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Abstract: The current study aims to forecast and analyze wind data such as wind speed at a test site called
“Urumsill” on Deokjeok Island, South Korea. The measured wind data available at the aforementioned
test site are only for two years (2015 and 2016), making it impossible to analyze the long-term wind
characteristics. In order to overcome this problem, two measure-correlate-predict (MCP) techniques
were adopted using long-term wind data (2000–2016), measured by a meteorological mast (met-mast)
installed at a distance of 3 km from the test site. The wind data measured at the test site in 2016 were
selected as training data to build the MCP models, whereas wind data of 2015 were used to test the
accuracy of MCP models (test data). The wind data at both sites were measured at a height of 10 m
and showed a good agreement for the year 2016 (training period). Using the comparison results of
the year 2016, wind speed predictions were made for the rest of the years (2000–2016) at the test site.
The forecasted values of wind speed had maximum relative error in the range of ±0.8 m/s for the
test year of 2105. The predicted wind data values were further analyzed by estimating the mean
wind speed, the Weibull shape, and the scale parameters, on a seasonal and an annual basis, in order
to understand the wind behavior in the region. The accuracy and presence of possible errors in the
forecasted wind data are discussed and presented.

Keywords: long-term wind data; forecasting; Measure-Correlate-Predict (MCP) techniques; regression;
variance ratio; Weibull plots

1. Introduction

Wind energy is one of the cleanest sources for electricity production in terms of greenhouse gas
(GHG) emissions. The development of new wind farms, both on-shore and off-shore, has increased
rapidly over the last two decades [1]. Wind farm development is a complex process that requires a
great deal of experience, analysis, and pre-feasibility studies of the selected site. Wind farm developers
usually require long-term measured wind data in order to design and plan wind farms at a particular
site. However, the non-availability of long-term “good quality” measured wind data hinders this
process [2]. It is both impractical and nearly impossible to obtain measured long-term wind data
at every planned wind farm site [3]. Many researchers have pointed out that short-term wind data
sets are insufficient to predict the behavior of wind over the entire life span of a wind farm (usually
20 years) [4–6]. One way to address this challenge is to use computer-simulated wind data for the
planned wind farm sites [5]. However, there are major issues with the availability and accuracy of
such wind data. So, in this scenario, measure-correlate-predict (MCP) methods could be an alternative
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technique to predict long-term wind data at a planned wind farm site, where measured wind data sets
are available only for a year or so [6].

In the past, it has always been a great debate to determine better techniques for wind resource
forecasting. There were two popular approaches, the statistical (MCP) and the physical such as wind
atlas analysis and application program (WAsP). Addison et al. [7] stated that the MCP techniques
are usually more accurate and robust than the other physical modeling algorithms (WAsP [8,9]),
especially in complicated terrain. Physical techniques induce uncertainties in the forecasted wind
data during the prediction process. For these reasons, MCP models have been extensively applied
in software applications to predict long-term wind data, and have become a standard tool for wind
farm site selection. Derrick et al. [10] reported that most of the wind farm developers in 1996 used
some sort of MCP method to forecast long-term wind data at test sites. The aim of the study conducted
by Landberg and Mortensen [11] was to shed some light on the debate of which technique is better
for predicting long-term wind data—the physical approach (e.g., WAsP) or the statistical approach
(e.g., MCP). The authors stated that both techniques can predict the wind resources up to a certain
degree of accuracy, but MCP is more robust, as physical methods violate flow model assumptions.
Bowen and Mortensen [12] conducted a study to estimate the errors induced in the predicted wind data
by WAsP due to site orography, and concluded that such errors can be significantly large. Brower [13]
stated that WAsP was unable to accurately predict the long-term wind resources in hilly areas in the
US due to the complex topographical nature of the test sites. However, he also mentioned that WAsP
can be used in relatively flatter and less-complex terrain areas. Similarly, Prasad and Bansal [14] also
stated that wind data predicted by WAsP in complex terrain can have a high amount of uncertainty.
So, they concluded that it would be more feasible to utilize MCP methods while predicting wind
data in complex terrains. They also concluded that uncertainty in the forecasted wind data by MCP
methods could be considerably small, as the length of the time period for which measured wind data
has been recorded at the test site increases. Due to the multiple advantages of MCP methods over
physical methods, the current study utilized MCP algorithms.

This paper investigates the forecasting of long-term wind data at a test site (Urumsill on Deokjeok
Island) in South Korea, where only two years (2015 and 2016) of measured wind data is available.
The Korean Meteorological Administration (KMA) has constructed and installed a meteorological
mast (met-mast) near Urumsill (approximate distance is 3 km), which has been recording weather
data (including wind data) continuously since 2000. The wind data recorded by the KMA was used as
reference data, and the total of the seventeen years (2000–2016) of data was selected for this purpose.
Recently, S. Ali et al. [15] presented a detailed statistical analysis of the wind data recorded by the
KMA on Deokjeok Island.

It is very important to mention that the wind data measured at the test site in year 2016 was used
as training wind data to develop MCP models. Similarly, measured wind data of year 2015 was used
to estimate the accuracy in the predicted values using MCP algorithms (such data are referred to as
test wind data). The wind data recorded at Urumsill and the met-mast were both measured at the
height of 10 m with the same time interval (10 min). So, the met-mast data could be compared against
the Urumsill wind data for the training year of 2016, and in this way, long-term wind data could be
determined at Urumsill via MCP methods. The height of the anemometers at both sites is also very
crucial in the MCP forecasting process, as Probst and Cárdenas [16] concluded that the value of the
correlation coefficient was higher between data sets when winds were measured at the same height,
and vice versa for data sets collected at different heights. To the best of our knowledge, such studies
had not been performed yet for this site or nearby areas. This paper not only forecasts the long-term
wind data, but an estimation of wind potential will also be made at the test site. The authors believe
that results presented here can be very useful for planning a wind farm development in the region.
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2. Materials and Methods

2.1. Wind Data Collection at Two Sites

Prior to applying MCP methods to the data sets, it should be made sure that both sites are
not too far/near to each other. Figure 1 was prepared to provide an understanding of the exact
position and other geographical characteristics of the two sites. As it can be seen, the Urumsill
(test site) is at least 3 km from the met-mast position (reference site) on Deokjeok Island. The height
difference between both sites is approximately 60 m (test site: 80 m above sea level (ASL); reference site:
20 m ASL), and there are mountains between both sites having heights more than 100 m above sea
level (ASL). The test site is situated at a higher altitude and in a more steep area as compared to the
reference site. In fact, the met-mast at reference site is installed on a very flat surface, whereas the
“wind master” tower at the test site is surrounded by steep mountains (see Figure 2a,b). The green
color in Figure 1 represents the sea surface, whereas north is considered as the zero degree of the wind
angle. This analogy will be frequently used in subsequent sections. Table 1 presents the important
information about the collected wind data sets at the two sites.

Figure 1. Geographical locations of the two sites.

Originally, the wind data were recorded in one-second time intervals at both sites. However, due to
the large amount of data, the original data were averaged out using a 10 min time interval and the
standard deviation from the mean value of each parameter is also stated in Table 1.

Figure 2a shows the met-mast installed by the KMA in order to capture the weather data at the
reference site, and Figure 2b shows a vertical tower called the “wind master”, used to record wind
data at the test site. Anemometers were installed on both towers at the same height of 10 m, and the
data averaging time interval was 10 min in both cases. The wind data used in the current study was
recorded for seventeen years (2000–2016) by the met-mast, whereas only two years (2105 and 2016) of
wind data were available at the test site.

Automatic weather systems (AWS) were designed and installed at both sites in accordance with
the regulations of the WMO (World Meteorology Organization). Different sensors were attached
with AWS tower to measure wind direction, wind speed, and temperature (see Table 1). All the data
collected were transferred to a data logger connected with the main computer which stored the data
and distributed it automatically when instructed. Figure 2c explains the overall process of wind data
collection and storage in the computer.
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Table 1. (a) Wind data acquisition specifications at test site; (b) Wind data acquisition specifications at reference site [17].

(a)

Device Parameter
Recorded

Sensor
Range

Accuracy
(Max. Error)

Operating Temperature
Range (◦C)

Data Collection Period
(years)

Installation
Height (m)

Data Recovery
Rate (%)

Original Time
Interval

Averaged Time
Interval

Standard
Deviation (-)

NRG #40C Wind Speed (m/s) [1–96] ±0.1 m/s [−55 to 60] 2015–2016 10 97 1 s 10 min 3.23
NRG #200P Wind Angle (◦) [0–360] ±1◦ [−55 to 60] 2015–2016 10 94 1 s 10 min 4.65
NRG #110S Temperature (◦C) [−40 to 52.5] ±1.1 ◦C [−40 to 52.5] 2015–2016 2 93 1 s 10 min 2.54

(b)

Device Parameter
Recorded

Sensor
Range

Accuracy
(Max. Error)

Operating Temperature
Range (◦C)

Data Collection Period
(years)

Installation
Height (m)

Data Recovery
Rate (%)

Original Time
Interval

Averaged Time
Interval

Standard
Deviation (-)

JY WS161C Wind Speed (m/s) [0–75] ±0.15 m/s [−40 to 80] 2000–2016 10 91 1 s 10 min 4.2
JY WD160C Wind Angle (◦) [0–360] ±3◦ [−40 to 80] 2000–2016 10 98 1 s 10 min 2.9

JY100829 Temperature (◦C) [−40 to 60] ±0.1 ◦C [−40 to 60] 2000–2016 2.05 97 1 s 10 min 3.1
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Figure 2. Wind data measuring apparatuses at both sites (a) Reference site; (b) Test site; (c) Automatic
weather systems (AWS) data collection process (http://www.jinyangind.com/system_aws.html).

2.2. MCP Methods

MCP algorithms compare the measured wind data sets of two sites (test and reference) over a
concurrent time period (usually known as training time), in order to establish a relationship between
the two data sets. Such comparisons can lead towards building a mathematical model which links
wind speed at both sites in a particular fashion. Finally, these equations are utilized to predict the
wind data at the test site. There are many types of MCP models (i.e., linear regression, matrix method,
Weibull scale, wind index, etc.) [18]. All of these models have been extensively used by researchers
globally in order to forecast long-term wind data. For instance, Ko and Huh [19] used an MCP method
in order to predict the long-term wind data at a site called “Seongsan” on Jeju Island, South Korea.
They discussed two MCP methods, linear and matrix, but used only the matrix method for analysis
due to its robustness [20]. Sreevalsan et al. [21] adopted the linear MCP methodology in order to
estimate the long-term wind data at a test site named as Majlahati. They also applied fast-Fourier
transform (FFT) analysis in their study to obtain the results. The linear regression model is the more
flexible and robust, and thus was deployed in the current study.

2.2.1. Method 1: The Linear Regression Model

The classical regression type of the MCP techniques was adopted in the current study in order to
forecast wind speed data at a test site. Such methods compare the wind data of two sites (i.e., the test
site and reference site) over a concurrent period of time. A best-fit polynomial curve of degree “n” is

http://www.jinyangind.com/system_aws.html
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drawn between the two data sets. In the current case, the linear regression model was considered as it
gives reasonable fits for wind energy estimations. The mathematical form of such a regression model
is as follows:

vTS = m× vRS + a , (1)

where VTS and VRS are the wind speeds at the test site (Urumsill) and reference site (met-mast site),
respectively, and, m and a are the slope and y-intercept of the best-fitting straight line. The values of
the slope and the y-intercept were determined using the results of Figure 4.

2.2.2. Method 2: The Variance Ratio Model

The linear regression MCP model works on the basis of mean wind speeds. That is, it can predict
the mean wind speed nearly equal to the measured mean wind speed at test site over a concurrent
time period. However, if such a technique is adopted, the predicted variance is usually less than the
measured variance. This creates uncertainties, biases, and errors in the predicted wind data. In order to
tackle these issues, the variance ratio method was introduced [22], and it can be defined mathematically
as follows:

vTS = vTS −
(σTS)(vRS)

σRS
+

(σTS)(vRS)

σRS
, (2)

where v and σ are the mean wind speed and the standard deviation in wind speed, respectively.

2.2.3. Estimation of Errors in the Predicted Wind Data

In order to measure the variability in the estimated wind speed, two statistical parameters were
introduced (i.e., the coefficient of variation, CV, and the range of variation, RV). CV determines the
fluctuations in the estimated wind data around a mean value, whereas RV indicates the extremes of
the wind data time series. They are calculated as follows.

CV (%) =
σ

v
× 100 , (3)

RV =
vmax or vmin − v

v
. (4)

In order to measure the accuracy in the predicted wind data, three statistical parameters were
introduced: the ratio of mean wind speeds (Rv), the ratio of wind speeds variance (Rσ2), and the
maximum absolute error (MAE) [22], calculated as follows:

Rv =
∑n

i=1 vest

∑n
i=1 vmes

, (5)

Rσ2 =
∑n

i=1(vest − vest)
2

∑n
i=1(vmes − vmes)

2 , (6)

MAE = max|vest − vmes|, (7)

where vest and vmes are the estimated and measured wind speeds, respectively. Apart from the
above-mentioned error-predicting parameters, the following set of equations can also estimate the
accuracy in the forecasted wind data.

Relative Error = ε = vest − vmes , (8)

bias error = ε , (9)

Mean Square Error = MSE = ε2, (10)

Root Mean Square Error = RMSE =
√

MSE , (11)
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sde = σ(ε) , (12)

sdbias = σ(vest)− σ(vmes) . (13)

The values of all of these parameters were estimated for the forecasted wind data of year 2015
and the measured test wind data of year 2015.

2.3. Estimation of Weibull Parametres

Once the wind data time series is forecasted, it can be very useful to analyze the wind data so
that an estimation of wind potential can be made at the test site. Probability density functions (PDFs)
are frequently used by researchers and scientists to estimate the wind potential. Over the past few
years, many researchers have tried different techniques. However, from the results of previous studies
it has become clear that Weibull distribution models are the most suitable for the estimation of wind
potential [23–25]. Out of 12 probability density models, Carta et al. [26] concluded that the Weibull
model has several advantages over other wind speed distribution models. Corotis et al. [27] compared
the performance of Chi-squared and Weibull distributions in fitting the observed wind speed and
power histograms. They came to the conclusion that both distributions can accurately predict the wind
potential, but Weibull stands out for its better performance. Hennessey [28] stated that along with
providing an accurate representation of wind speed distribution, Weibull can also easily estimate wind
potential. Deaves and Lines [29] used a Weibull density function to fit low wind speed data, and they
concluded that the Weibull model was applicable over the complete range of wind speed. The Weibull
model has been applied unanimously by almost all researchers involved in wind speed data analysis.
Therefore, a Weibull PDF will be used in this study to estimate the wind potential and to analyze wind
characteristics. For this purpose, the Weibull probability density function (PDF) and the cumulative
distribution function (CDF) were defined as follows, respectively [30].

Weibull PDF = f (v) =
(

k
c

)(v
c

)k−1
exp
[
−
(v

c

)k
]
(v > 0; k, c > 0) , (14)

Weibull CDF = F(v) = 1− exp
[
−
(v

c

)k
]

. (15)

k and c are called the Weibull shape and scale parameters, respectively. The accurate estimation of these
two important parameters is of immense importance in wind energy analysis. There are numerous
methods to calculate k and c, but the current study will adopt the following five methodologies to
estimate these parameters [31]:

• empirical method

k =
(σ

v

)−1.086
(1 ≤ k ≤ 10) , (16)

c =
v

Γ
(

1 + 1
k

) ; (17)

• graphical method

ln[−ln(1− F(v))] = k× ln(v)− k× ln(c) ; (18)

• maximum likelihood method (MLM)

k =

[
∑n

i=1 vi
k ln(vi)

∑n
i=1 vi

k − ∑n
i=1 ln(vi)

n

]−1

, (19)

c =

[
1
n

n

∑
i=1

vi
k

]1/k

; (20)
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• power density (PD) method

Ep f =
v3

v3 =
Γ(1 + 3

k )

Γ(1 + 3
k )

3 , (21)

k = 1 +
3.69
Ep f

2 , (22)

where v3 is the mean of the cube of the wind speed, v3 is the cube of the mean wind speed, and Epf is
called the energy pattern factor, whereas c can be determined from Equation (17).

• moment method

v = cΓ
[

1 +
1
k

]
, (23)

σ = c
[

Γ
(

1 +
2
k

)
− Γ2

(
1 +

1
k

)]1/2
. (24)

In order to evaluate the performance of each of the five methods listed above, a root mean square
error (RMSE) analysis was conducted. RMSE can be defined as below:

RMSE =

√
∑n

i=1(yi − xi)
2

n
, (25)

where yi is the actual value of the ith bin of wind speed, xi is the value forecasted by the Weibull
method, and n is the total number of wind speed data points in a particular wind data time series.

3. Results and Discussion

3.1. Wind Data Predictions at Test Site

Prior to applying any MCP model on the met-mast data, it is highly recommended to first compare
the time series wind data of both locations over a concurrent time period. The aim of carrying out this
preliminary process was to determine whether both wind data sets had similar patterns with respect
to time. Figure 3 shows the season-wise results of such comparisons over a concurrent time period
of five days. As can be seen in the figures, both data sets had similar patterns with respect to time,
although wind data at the reference site had slightly higher magnitude. Therefore, generalizing the
results of Figure 3, it can be concluded that MCP methods can be applied to the remainder of the wind
data sets as well.

Figure 4 shows the wind speed data comparison for both sites measured during training year
2016. All the wind data presented in this figure are 10 min averages and measured at a height of 10 m.
A straight best-fit line was passed through the data in order to obtain the slope and the y-intercept of
Equation (1). The value for the square of the correlation coefficient (R2) was 86%, which is considered
to be a reliable fit for the wind data. Wind speed data at the test site seemed to have a slightly higher
magnitude than that of the reference site.

After obtaining the values of the slope and the y-intercept from Figure 4, the following equation
of a straight line can be obtained.

vTS = 0.516× vRS + 0.231 . (26)

Using the results of Figure 4 and Equation (26), a wind data time series was forecasted at the test
site for all the considered years (2000–2016) according to method 1.
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Figure 3. Wind data comparison at both sites over concurrent time period of five days for training
year 2016. (a) Winter (1 January–5 January); (b) Spring (1 April–5 April); (c) Summer (1 July–5 July);
(d) Autumn (1 October–5 October).
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Figure 4. Measured wind speed comparison at both sites for training year 2016.

Similarly, in order to forecast wind data using method 2, Table 2 was prepared, which contains
the values of the mean wind speeds and the standard deviations at both sites.

Table 2. Characteristics of the measured wind speed for the training year 2016.

Site Mean Wind Speed (m/s) SD in Wind Speed

Test site 2.86 1.45
Reference site 3.11 1.75

Inserting the values of Table 2 in Equation (2), the following wind data forecasting equation was
obtained for method 2.

vTS = 0.828× vRS + 0.283 . (27)

After forecasting the seventeen years (2000–2016) of wind data at the test site using both methods,
it was decided to assess the accuracy of both methods. For this purpose, measured wind data of 2015
at the test site were used as test data to compare with forecasted data of the same year. Table 3 presents
the month-wise values of CV and RV in the predicted wind data at the test site for the test year 2015.
Experimental values of these variables are also presented so that a comparison can be made among the
forecasted and measured data.

Table 3. Month-wise values of the coefficient of variation (CV) and range of variation (RV) for the test
year 2015.

Test year Method 1 (Linear Regression) Method 2 (Variance Ratio) Measured Wind Data (2015)

Month CV RVmin RVmax CV RVmin RVmax CV RVmin RVmax

January 0.712 −0.940 1.618 0.565 −0.904 1.813 0.625 −1 2.005
February 0.562 −0.899 2.132 0.552 −0.892 1.778 0.619 −1 1.992

March 0.660 −0.933 2.610 0.594 −0.890 2.490 0.667 −1 2.798
April 0.482 −0.723 4.676 0.468 −0.714 2.240 0.656 −1 3.139
May 0.662 −0.736 1.787 0.402 −0.693 1.317 0.580 −1 1.899
June 0.669 −0.702 1.580 0.416 −0.676 1.489 0.615 −1 2.203
July 0.671 −0.685 2.688 0.558 −0.756 2.635 0.738 −1 3.486

August 0.483 −0.766 2.176 0.489 −0.727 2.112 0.673 −1 2.903
September 0.499 −0.765 2.133 0.403 −0.757 1.348 0.532 −1 1.780

October 0.587 −0.913 3.162 0.560 −0.924 3.896 0.606 −1 4.217
November 0.668 −0.949 2.989 0.557 −0.931 2.175 0.598 −1 2.336
December 0.678 −0.901 2.534 0.550 −0.940 1.776 0.585 −1 1.890

From the results of Table 3, it is clear that method 2 (variance ratio) was more accurate than
method 1 (linear regression). Therefore, the following sections contain results which were obtained by
adopting method 2 only.
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3.2. Forecasted vs. Measured Wind Data at Test Site (Test Year 2015 Only)

Before analyzing the forecasted wind data, it was useful to first compare it with the measured
wind data at the test site. Doing so increased the confidence in the results obtained from the analysis of
the forecasted wind data. Figure 5 shows the season-wise comparison results of the predicted and the
measured wind speed data at the test site. Because the measured data at the test site was available only
for the years 2015 and 2016, Figure 5 was prepared using wind data of only the year 2015 (test data),
for both the measured and the predicted case. As it is clear from Figure 5 that the wind data predictions
showed good agreement with the measured data, the forecasted wind data could be used for further
analysis. Although the predicted wind data was slightly over-estimated, the minimum r-squared (R2)
value was 79%, which is acceptable.Energies 2018, 11, x  12 of 18 
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Similarly, Table 4 displays the monthly values of the mean wind speeds, estimated using the
measured and forecasted wind data for the year 2015 at the test site. Along with mean wind speed,
other statistical parameters (Rv, Rσ2 , MAE, etc.) are also listed in Table 4, so that the accuracy of the
forecasted wind data can be assessed.

Table 4. Month-wise error estimation in the predicted wind speed of test year 2015.

Month vmes
(m/s)

vest
(m/s)

Rv
(-)

Rœ2

(-)
MAE
(m/s)

bias
(m/s)

MSE
(m2/s2)

RMSE
(m/s)

sde
(m/s)

sdbias
(m/s)

January 2.396 2.432 1.015 0.918 0.357 0.037 0.016 0.128 0.123 −0.123
February 2.106 2.166 1.029 0.918 0.284 0.060 0.015 0.123 0.107 −0.107

March 2.054 2.118 1.031 0.918 0.407 0.065 0.017 0.130 0.112 −0.112
April 2.054 2.558 1.245 0.889 0.212 0.504 0.276 0.526 0.150 −0.150
May 1.863 2.388 1.282 0.889 0.133 0.525 0.290 0.539 0.120 −0.120
June 1.717 2.259 1.315 0.889 0.122 0.541 0.307 0.554 0.117 −0.117
July 1.605 1.905 1.187 0.897 0.277 0.300 0.105 0.324 0.122 −0.122

August 1.383 1.706 1.233 0.897 0.091 0.323 0.113 0.336 0.096 −0.096
September 1.619 1.917 1.184 0.897 0.002 0.298 0.097 0.311 0.089 −0.089

October 1.725 1.880 1.090 1.007 0.206 0.155 0.024 0.155 0.007 0.007
November 1.918 2.075 1.082 1.007 0.188 0.156 0.025 0.157 0.008 0.008
December 2.214 2.373 1.072 1.007 0.188 0.159 0.025 0.159 0.009 0.009
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Furthermore, Figure 6 shows the season-wise plots of relative error (ε) estimated in the forecasted
wind data for the test year 2015 on an hourly basis. It is clear from Figure 6 that the forecasted values of
wind speed had maximum relative error in the range of ±0.8 m/s for the test year of 2015, which can
be considered as acceptable. Therefore, results of Figures 5 and 6 and Table 4 suggest that wind data
forecasting was completed successfully and the small amount of error can be neglected.
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year 2015: (a) Winter; (b) Spring; (c) Summer; (d) Autumn.

3.3. Analysis of Predicted Wind Data

After forecasting the wind data and measuring its accuracy, this section presents some useful
analysis and results, which were prepared using the forecasted wind data. Figure 7 shows the annual
variation in the Weibull shape and scale parameters, estimated by all the methods adopted in the
current study. The shape parameter shows relatively smaller fluctuations as compared to the scale
factor, and had an overall mean value of approximately 1.8. On the other hand, the scale parameter
suddenly dropped to a value of 1 m/s from year 2009 and continued onward.

Figure 7. Estimations of the Weibull parameters at the test site using predicted data: (a) Shape parameter;
(b) Scale parameter. MLM: maximum likelihood method; PD: power density.

Table 5 contains the annual RMSE values estimated by all methods. In an ideal case, the RMSE
value should be zero, but this is practically not possible. So, the lowest RMSE value indicates the
most accurate method used to estimate the Weibull parameters. From Table 5, it is clear that the
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empirical method produced the overall lowest values of RMSE. Therefore, all of the following results
are presented using the Weibull values estimated by the empirical method.

Table 5. Annual values of root mean square error (RMSE) for the forecasted wind data at the test site.

Year Empirical Graphical MLM PD Moment

2000 0.0544 0.0945 0.0789 0.0857 0.0673
2001 0.0654 0.0912 0.0742 0.0757 0.0612
2002 0.0523 0.0892 0.0798 0.0754 0.0844
2003 0.0623 0.0932 0.0843 0.0986 0.0566
2004 0.0784 0.0746 0.0678 0.0785 0.0765
2005 0.0456 0.0845 0.0760 0.0886 0.0712
2006 0.0543 0.0759 0.0557 0.0675 0.0435
2007 0.0499 0.0893 0.0877 0.0576 0.0976
2008 0.0433 0.0783 0.0674 0.0765 0.0679
2009 0.0353 0.0865 0.0765 0.0876 0.0612
2010 0.0435 0.0678 0.0754 0.0567 0.0745
2011 0.0543 0.0674 0.0712 0.0966 0.0563
2012 0.0564 0.0874 0.0675 0.0523 0.0744
2013 0.0342 0.0923 0.0654 0.0756 0.0598
2014 0.0756 0.0765 0.0782 0.0674 0.0855
2015 0.0455 0.0876 0.0853 0.0546 0.0435
2016 0.0875 0.0956 0.0456 0.0356 0.0635

Overall 0.0552 0.0842 0.0728 0.0724 0.0673

Figure 8 shows the season-wise plots of Weibull PDF and CDF, prepared by using all the forecasted
wind data.

It can be noted that most of the wind speeds were in the range of 1–4 m/s, and 95% of the total
winds were below 6 m/s, regardless of the season. Relatively lower magnitudes of wind speeds
were observed during the winter and the summer as compared to other seasons. The most frequently
occurring wind speeds were 2 m/s in the winter and the summer and 3 m/s in the spring and
the autumn.

Figure 8. Season-wise plots of Weibull probability density function (PDF) and cumulative distribution
function (CDF) at the test site using all predicted wind data: (a) Winter; (b) Spring; (c) Summer;
(d) Autumn.
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Similarly, Figure 9 shows the typical wind rose diagrams prepared by using all the forecasted
wind data on a seasonal basis. The wind rose diagrams summarize the wind characteristics for a
specific time period. It is very important to assess the prevailing wind directions to determine the
layout of the wind turbines to minimize the wake loss. From the wind rose diagrams, it is clear that
during all the seasons most winds came from either the north-east (NE) (45 ◦) or the south-west (SW)
(180–225◦), with a maximum magnitude below 4 m/s, and mostly between 1 m/s and 3 m/s.

Figure 9. Seasonal wind rose plots at the test site using all predicted wind data: (a) Winter; (b) Spring;
(c) Summer; (d) Autumn.

4. Conclusions

The current study aimed to forecast and analyze the long-term wind data at a test site called
“Urumsill” on Deokjeok Island, South Korea, at which only two years (2015 and 2016) of measured wind
data were originally available. The reference wind data were recorded by a met-mast continuously
since the year 2000, and that met-mast was located at a distance of 3 km from Urumsill. At the test site,
measured wind data of 2016 were used as training data to build MCP models, whereas wind data of
2015 were used to measure the accuracy in the forecasted data (test data).

The measured wind data of both sites showed a similar pattern in wind speed and angle, over a
concurrent time period of five days during all four seasons of the year 2016. When the measured
wind data of both sites were compared against each other for the year 2016, the r-squared (R2) value
was found to be 0.86. Similarly, on a monthly basis, the maximum value of CV was less than 0.712
and RV was found to be within [−1 to +4.676] range in the predicted wind data of the test year 2015.
Measured and forecasted wind data at the test site were also compared against each other on a seasonal
basis for the year 2015, and minimum R2 value was found to be 0.79 (spring) in this case, which can be
considered as acceptable. Furthermore, the magnitude of maximum difference between the monthly
mean wind speeds of both types of data (measured vs. forecasted) corresponded to a value of 0.541 m/s,
and similarly, the values of some statistical error-indicating parameters (Rv, Rσ2 , and MAE, bias error,
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etc.) were also within an admissible range (over 90% accuracy). Finally, it was found that the forecasted
values of wind speed had maximum relative error (ε) in the range of ±0.8 m/s for test year of 2015.

The Weibull shape (k) and scale (c) parameters were estimated for all the years (2000–2016) using
five different methods according to the forecasted wind data. The empirical method was found to be
the most suitable in this case, as it produced the lowest value of RMSE. Overall, the mean values of k
and c were found to be 1.81 and 1.75 m/s, respectively. Most of the winds seemed to be in the range of
1 m/s to 3 m/s, and blew from either the north-east direction or the south-west direction.

Author Contributions: S.A. and S.-M.L. collected the data whereas C.-M.J. provided his technical support
throughout the study. S.A. analyzed the data and wrote the paper.

Acknowledgments: This work was supported by the new and renewable energy core technology program of the
Korean Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the
Ministry of Trade, Industry and Energy, Republic of Korea (No. 20153010130310).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

v Wind speed
m Slope
a y-intercept
v Mean wind speed
σ Standard deviation
Rv Ratio of mean wind speeds
n Number of entries in a wind series
Rσ2 Ratio of variance
f (v) Weibull PDF
F(v) Weibull CDF
c Weibull scale parameter
k Weibull shape parameter
Epf Energy pattern factor
Γ Gamma function

Abbreviations

TS Test site
RS Reference site
CV Coefficient of variation
RV Range of variation
EST Estimated wind speed
MES Measured wind speed
MAE Maximum absolute error
PDF Probability density function
CDF Cumulative distribution function
RMSE Root mean square error
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