on the flashover voltage
and flashover path in Figures 8 and 9. In Figure 10, θ means the angle between the water film and
vertical line, in the windward direction, when the wind speed increases, the air gaps between the
lower electrode and water stream become larger, and the flashover voltage of both type 1 and type
2 increases. In the leeward direction, for type 1, the air gap between the electrodes becomes larger
when the wind speed increases, for type 2, when the wind speed is about 4 m/s, the length of the air
gap and the flashover voltage reach the smallest value. What’s more, as observed in the experimental
tests, when the wind speed increases, the water streams may become shorter or even broken by wind.
This is why the flashover voltage decreases with the increasing of wind speed when v > 4 m/s.
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From the test results, it can be seen that the wind has a greater influence when the rod electrode is
beyond the metal plane (type 2). However, it is also confirmed that, when the rod electrode is too near
to the silicon rubber sheds, it is easier for flashover arcs to develop on the silicon rubber sheds and
lead to aging and damage of the insulation part (type 1). So, in order to improve the rain flashover
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characteristics of the test arresters, it is suggested to use the rod structure of type 2 and enlarge the
metal plane diameter to a proper extent that can be easily produced and maintained.

4. Conclusions

In this paper, a series of tests were carried out to study the rain flashover performance of 2 types
of air gapped arresters, from which the following conclusions can be made:

(1) Under rain conditions, the air gap withstands most of the applied voltage and the flashover path
develops through the water stream, air gap, and ZnO varistors. It is confirmed that, compared
with insulators, no flashover happens on the surface of the insulation part.

(2) As the rain intensity and conductivity changes, the rain flashover voltage may decrease up to
10%. Compared with rain intensity and conductivity, the influence of wind speed is much higher,
the flashover voltage may increase up to 30%. When the air gap is in the windward direction,
the flashover voltage becomes higher due to the wind effects. When the air gap is in the leeward
direction, the flashover voltage of type 1 increases with the increasing of wind speed, while the
flashover voltage reaches the smallest value when the wind speed is 4 m/s.

(3) For the test specimens studied in this paper, the wind has a greater influence when the rod
electrode is beyond the metal plane, while the flashover arcs may develop along the silicon
rubber sheds and lead to aging and damage of the insulation part when the rod electrode is too
near to the silicon rubber sheds. Thus, in order to obtain better rain flashover performance, it is
suggested to use the rod structure of type 2 and enlarge the metal plane diameter to a proper
extent that can be easily produced and maintained.
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