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Abstract: In consideration of its vast resources in Malaysia, the potential use of a nonedible biodiesel
source from rubber seed oil (RSO) is explored. However, a mixture with a high saturation content
feedstock is required to increase its oxidation stability, which is caused by its 78.93% unsaturation
content. Two blends of 20% and 50% v/v rubber seed biodiesel (RB) or palm biodiesel (PB) and
varying percentage mixtures of these two feedstock oils biodiesel (RPB) were evaluated on combustion
performance in a 55 kW multi-cylinder diesel engine at full load conditions. The results showed
that feedstock blending offered benefits in terms of fuel properties enhancement, improved engine
performance, and reduced emissions. In comparison to RB, RPB showed higher brake power (BP)
of 1.18–2.97% and lower brake specific fuel consumption (BSFC) of 0.85–3.69%, smoke opacity
(11.89–14.19%), carbon monoxide (CO) of 2.48–6.93%, hydrocarbon (HC) of 2.36–9.34%, and Nitrogen
oxide (NO) emissions of 2.34–5.93%. The cylinder pressures and heat release rates (HRR) of RPB
blends were 8.47–11.43% and 36.02–46.61% higher than diesel, respectively. The start of combustion
angles (SOC) of RB and RPB blends were from −13 to −15 ◦C and from −13.2 to −15.6 crank angle
degree (◦CA) before top dead center (BTDC), but the combustion delays were 6–8 ◦C and 5.4–7.8 ◦C
shorter when compared to diesel fuel which were −10 ◦C BTDC and 11 ◦C, respectively. It can be
concluded that RPB blends showed better performance and emissions over the individual rubber
seed and palm biodiesel blends and can replace diesel fuel in unmodified engines.

Keywords: rubber seed-palm blend; oxidation stability; NO reduction; combustion

1. Introduction

Industrialization, motorization, and population growth has significantly increased fossil
fuel consumption. This phenomenon has resulted in adverse effects on human health and the
environment [1]. The environmental effects include changes in rainfall patterns, air quality
deterioration, photochemical smog, and global warming [2]. Energy needs and environmental
concerns are important factors which drive the search for renewable, clean, and sustainable fuel
sources [3]. Biodiesel is one solution to partially replace diesel fuel and reduce carbon emissions.
In Malaysia, palm oil is the main biodiesel source and is extensively cultivated. Palm oil biodiesel has
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higher saturation components and therefore a high cetane number and oxidation stability. In 2007,
the Malaysian government launched the B5 blend; however, the government postponed the plan to
2010 because of increases in palm oil prices resulting from extensive use for both food and fuel [4].
B5 (5% biodiesel + 95% diesel) and B7 (7% biodiesel + 93% diesel) were implemented in 2014 and 2015,
during which time biodiesel production increased from 451 to 550 million liters [5]. The industrial
expansion of palm oil has been limited because of the food versus fuel debate, deforestation, land
limitation, energy policy [6] as well as palm oil’s low fluidity at low temperatures (poor cold flow
properties) resulting from the low iodine value and high content of palmitic acid [7]. For this reason,
Malaysia is diversifying its biodiesel production towards non-edible sources, such as Pongamia pinnata
(Karanja), Havea brasiliensis (Rubber seed), and Ceiba pentandra (Kapok) [8–10] to reduce the usage
of palm oil in the biodiesel industry. Rubber trees belong to the South American Euphorbiaceae
family. It grows in tropical or subtropical climates with a minimum rainfall of 1200 mm/year and
average temperatures of 28 ◦C. Malaysia has over 1.2 million hectares of rubber plantations and annual
production is estimated to be 1.2 million metric ton per year [11,12], as stated by the association of
Natural Rubber Producing Countries (NRPC). The abundance of rubber seeds can be utilized for
biodiesel production and may provide solutions for the fuel versus food issues in biodiesel application.
One rubber tree annually produces 2.6 kg of rubber seeds which can produce 40–60 wt. % biodiesel [13].
Rubber seed biodiesel has a lower oxidation stability and emits more NOx compared to diesel fuel.
According to Knothe et al. [14,15], one approach to overcome these problems is to modify its fatty
acid composition through a blend of edible and non-edible oils. Many researchers [16–19] have
studied binary mixtures such as Jatropha-palm oil, mahua-simarouba, and Jatropha-soapnut oil blends
and have concluded that they are good potential sources for biodiesel production and improved
engine performance and emissions. Sanjid et al. [20] reported on palm-jatropha and their combined
blend biodiesel. The tested fuels were PB10, JB10, PBJB5, PB20, JB20, and PBJB10 using a single
cylinder diesel engine. The combined blends of PBJB5 showed 9.53% lower CO, 3.69% lower HC,
7.55% higher BSFC, and 1.07% lower BP. However, for PBJB10, these values were 20.49%, 7.81%,
19.82%, and 1.12% respectively. In comparison to palm biodiesel blends, PBJB5 and PBJB10 showed
2.44–6.54% higher BSFC, 1.18–3.21% higher CO, and 1–1.8% lower NO; however, in comparison to
jatropha biodiesel blends, combined blends showed 4.24–4.295% lower BSFC, 2.66–3.84% lower CO,
1.53–1.725% lower HC, and similar NO emissions. Habibullah et al. [21] studied the effect of PB30,
CB30, and PB15CB15 and reported lower BP, BTE, CO, and HC of 3.92–4.71%, 3.84–5.03%, 13.75–17.97%,
and 18.26–31.21% respectively, whereas BSFC and NOx emissions increased by 8.55–9.03% and
3.13–5.6% respectively for the blends in comparison to diesel fuel. PB15CB15 achieved better
performance than CB30, the lowest BSFC over PB30 and CB30 individually; 1.12% higher BTE than
PB30; 1.22% higher and 1.20% lower NO emission compared to PB30 and CB30, respectively. In a
separate study, the same researchers [22] investigated the effect of 20% v/v blend of palm and coconut
biodiesel and their combined blend of PB15CB5, PB10CB10, and PB5CB15 with the same operating
condition. A lower BP of 1.72%, higher BSFC of 4.07%, and higher NOx emission of 4.49% were
observed with the CB20 blend, but the PB20 blend showed a similar BP and a higher BSFC and NOx

(3.24% and 1.79%, respectively) than diesel fuel. The combined blends reduced the NOx and HC
emissions by 0.54–1.85% and 4.18–6.27% respectively, but the BSFC increased by 3.37–3.83% compared
to diesel. Arbab et al. [23] optimized the blend of palm-coconut (PC) and PC20 and compared this to
PB20. They reported a higher BP of 0.3–2% at non-turbocharged condition; however, at turbocharged
condition, PC20 and PB20 showed 1% higher and 0.6% lower BP respectively than diesel fuel. The BSFC
of PB20 was lower compared to PC20 at non-turbocharged condition but it was 1.8–2% higher at
turbocharged condition. CO, HC, and smoke opacity were reduced by 10–60%, 20–80%, and 5.6–10.9%
but NO was increased by 3.4–4.8% in comparison to diesel fuel. Combustion pressures were 69.5 and
70.24 bar for the non-turbocharged case, but for turbocharged conditions, the pressure values were
96.4 and 101.78 bar respectively for PB20 and PC20 in comparison to diesel fuel (69.80 bar). Initial higher
heat release rates at the pre-mixed zone and an earlier start of combustion (SOC) for the blends
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were noticed when compared to diesel fuel. Iqbal et al. [24] optimized the blend of palm, coconut,
and jatropha biodiesel using a MATLAB program. The optimum blend of palm-coconut (PC) was
87.6:12.4, whereas jatropha-palm-coconut (JPC) was 23:55.9:21.1. Blends of 20% (20% biodiesel with
80% diesel) of palm, jatropha, coconut, PC, and JPC were tested in a four-cylinder diesel engine at full
load conditions. The blends showed 2% higher BSFC and 7–10% lower CO2, but the BP was either
similar or higher than diesel fuel. The HC emissions were higher in the case of palm, jatropha, coconut,
and PC but at JPC blend, the HC emission was closer to diesel fuel. NO emissions were higher in
almost all of the biodiesel samples except for the palm and JPC blends which showed similar or lower
NOx emission than diesel fuel. Based on their density, viscosity, and cetane number, the feasibility of
light biodiesel fuels has stimulated us to find a new alternative fuel for diesel engines.

Only four studies [18,19,23,25] have analyzed the performance, emissions, and combustion
characteristics of diesel engines fuelled with biodiesel derived from feedstocks oil blend. Oil or
biodiesel blends have different saturation and unsaturation levels which lead to a synergistic
combination with improved oxidation stability, low temperature property, engine performance,
and reduced emission. In this regard, a new biodiesel fuel produced from a combined rubber
seed-palm oil blend is used as an alternative to diesel fuel. A hydrodynamic cavitation reactor
using a two-step acid esterification followed by transesterification processes was used for biodiesel
production. The various physical and chemical properties of the produced biodiesels have been
examined and the chemical composition of their molecular structure has been studied. The objective
of this study is to evaluate the diesel engine combustion performance by various blends of rubber seed
oil, palm oil, and combined rubber-palm oil blend biodiesels. Rubber seed, palm oil, and rubber-palm
biodiesels were blended with diesel fuel for various concentrations of 10%, 20%, 25%, and 50% by
volume. Engine performance, emissions, cylinder pressure, and heat release rate of a multi-cylinder
diesel engine were experimentally investigated and compared to those of diesel fuel.

2. Materials and Methods

2.1. Materials

Crude rubber seed oil (RSO), crude palm oil (CPO), and neat diesel fuel were used in this study.
The equipment used and the property analysis of RSO and CPO are presented in Tables 1 and 2.

Table 1. List of equipment’s used and their standard methods.

Parameter Standard Method Equipment

Acid value (mg KOH/g oil) AOCS-Cd 3d-63 [26] Titration
Iodine value (mg/I2/g oil) AOCS-Cd 1d-92 [26] Titration

Density (kg/cm3) ASTM 5002 and ASTM D4502 [27] AMA 4500M, Anton Paar
Viscosity (mm2/s) DIN53015 and DIN12058 [28] Lovis 2000M, Anton Paar

Calorific value (J/g) DIN51900 and ASTM D4868 [24] C5000 IKA Werke, Germany
Oxidation stability (h) AOCS-Cd 12b-92 and EN14112 [24] 873 Rancimat, Metrohm

Cetane number ASTM D 613 [24] Shatox Octane meter
Flash point (◦C) ASTM D 93 [24] CLA 5, Petrotest

Cold filter plugging point (◦C) ASTM D 6371 [24] FPP 5G’s, ISLby PAC
Cloud point and pour point (◦C) ASTM D 2500 and ASTM D 97 [24] CPP 5G’s

Surface tension (Nm) Pendant drop method rame hart model 260
CHNS analyser (wt. %) - Series II, CHNS/O 2400, Perkin Elmer
Fatty acid composition AOCS- Ce 1-62 [29] gas chromatographer

Triglycerides and glycerine, mono-,di (wt. %) ASTM D6584 [24] GC- FID, shimadzu 2010
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Table 2. Crude oil properties of rubber seed (RSO) and palm (CPO).

Properties CPO RSO

Acid value (mg KOH/g oil) 15.3 ± 0.25 60.58 ± 0.16
Iodine value (mg/I2/g oil) 54.8 ± 1.18 129.8 ± 0.82

Free fatty acid (%) 5.96 ± 0.01 21.63 ± 0.02
Density (kg/m3) at 20 ◦C 909.7 ± 0.11 917.8 ± 0.03

Viscosity (mm2/s) at 40 ◦C 42.2 ± 0.24 49.2 ± 0.25
Calorific value (MJ/kg) 38.41 ± 0.02 37.92 ± 0.01

Sulfur (wt. %) 0.751 ± 0.00 0.266 ± 0.00
Nitrogen (wt. %) 0.419 ± 0.00 0.358 ± 0.00

Glycerides (wt. %)
Monoglycrides 0.81 ± 0.00 6.42 ± 0.16

Diglycerides 7.64 ± 0.01 8.8 ± 0.13
Triglycerides 81.8 ± 0.14 58.01 ± 0.08

Fatty acid composition (wt. %)

Myristic acid (C14:0) 1.13 ± 0.01 Not defined
Palmitic acid (C16:0) 40.75 ± 0.04 9.5 ± 0.02
Stearic acid (C18:0) 3.31 ± 0.08 7.8 ± 0.40
Oleic acid (C18:1) 39.5 ± 0.12 25.7 ± 0.23

Linoleic acid (C18:2) 9.8 ± 0.13 40.6 ± 0.12
Linolenic acid (C18:3) n.d. 15.01 ± 0.123

2.2. Biodiesel Production

A hydrodynamic cavitation reactor with 50 L capacity was used to produce both rubber seed and
palm oil biodiesel. It is consisted of diaphragm pump, double jacked glass and air compressor
to operate the double diaphragm pump which acted as a device to dissipate the energy in the
hydrodynamic cavitation reactor. A 30 kg of RSO or CPO with sulphuric acid catalyst of 8 wt. % and
methanol to oil ratio of 6:1 was processed in a hydrodynamic cavitation reactor at temperature of 55 ◦C
using circulating liquid glycerin for 30 min [30]. The plate used have diameter of 1 mm, holes number
of 21, total hole perimeter of 65.98 mm and total flow area of 16.5 mm2 [31]. Orifice inlet flow rate
and inlet pressure of 2 bar were regulated using bypass line valve and main line valve. The reactant
was gravitationally settled for 4 h while the catalyst discharged. The product was transferred to
the transesterification process after it undergoes esterification process. The optimized condition for
transesterification process is 1 wt. % catalyst concentration, 6:1 alcohol to oil ratio, 55 ◦C reaction
temperature and 30 min processing time [32,33]. The reaction was stopped after the specified time and
the mixture was allowed to separate under gravity for 4 h. Two layers; glycerol and methyl ester were
formed. The catalyst and by product were discharged. The separated methyl ester was washed with
deionized water at 40 ◦C to remove impurities in the product. To remove the remaining water and
methanol the biodiesel was subjected to under vacuum condition using a rotary evaporator. A 10 g
of anhydrous sodium sulphate was added to the product to absorb the moisture and then the final
biodiesel was collected after filtration (541 Whatman).

2.3. Experimental Set-Up

The experiments were carried out on a 2 L naturally aspirated multi-cylinder diesel engine (model
4D68). Figure 1 shows the schematic diagram of the test rig. Table 3 shows the specification of the
engine dyno that was used in the experiment. The engine was directly coupled with SAJ SE-150 eddy
current dynamometer. Engine control unit (ECU) consisted of data acquisition device, logging and
sensors was used to control the engine and the dynamometer. The experiments started with the engine
warm up using diesel fuel for about 30 min before the biodiesel fuels were tested. Likewise, the engine
was again flushed with diesel fuel for 45 min to ensure full exhaustion of blend in the fuel line. To carry
out the performance and emission testing, the engine was operated between 1500–3500 rpm with
500 interval at full load condition (100% load). The data collections were done three times to insure
the data repeatability and consistency of torque, cooling water temperature, engine oil and fuel mass
flow measurement. A Bosch (BEA460, Robert Bosch Gmbh, Stuttgart, Germany) (detail specification
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listed in Table 4) was used to measure the exhaust gas emissions from the engine. The test fuels were
diesel, RB20 (20% rubber seed biodiesel + 80% diesel fuel), PB20 (20% palm oil biodiesel + 80% diesel fuel),
RB50 (50% rubber seed biodiesel + 50% diesel fuel), PB50 (50% palm oil biodiesel + 50% diesel fuel), RPB10
(10% rubber seed biodiesel + 10% palm oil biodiesel + 80% diesel) and RPB25 (25% rubber seed biodiesel
+ 25% palm oil biodiesel + 50% diesel fuel). The fuels were mechanically stirred for 30 min at 2500 rpm
before being used in the engine to insure the fuel homogeneity. Dewetron combustion analyser
(Dewe-800, Dewetron Gmbh, Grambach, Austria) was used in combination with Kistler pressure
transducer type 6061B and crank angle encoder type 2613B (Kistler Instrument Ltd., Winterthur,
Switzerland) where the pressure transducer is installed at the first cylinder.

Figure 1. Schematic diagram of engine testing.

Table 3. Engine and dynamometer specifications.

Engine Type 4 Cylinder in Line Diesel Engine, IDI, 4D68

Displacement Volume 1998 cm3

Bore × Stroke 82.7 × 93 mm
Compression ratio 22.4:1

Fuel injection pressure 130 bar
Combustion chamber type Swirl chamber

Engine cooling Water cooling pressurized circulation

Dynamometer Specifications

Dynamometer type SE 150 model
Maximum torque, power and speed 500 Nm, 150 kW and 8000 rpm (standard)

Torque and speed calibration accuracy ±0.25 Nm and ±1
Minimum flow and supply pressure 107 L/min and 1 kg/cm3

Maximum outlet water temperature 60 ◦C
Weigh 560 kg

Maximum voltage and current 250 V AC and 5 A
Pulse pick up Inductive

Load cell Strain gauge-full bridge
Energising coil voltage 90 V

Input resistance 375 ohms
Sensitivity and excitation 2.7 MV/V and 10 V DC

Overall size (length × width× height) 632 × 470 × 689 mm
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Table 4. Detailed specifications of the exhaust gas analyzer.

Equipment Method Measurement Upper Limit Accuracy

BOSCH exhaust
gas analyzer

Nondispersive infrared CO 10.00 vol % ±0.001 vol %
Flame ionization detector HC 9999 ppm ±1 ppm
Nondispersive infrared CO2 18.00 vol % ±0.01 vol %

Electro-chemical transmitter NO 5000 ppm ±1 ppm

2.4. Uncertainty Analysis

The error analysis in the experiments was needed to know the repeatability and reproductively of
the results. The experiment was repeated three times and the variations of performance, combustion
characteristics, and exhaust emissions were used to calculate the uncertainty using percent relative
standard error (RSE), as in Equation (1) [33].

RSE (%) =

(
SError

X

)
× 100 (1)

where SError is the standard error, X is the mean of the collected data. The standard error is calculated
using Equation (2).

SError =
σ√
n

(2)

where σ is the standard deviation and n is the repeatable readings of performance, combustion
characteristics, and emissions parameters. Overall experimental uncertainty, σk was calculated using
Equation (3).

σk =
√(

σq1
)2

+
(
σq2
)2

+ . . . +
(
σqn
)2 (3)

where σk is the total uncertainty and σq1, σq2 and σqn are uncertainty of individual parameters.
Accuracies and uncertainties of the measured parameters are given in Table 5.

Table 5. The accuracies and uncertainties of the measured parameters.

Parameters Measurement Limit Accuracy Uncertainty

Torque 500 Nm ±0.25 Nm ±0.86
BSFC - ±3.19 g/kWh ±0.97
Speed 8000 rpm ±1 rpm ±1.40

CO 10 vol % ±0.001 vol % ±1.38
HC 9999 ppm ±1 ppm ±2.49
CO2 18 vol % ±0.01 vol % ±1.00
NO 5000 ppm ±1 ppm ±1.72

Smoke 100% ±0.1% ±2.16
Pressure 250 bar ±0.5 bar ±0.82

Crank angle encoder 20000 rpm ±0.2 rpm ±0.20
Overall experimental uncertainty ±5.29%

3. Results and Discussion

3.1. Analysis of Biodiesel Fuel Properties

Biodiesel fuel quality depends on feedstock, chemical composition, production process,
and storage conditions. Biodiesel quality is assessed through the measurement of physicochemical
properties to confirm the international standard of ASTM D6751 [34] and EN 14214 [35].
The physico-chemical properties of biodiesels obtained from rubber seed (RB), palm (PB), rubber-palm
oil blend (RPB), and their different blending ratios with diesel, i.e., RB20, PB20, RB50, PB50, RPB10,
and RPB25, are shown in Table 6. The acid value reflects the age and the quality of the produced
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biodiesel. It occurs naturally due to saturated or unsaturated elements or from the remaining acid used
in the biodiesel production. The measured acid value of RB and PB were 0.36 and 0.30 mg KOH/g oil,
respectively. The densities for RB and PB were found to be 0.878 and 0.862 g/m3 at 20 ◦C, whereas
the viscosities were 4.2 and 3.8 mm2/s at 40 ◦C, respectively. The acid value, density, and viscosity
of PB and RB complied with both standard of EN 14214 and ASTM D6751. The measured cetane
number and the oxidation stability (OS) of PB were 57.5 and 25.3 h; however, for RB these values were
51.9 and 8.2 h respectively and were within the limits of both standards. The low flow properties of
cloud point (CP), pour point (PP), and cold filter plugging point (CFPP) of PB were measured and
found to be 11.25, 10.2, and 10.5 ◦C in contrast to RB for which these values were 3.4, −2 and 0 ◦C,
respectively. A comparison RB and PB showed a large deviation of oxidation stability (67.58%) and
cold flow properties (69.78–112.74%), which was a result of the differences in molecular structure
and chemical composition. The carbon to hydrogen ratio (C/H) of RB and PB were found to be
6.399 and 6.29 compared to that of diesel, which is 6.557. The RPB synthesized from edible palm oil and
non-edible rubber seed oil remarkably improved the OS by 11.46–54.07%, PP by 27.45–109.80%, CP by
17.96–58.93%, and CFPP by 17.05–90.48% respectively compared to individual RB and PB. Therefore,
a blend of the two oils is an effective method to improve the oxidation stability and low temperature
properties and to minimize the use of edible oils in biodiesel production.

3.2. Performance Analysis

Engine brake power (BP), BSFC, NO, HC, CO, CO2, and combustion characteristics were
evaluated at full load conditions. The following section describes the results and the discussion
of theses parameters.

3.2.1. Brake Power (BP)

The variation of BP for the tested biodiesel fuels against engine speeds is shown in Figure 2.
On average, over the speed range, the BP for diesel, PB20, RB20, RPB10, PB50, RB50, and RPB25 were
37.70, 37.01, 36.54, 36.97, 35.27, 33.59 and 34.69 kW, respectively. Compared to diesel fuel, PB20, RB20,
RPB10, PB50, RB50, and RPB25 produced less brake powers (about 1.83%, 3.07%, 1.94%, 6.45%, 10.90%,
and 7.51%) because the increase of biodiesel ratio reduced the volumetric heating value of the blend
resulting in a decrease of brake power [36]. In addition, the higher density and viscosity, which resulted
in an uneven combustion, also reduced the brake power [37]. In comparison to PB fuels, RB and RPB
blends yielded lower brake power of 1.26–3.72% and 0.11–1.2%, respectively. The higher BP with palm
biodiesel fuels was attributed to their higher calorific value and lower viscosity (see Table 6) [18,38].
In comparison to RB blends, RPB samples produced higher brake power of 1.18–2.97%. The lower
BP of RB fuels was attributed to an inferior mix, defined by a higher density, viscosity and lower
volatility. This resulted in a lower flash point and lower calorific value of 11.47%, 3.92%, and 1.75%
in comparison to diesel, PB and RPB fuels, respectively [39]. In the RPB blends, the calorific values,
density and viscosity improved and resulted in increased brake power than that of RB fuels [22].
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Table 6. Measured fuel properties of tested biodiesels and their blends.

Property RB PB RB20 RB50 PB20 PB50 RPB10 RPB25 Diesel

Acid value (mg KOH/g oil) 0.36 ± 0.21 0.30 ± 0.12 0.053 ± 0.11 0.12 ± 0.16 0.041 ± 0.01 0.10 ± 0.08 0.044 ± 0.13 0.10 ± 0.03 0.003 ± 0.01
Density (g/m3) at 20 ◦C 0.878 ± 0.20 0.862 ± 0.15 0.849 ± 0.13 0.856 ± 0.11 0.831 ± 0.04 0.845 ± 0.16 0.834 ± 0.22 0.847 ± 0.06 0.825 ± 0.03

Viscosity (mm2/s) at 40 ◦C 4.2 ± 0.01 3.8 ± 0.02 3.32 ± 0.01 3.65 ± 0.03 3.31 ± 0.01 3.42 ± 0.11 3.31 ± 0.01 3.48 ± 0.08 3.064 ± 0.02
Calorific value (MJ/kg) 39.2 ± 0.03 41.8 ± 0.02 43.20 ± 0.11 41.64 ± 0.02 43.88 ± 0.02 43.01 ± 0.10 43.56 ± 0.02 42.87 ± 0.01 44.28 ± 0.01

Cetane number 51.9 ± 0.05 57.5 ± 0.01 50.1 ± 0.03 50.36 ± 0.44 52.3 ± 0.03 54.7 ± 08 50.8 ± 0.04 51 ± 0.05 47 ± 0.02
Oxidation stability (h) 8.2 ± 0.15 25.3 ± 0.10 53.52 ± 0.10 37.56 ± 0.12 85.6 ± 0.05 65.98 ± 0.05 76.50 ± 0.11 59.16 ± 0.01 103.6 ± 0.03

Flash point (◦C) 152 ± 0.36 156 ± 0.25 86.32 ± 0.25 108.74 ± 0.32 90.17 ± 0.07 114.63 ± 0.30 88.93 ± 0.23 112.29 ± 0.15 72.4 ± 0.11
Cloud point (◦C) 3.4 ± 0.08 11.25 ± 0.13 −11.8 ± 0.02 −7.26 ± 0.06 −10.2 ± 0.02 −3.69 ± 0.11 −11.28 ± 0.11 −7.19 ± 0.01 −17 ± 0.03
Pour point (◦C) −2 ± 0.02 10.2 ± 0.16 −22.62 ± 0.22 −17.74 ± 0.01 −19.5 ± 0.01 −9.87 ± 0.13 −22.48 ± 0.04 −16.53 ± 0.12 −32 ± 0.05

Cold filter plugging point (◦C) 0 ± 0.00 10.5 ± 0.12 −6.93 ± 0.10 −3.47 ± 0.01 −3.38 ± 0.05 −1.2 ± 0.30 −6.27 ± 0.01 −3.23 ± 0.07 −8.7 ± 0.01

Perkin
Elmer,
CHNS,

2400

Carbon (wt. %) 75.38 ± 0.84 77.01 ± 0.20 83.36 ± 0.05 78.36 ± 0.63 84.25 ± 0.03 80.82 ± 0.14 84.15 ± 0.26 80.41 ± 0.11 86.62 ± 0.11
Hydrogen (wt. %) 11.78 ± 0.91 12.25 ± 0.28 12.61 ± 0.34 12.34 ± 0.75 13.04 ± 0.21 12.84 ± 0.35 12.98 ± 0.30 12.64 ± 0.36 13.21 ± 0.17
Nitrogen (wt. %) 0.07 ± 0.01 0.11 ± 0.02 0.018 ± 0.11 0.04 ± 0.01 0.024 ± 0.01 0.054 ± 0.02 0.02 ± 0.00 0.043 ± 0.01 0.01 ± 0.0

Sulfur (wt. %) 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.00 0.07 ± 0.02 0.12 ± 0.01 0.07 ± 0.01 0.11 ± 0.01 0.08 ± 0.01 0.16 ± 0.00
Oxygen (wt. %) 12.62 ± 0.04 12.75 ± 0.02 3.15 ± 0.01 6.43 ± 0.03 3.56 ± 0.01 7.24 ± 0.02 3.28 ± 0.04 6.85 ± 0.02 0.0 ± 0.01
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Figure 2. Variation of the BP with respect to engine speed.

3.2.2. Brake Specific Fuel Consumption (BSFC)

BSFC variation in the tested fuels as a function of engine speed at full load conditions is depicted
in Figure 3. This variable depends on the relationship among the density, viscosity, calorific value,
and volumetric fuel injection system [40]. From the figures, it is clear that the BSFC trends tended to
increase at low speed (1500 rpm), decrease at medium speed (2000–2500 rpm), and to increase again
at higher speed (3500 rpm). At medium speeds, the decrease of BSFC was due to the increase
in atomization ratio because of better physical and chemical conditions of the combustion [41].
However, the friction losses increased at higher speeds resulting in an increase in the BSFC [42,43].
The increase in the BSFC was also a result of the lower heating value as well as the higher viscosity
and density, causing more fuel to be injected into the combustion chamber than neat diesel fuel [44].
The lowest BSFC of all tested fuels occurred at 2000 rpm (maximum brake torque) and it increased by
4.45–6.28% for PB, 5.62–10.16% for RB, and 4.68–7.24% for RPB respectively in comparison to diesel
fuel. On average, the BSFCs were 327.35, 335.14, 339.86, 336.96, 355.8, 374.78, and 360.94 g/kWh
respectively for diesel, PB20, RB20, RPB10, PB50, RB50, and RPB25 blends. This was demonstrated by
an increased BSFC by 2.37%, 3.82%, 2.93%, 8.69%, 14.5%, and 10.26% for PB20, RB20, RPB10, PB50,
RB50, and RPB25 respectively in comparison to diesel fuel. From the figure, RB and RPB samples show
higher BSFC of 1.41–5.34% and 0.54–1.59% respectively in comparison to PB fuels. This was due to a
combination of factors including a lower calorific value and oxygen element as well as poor mixture
formation caused by higher density, resulting in higher BSFC. These results are in agreement with
Habibullah et al. [21,22]. With RPB blends, the BSFC was 0.85–3.69% lower than that of RB blends
because the combination (RPB) improved the calorific value, viscosity, and density [20].

3.3. Combustion Analysis

The in-cylinder pressure is an important parameter for combustion analysis. It depends on both
the ignition delay period and fuel spray behavior [45]. The combustion studies of fuel samples were
investigated by means of cylinder pressure and peak values achieved as well as the heat release
rate. Figure 4 shows the cylinder pressure against the crank angle for different test fuels at 2000 rpm.
The in-cylinder pressure data of 400 consecutive cycles with a resolution of 0.1 ◦CA were averaged
and used to study the combustion characteristics. Results showed the maximum cylinder pressure
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occurred at crank angle range of 3–13 ◦C after top dead center (ATDC) for all tested fuels with no
significant trace of knock observed. The maximum cylinder pressure depends on engine type, fuel
properties, air–fuel ratio, and the burned fuel fraction during the premixed combustion phase [45,46].
Additionally, an increase in biodiesel percentage increased the cylinder pressure for the specified
samples. This was due to the addition of biodiesel which increased the cetane number, density, bulk
modulus, oxygen element, and combustion maximum temperature; consequently; the combustion
pressure increased. The maximum cylinder pressure of diesel, RB20, RPB10, RB50, and RPB25 were
82.38, 88.29, 89.37, 90.23 and 91.80 bar, respectively. In comparison to diesel fuel, the blends of RB20,
RPB10, RB50, and RPB25 increased the maximum cylinder pressure by 7.18%, 8.47%, 9.53%, and 11.43%,
respectively. A slightly higher peak pressure with RPB blends is attributed to palm biodiesel which
has a higher cetane number than RB blends [47]. The heat release rate (HRR) shown in Figure 5
characterized the start of combustion (SOC) and ignition delay (ID). SOC was defined as the start of
the heat release, whereas the ID was defined as time interval between start of injection and SOC release
(Muralidharan et al., 2011). The SOC of diesel, RB20, RPB10, RB50, and RPB25 were 10, 13, 13.2, 15,
and 15.6 ◦CA BTDC, but the peak HRR were 53.16 at 13 ◦C, 70.76 at 13 ◦C, 72.31 at 13 ◦C, 75.43 J/◦C
at 10 ◦C and 77.94 J/◦C at 9 ◦C, respectively. In comparison to diesel fuel, the earlier SOC of 3–5 ◦C
for RB and 3.2–5.6 ◦C for RPB blends were observed. The delays were observed to be short for RB
and RPB blends, varying between 6–8 ◦C and 5.4–7.8 ◦C, respectively. When comparing HRR of RB to
those of the RPB blend, the premixed combustion phase was observed to be less intense; at the same
time, the controlled combustion phase was at a lower rate as shown by the lower heat release rate,
see Figure 5. This was a result of a large amount of fuel having been injected into the cylinder because
of its lower calorific value (Table 6). The higher NO emissions of 215.38 and 240.94 ppm for RB20 and
RB50 in comparison to 213.91 and 231.75 ppm for RPB10 and RPB25.

Figure 3. Variation of the BSFC with respect to engine speed.
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Figure 4. Variation of cylinder pressure at 2000 rpm at full load.

Figure 5. Variation of HRR at 2000 rpm at full load.

3.4. Emissions Analysis

3.4.1. Carbon Monoxide (CO) Emission

CO is formed as a result of inadequate burning due to low flame temperature, rich
fuel air ratio, and insufficient air supply [20] which hinders the conversion of CO to
CO2 [48,49]. Additionally, the injection timing, combustion chamber design, atomization rate, engine
speed and load, fuel type, and injection pressure influence CO formation [50]. With respect to the CO
emissions shown in Figure 6, biodiesel blends produced lower CO emissions compared to neat diesel.
This was a result of a higher oxygen element and higher cetane number in the biodiesel fuels which
enhanced the combustion process [45,51]. Higher oxygen content ensured complete combustion by
allowing more carbon to burn [52], whereas the higher cetane number ensured higher flame speed
and post flame oxidation, prolonging the combustion duration and reducing the possible formation
of a rich fuel zone. At 2000 rpm, the blends of PB20, RB20, RPB10, PB50, RB50, and RPB25 produced
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9.38%, 2.63%, 7.62%, 13.58%, 10.79%, and 12.25% lower CO emission than diesel fuel, respectively.
The average CO emissions of PB20, RB20, RPB10, PB50, RB50, and RPB25 were 30.54%, 27.36%, 29.59%,
43.56%, 35.74%, and 40.39% lower respectively than that of diesel fuel. Compared to PB blends, RB
and RPB fuel samples showed 5.23–13.6% and 2.61–8% higher CO emissions, respectively. This was a
result of their higher density and viscosity which caused poor fuel atomization and spray formation
resulting in incomplete combustion and, accordingly, higher CO emission [43]. However, RPB blends
produced lower CO emissions by 2.48–6.93% than RB blends. Thus, the addition of PB in RB clearly
resulted in a significant reduction in CO emission.

Figure 6. Variation of CO with respect to engine speed.

3.4.2. Hydrocarbon Emission (HC)

Incomplete combustion of fuel leads to hydrocarbon emissions resulting from a leaner mixing
of the fuel than the lean combustion limit as well as an under-mixing of fuel which leaves the fuel
injector nozzle late in the combustion at low velocity [45,53]. Additionally, parameters such as fuel
properties, operating conditions, and spray characteristics all affect the HC emission formation [54].
The variation of HC emissions for the tested fuels at different engine speeds is illustrated in Figure 7.
The HC emissions of all tested fuels were reduced significantly in comparison to diesel fuel. This was
a result of the higher flame speed and post flame oxidation owing to the high cetane number in the
biodiesel blends which insured a more complete combustion [55]. The average HC emissions for
diesel, PB20, RB20, RPB10, PB50, RB50, and RPB25 were 40.37, 24.46, 25.49, 24.89, 16.82, 20.86 and
18.91 ppm, respectively. This was about 39.42%, 36.85%, 38.34%, 58.21%, 48.34%, and 53.16% reduction
in HC emission compared to diesel. Thus, a higher biodiesel blending ratio contributed to lower
HC emissions. A similar result was reported by Habibullah et al. [22] who observed HC emission
reduction of 8.70–16.52% for palm-coconut binary biodiesel blends than diesel fuel. Sanjid et al. [45] also
reported 23–42% lower HC with kapok-moringa biodiesel fuels compared to diesel fuel. Furthermore,
RB and RPB blends increased the HC emissions by 4.21–24.02% and 1.76–12.43% compared to PB
blends, respectively. This is because of the high oxygen content and high cetane number of PB blends
(see Table 6). In comparison to RB, RPB blends showed lower HC emission of 2.36–9.34%. The higher
degree of unsaturation components in RB blends were less likely to completely vaporize and burn,
hence an increase in HC emission. The lower carbon to hydrogen ratio and oxygen element in biodiesel
fuels may have triggered improved combustion, which in turn reduced the HC emissions [56].
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Figure 7. Variation of Hydrocarbon (HC) emission with respect to engine speed.

3.4.3. Carbon Dioxide (CO2) Emission

The CO2 emission of a diesel engine is an indicator of complete combustion [57]. It is significant
because it contributes to ozone depletion, global warming, as well as public health issues [58]. Figure 8
shows the variation of CO2 emissions against engine speed at full load conditions. The figure shows
that, as engine speed increased, CO2 emissions also increased, resulting from an increase in overall
fuel mass consumption at higher loads, forming a richer air–fuel mixture. Thus, CO2 emission
increased [50]. Results also indicate that CO2 emission increased as biodiesel ratios in the blend
increased. This was a result of the biodiesel blends’ oxygen contents which improved combustion [59].
The average CO2 emission for diesel, PB20, RB20, RPB10, PB50, RB50, and RPB25 were 11.18, 12.99,
12.32, 12.82, 14.26, 13.54, and 13.65 vol %, which represent about a 16.28%, 10.2%, 14.72%, 27.56%,
21.17%, and 22.18% increase respectively in comparison to diesel fuel. These results were in agreement
with Sanjid et al. [45]. Sanjid et al. [45] also found 2–6% higher CO2 emission on average using
kapok-moringa mixed biodiesel blends. Moreover, the highest CO2 emission was observed when the
engine was fueled with PB blends, followed by RPB and RB blended fuels. This was a result of the
high degree of saturated fatty acids composition of palm oil biodiesel which resulted in complete
combustion in comparison to other biodiesels.

3.4.4. Nitric Oxide (NO) Emission

NO emission is considered one of the significant contributors to environmental issues such as
acid rain and photochemical smog. It is the most deleterious pollutant, dependent on combustion
behavior, fuel characteristics, operating conditions, ignition delay, residence time of the high burning
gas temperature, oxygen and nitrogen content in the reaction mixture, and flame temperature [60,61].
Figure 9 illustrates the relationship of NO emissions with engine speed for different blends at full
load conditions. Biodiesel fuels showed significantly higher NO emissions in comparison to diesel
fuel. This was a result of a shorter ignition delay period, large spray droplet size, high adiabatic
flame temperature, and reduced radiation from soot particles. Additionally, factors such as a higher
carbon double bond increase the free radicals hydrocarbon formation and increases NO emission
formation [62]. On average, the diesel, PB20, RB20, RPB10, PB50, RB50, and RPB25 produced NO
emissions of 211.37, 219.35, 228.76, 223.52, 241.62, 268.96, and 253.89 ppm; equivalent to 3.64%, 7.32%,
5.43%, 12.51%, 21.42%, and 16.75% higher NO emissions respectively in comparison to diesel fuel.
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These results are in agreement with the results reported by Sanjid et al. [40] and Kinoshita et al. [63] who
reported 17% and 8% higher NO emission respectively using binary biodiesel blends in comparison to
diesel fuel. It was observed that RB blends produced 4.11–10.17% higher NO emissions than those
of palm biodiesel fuels (see Figure 10, attributable to higher adiabatic flame temperature and higher
unsaturated fatty acids content which reacted with N2 and caused higher NO emissions [1]. The RPB
blends showed 1.87–4.83% higher NO emissions than PB samples and 2.34–5.93% lower NO emissions
than the RB blends.

3.4.5. Smoke Opacity

Smoke emission is a major problem in diesel engines, formed by the incomplete burning of
hydrocarbon fuels which have partially reacted to the carbon content in liquid fuel [64]. Figure 11
shows the smoke opacity of biodiesel samples as functions of engine speed and at full load conditions.
The smoke opacity decreased with the increase in biodiesel ratio and engine speed. The reduction of
the smoke opacity was because of a decrease in carbon content and an increase of oxygen element in
the biodiesel blends which enhanced the complete combustion [50]. On average, the smoke opacity of
diesel, PB20, RB20, RPB10, PB50, RB50, and RPB25 was 27.82%, 21.04%, 24.37%, 21.47%, 10.03%, 16.98%,
and 13.57% respectively. The average smoke opacity was reduced by 24.33%, 12.36%, 22.83%, 63.94%,
38.97%, and 47.63% respectively for PB20, RB20, RPB10, PB50, RB50, and RPB25 in comparison to
diesel fuel. From the figure, the low smoke opacities of 24.12–48.05%, 16.52–39.78%, and 24.33–49.87%
were observed for PB, RB, and RPB blends respectively at 2000 rpm compared to diesel fuel. The smoke
opacity values of RPB blends were 11.89–14.19% lower in comparison to RB blends, but were 2–31.16%
higher in comparison to PB blends. Notably, as the palm oil biodiesel ratio increased in the RPB blend,
smoke opacity decreased. The lower smoke opacity with palm biodiesel blends was a result of the
decrease in the carbon residue, higher oxygen element, and lower aromatics contents when compared
to rubber seed biodiesel (see Table 6). Additionally, the lower smoke opacity with biodiesel fuel can be
explained by the reduction of fuel rich regions, a result of fuel-borne oxygen-enhanced fuel oxidation
in these regions and reduced soot formation [65].

Figure 8. Variation of carbon dioxide (CO2) emission with respect to engine speed.
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Figure 9. Variation of nitrogen oxide (NO) emission with respect to engine speed.

Figure 10. Average NO emission difference in comparison to diesel fuel.
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Figure 11. Variation of smoke opacity with respect to engine speed.

4. Conclusions

In this study, combustion performance and emissions of methyl esters produced from rubber seed,
palm, and their combined blends biodiesel were investigated and compared to base line fuels. The OS
of RPB synthesized from edible palm and non-edible rubber seed oil was found to be 42.94–57.52%
higher than RB. Additionally, PP, CP, and CFPP were 15.28–67.48%, 10.58–94.86%, and 85.51–169.17%
lower respectively when compared to PB. Results from engine testing showed that BSFC, CO, HC,
and smoke opacity were reduced and brake power was increased with the established RPB as compared
to RB. The reduction percentage of BSFC, CO, HC, NO, and smoke opacity were 0.85–3.69%, 2.48–6.93%,
2.36–9.34%, 2.34–5.93%, and 11.89–14.19% respectively as compared to RB blends. However, compared
to PB blends, RPB showed slightly lower BP of 0.11–1.2% and higher BSFC, CO, HC, NO, and smoke
opacity of 0.54–1.59%, 2.61–8%, 1.76–12.43%, 1.87–4.83%, and 2–31.16%, respectively. The higher
carbon double bond in rubber seed biodiesel increased the free radicals hydrocarbon formation and
resulted in 3.64–21.42% higher NO emission than diesel fuel. In comparison to PB, RPB reduced the
CO2 emission by 7.64%, a promising finding for these mixed fuels. NO emissions of the tested biodiesel
were 3.64–21.42% higher than diesel fuel. It can be concluded that lower unsaturation components
and lower density and viscosity are the most effective properties in reducing NO emission. A slightly
higher peak pressure of biodiesel fuels compared to diesel fuel was observed. This was a result of both
a higher cetane number and short ignition delay, which enhanced the fuel evaporation rate and caused
high combustion rates during the initial combustion phase.
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Abbreviations

RSO Rubber seed oil
RB Rubber seed biodiesel
PB Palm oil biodiesel
RPB Rubber seed-palm oil biodiesel
BP Brake power
BSFC Brake specific fuel consumption
CO Carbon monoxide
HC Hydrocarbon
HRR Heat release rate
SOC Start of combustion
BTDC Before top dead left
JB Jatropha biodiesel
PB10 10% palm oil biodiesel + 90% diesel fuel
JB10 10% jatropha biodiesel + 90% diesel fuel
PBJB5 5% palm oil biodiesel + 5% jatropha biodiesel + 90% diesel
PB20 20% palm oil biodiesel + 80% diesel fuel
JB20 20% jatropha biodiesel + 80% diesel fuel
PBJB10 10% palm oil biodiesel + 10% jatropha biodiesel + 80% diesel fuel
PB30 30% palm oil biodiesel + 70% diesel fuel
CB Coconut biodiesel
CB30 30% coconut biodiesel + 70% diesel fuel
PB15CB15 15% palm oil biodiesel + 15% coconut biodiesel + 70% diesel fuel
PC Palm-coconut biodiesel
JPC Jatropha-palm-coconut biodiesel
CPO Crude palm oil
RSE Relative standard error
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