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Abstract: This paper presents a model for optimal energy management under the time-of-use
(ToU) and critical peak price (CPP) market in a microgrid. The microgrid consists of intermittent
dispatchable distributed generators, energy storage systems, and multi-home load demands.
The optimal energy management problem is a challenging task due to the inherent stochastic behavior
of the renewable energy resources. In the past, medium-sized distributed energy resource generation
was injected into the main grid with no feasible control mechanism to prevent the waste of power
generated by a distributed energy resource which has no control mechanism, especially when the
grid power limit is altered. Thus, a Jaya-based optimization method is proposed to shift dispatchable
distributed generators within the ToU and CPP scheduling horizon. The proposed model coordinates
the power supply of the microgrid components, and trades with the main grid to reduce its fuel costs,
production costs, and also maximize the monetary profit from sales revenue. The proposed method is
implemented on two microgrid operations: the standalone and grid-connected modes. The simulation
results are compared with other optimization methods: enhanced differential evolution (EDE) and
strawberry algorithm (SBA). Finally, simulation results show that the Jaya-based optimization method
minimizes the fuel cost by up to 38.13%, production cost by up to 93.89%, and yields a monetary
benefit of up to 72.78% from sales revenue.

Keywords: Jaya algorithm; Smart Grid; optimal energy management; residential microgrid;
distributed generation; microgrid; optimal scheduling

1. Introduction

Currently, nonrenewable energy resources such as fossil fuel, coal, nuclear, and natural gas are
insufficient to meet the supply needs. This is due to the long duration of replenishment, and thus
leads to the emergence of renewable energy. On the other hand, renewable energy refers to the
energy sources that work to reduce carbon emission and can replenish naturally. Examples include
biomass resources as well as solar, wind, geothermal, and hydro resources. Among these, the most
used resource is solar energy. Integrating all renewable energy sources (RESs) into a single unit is
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achieved through a distributed system which has independent failure of components rather than the
existing bulk power delivery system. This distributed system ensures that each component within
the system interacts with one another to achieve a common objective. A distributed system may not
be limited only to coordinating the various system components, but involves the distributed energy
resources (DERs). DERs refer to electricity-generating resources or controllable loads that are directly
linked to a remote distribution system. DERs provide electricity to meet the regular demand and
improve renewable technologies, which facilitates the transition to an intelligent grid. The intelligent
grid provides automated control and modern communications technologies to the present grid. DERs
make use of a small-scale power generation technology known as distributed generation. Distributed
generation, on the other hand, refers to energy generation at the point of consumption and it helps
in eliminating the cost, interdependencies, complexity, and inefficiencies linked with transmission
and distribution. These DERs are integrated, and the generated energy is sustained with the help of
an energy storage system (ESS), which can be referred to as a microgrid (MG). MGs powered by an RES,
ESS, or diesel generator are often cost-effective for residential consumers. A MG is a small network of
electricity with local sources such as DERs, RESs, ESSs, dispatchable loads (DLs) and a distributed
generator (DG) that is usually linked to a centralized electric grid and can function independently [1].
Each component of an MG is described briefly: the DLs or fuel generators are sources of electricity
that modify their power output supplied to the electrical grid on demand. Furthermore, an ESS
uses capacitors to store electric energy when disconnected from the charging circuit and can be used
at a later time. The goal of MGs is to minimize the transmission loss and overload on the main
grid [2]. A MG can operate as a standalone system when disconnected from the main grid or as
a grid-connected system when connected to the main grid through a point of common coupling
(PCC) [3]. The grid-connected system can either sell or buy power from the main grid. The power
trading with the main grid has long been known to depend on a specified, pre-determined price per
kWh. MG generation output exhibits stochastic and intermittent patterns that are addressed using
optimal energy management.

MG energy management is challenging because of numerous DGs using an RES that can naturally
lack the capability of dispatch. This is due to the inherent stochastic behaviour of the resources,
and the inflexibility of the operational controls. The MG energy management problem is well-aimed at
minimizing the operational cost of the remote DER and ensures the power exchange with the main
grid. The MG management problem has optimal scheduling characteristics that are useful for the MG
master controller (MMC). These scheduling characteristics estimate the instantaneous DLs’ operations
in the MG. The MMC ascertains the dispatch of the DER, and provides energy exchange between
the main grid and MG through a PCC. The MMC reduces the overall operating cost with various
environmental, reliability, technical, and operational constraints [2].

The MG supports the main grid by consistently distributing its own portion of the generated
power. However, the changing state of the MG from grid-connected mode to standalone mode can be
associated with high generation [1]. High generations can occur at different intervals for which energy
exchange between the main grid can be established. Thus, MG power level may drop to zero during
standalone operation. In this situation, the MG generation drops or rises instantly because of the load
demand and generation instability.

Several pricing schemes are now used to enhance optimal scheduling of dispatchable DGs within
the MG scheduling horizon. The balance between the consumption and production of power systems
is achieved through different pricing schemes. This gives the utility the opportunity to invest in power,
and to provide better management of power resources to meet the exponentially increasing demand.
The electricity pricing methods are frequently used in the literature and in practical scenarios for the
utility companies. These methods play a vital role, especially in the demand response implementation.
An event-based electricity pricing strategy employed for commercial and industrial consumers with
the aim of reducing peak loads is known as the CPP [4]. In this strategy, a higher electricity rate is
charged during the event and peaks, and it is mostly targeted during the summer and winter seasons.
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The CPP influences a higher electricity rate during the hour that falls into critical pricing events
announced by the utility and reduces during other hours of the year. The time-of-use (ToU) pricing
scheme is time-dependent, divides the pricing rate into time slots, and provides the schedule rate
for each time slot [5]. The price is higher during on-peak hours and lower during the off-peak hours.
In some cases, ToU schemes make use of mid-peak time slots which fall within the on-peak or off-peak
hours. The ToU is more efficiently, simpler, and fairer than the flat rate pricing scheme because it
enables load shifting from on-peak to off-peak hours. This scheme is easy for consumers to predict and
comprehend, and it encourages the adoption of RESs and distributed storage systems by providing
a reduced rate during the on-peak hours. Overall, ToU is proven not to support large peak reduction,
and its changing nature allows the price signal to be averaged over an immense period of peak hours
or averaged over a minimal number of intense priced hours. In this paper, we consider the hourly CPP
and ToU market prices obtained from the utility.

Presently, the standalone operational mode of MGs is faced with the problem of optimal control
policies. These policies are useful for determining battery lifespan as well as ESS operation. In this paper,
the battery state of charge (SOC) is analyzed based on the charging and discharging operations. DERs
can be efficiently scheduled in order to get the optimal operational goals adaptable into the power system.
In the past, medium-sized DER generation was injected into the main grid with no feasible control
mechanism. Examples include the power generation of wind turbine (WT) and photovoltaic (PV) plants.
To prevent the potential waste of power generated by DERs with no control mechanism, especially when
the grid limits are violated, these considerations call for optimal energy management implementation.
In this paper, we consider an urban residential area with more than one hundred homes, each home
using the same appliances and load consumption. This assumption was made in order to make a fair
analysis of daily energy demand. Furthermore, this paper proposes an optimal energy scheduling
technique to shift dispatchable DGs within the time-based and event-based time price horizon. It also
enables the coordination of power supply to satisfy the hourly load demand.

The organization of this paper is as follows. In Section 2 , a related work on the optimal energy
management of dispatchable distributed generators in a MG system is given. In Section 3, the optimal
energy scheduling problem is formulated with two case studies. Section 4 provides a description of
the proposed system model, and the results are presented in Section 5. Finally, Section 6 gives the
conclusions of the work and future work.

2. Related Work

The related work in this paper is divided into two components: firstly, we discuss energy
management using the deterministic and chance-constrained approaches; and secondly, we discuss
energy management using heuristic approaches. Currently, because of the integration of several RESs
into MGs, optimizing electric power becomes a necessity—mostly for standalone and grid-connected
MGs. Importantly, a high generation of renewable energy that is saddled with uncertainty makes RESs
a difficult energy management system (EMS) for MGs. ESSs have been known to increase the efficacy of
power supplies by lowering load fluctuations. MG operations involve the scheduling of dispatchable
local units of distributed generation and coordinating discharging and charging operations of the
storage systems. These MG features maintain DLs with the goal of satisfying the consumer’s load
requirement. Currently, the optimal operation of an energy system depends on the ESS, dispatchable
DGs, and the electric market tariff.

2.1. Energy Management Using Deterministic and Chance-Constrained Optimization Approaches

In last couple of years, appreciable efforts have been suggested for the energy management of
standalone and grid-connected MG operational modes [6–11]. Specifically, probabilistic programming
models have been proposed in [12,13], while dynamic programming models are suggested in [14,15].
These dynamic and stochastic methods require fine-tuning in their algorithm-specific control parameters.
The fine-tuning effect determines the performance of the algorithms in achieving global or local optimum
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solutions [16]. Optimal energy management in industrial MGs has been considered [17–19], whereas
residential MG optimal energy management is proposed in [20–23]. Due to the stochastic nature of
RESs, deterministic approaches may not ensure the quality of power which an MG can generate.
This problem can be due to environmental constraints. Most of the time, a stochastic approach
is modeled with sequential decision problems, although this becomes computationally impossible
because of a greater number of decision variables [24]. However, authors have proposed several
solutions using chance-constrained and deterministic approaches for optimal energy management in
MGs [25,26]. To provide cost savings for residential MGs, a model predictive control and sensitivity
analysis proposed in [27] is formulated as mixed integer linear programming (MILP). A sensitivity
analysis was carried out to identify the impact of variation in temperature, thermal, and electrical
demand. In addition, a day-ahead market scheme is used, while WT and PV are implemented as
DERs; however, microturbines (MTs) are not considered. Similarly, authors in [2] used a deterministic
and chance-constrained scheduling approach to reduce burden and operational cost, and to enhance
energy exchange commitment. The authors considered a MT, a PV array, a power bank, a bi-directional
communication between the main grid and the MG, and a day-ahead energy exchange commitment
with the utility. However, sales revenue is not considered in their energy exchange plan. To further
improve MG operations, a hybrid and robust optimization is proposed for an optimal bidding problem
in day-ahead and real time price (RTP) market by considering several uncertainties in dispatchable
generators and RESs. The optimal bidding problem is formulated as MILP to minimize the net electricity
cost of the MG [28]. The authors considered MT, PV, WT, fuel cell, battery, and diesel generator. However,
production, purchasing, and fuel cost were not considered in their objective function.

MG scheduling can be driven by electricity price, temperature, and intermittent load. Scheduling
can be in the form of long- and short-term. Meanwhile, authors in [29] proposed a short-term load
scheduling and control of an active distributed system using iterative solutions of MILP for an intra
day-ahead scheduler. This control optimizes the distributed resource production and minimizes
the operational cost while conserving the user’s unique probability of successful islanding (PSI).
The authors considered PV, 10 dispatchable DGs, and two transformers with on-top tap changers.
However, energy exchange with the main grid was not considered. To enhance scheduling by
ensuring the reliability of electricity supply in standalone MG, a Benders decomposition method
or column-and-constraint generation algorithm was proposed [30]. This method minimizes total
operation, generation, and spinning reserve cost of local resources as well as purchasing cost of
energy by an order of magnitude in computational time. However, complex MG optimization is
also proposed without considering the possibility of CPP market circumstances. Authors in [31]
proposed a chance-constrained information gap decision model for multi-period MG expansion
planning (MMEP). The proposed model was used to maximize the level of DERs as well as satisfying
operational constraints with high probability. However, energy exchange with the main grid was not
considered. Still on chance-constrained approach, a stochastic framework for day-ahead multi-objective
optimization scheduling of RES was formulated as a MILP problem. The proposed framework uses
a fuzzy decision-making approach and a non-sorting genetic algorithm (GA) to resolve the conflicting
requirements of MG security and operations [32]. The proposed framework includes PV, WT, and ESS;
however, MT and electricity market tariff are not considered. To avoid conflict and ensure cooperation
between intelligent rational decision-making in MG, the concept of game theory is now introduced into
the MG domain. This concept attempts to look at relationships among DER participants and predict
optimal decisions. A novel coalitional game theory is proposed for minimizing electricity cost for RESs
and ESSs by 18%, while load consumption is reduced by 3% [33]. The authors also considered energy
exchange and penalty terms related to excess energy storage. However, fuel cost and production cost
are not considered in their objective function.
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2.2. Energy Management Using Heuristic Optimization Approaches

Several meta-heuristic methods have been proposed for the optimal energy management of RESs
and dispatchable generators in MGs. Authors in [34] proposed a multi-objective optimal dispatch
of MG (MODMG) under uncertainty using an interval optimization approach to reduce economic
costs and voltage deviation. The authors considered WT and PV; however, MT was not considered.
Generation cost was mostly the focus of authors when considering optimal energy management in
MGs. To reduce the generation cost, an artificial immune algorithm (AIA) and demand response
aggregation (DRA) were proposed to consider hierarchical day-ahead pricing and RESs. The proposed
method maximizes net benefits and the social welfare of the customers [35]. However, ToU, CPP, energy
exchange, and consumers’ privacy are not considered. In order to have a reliable and sustainable
supply of power, an ESS provides an efficient mechanism for power storage that depends on system
circuitry design. An ESS is attached to an inverter which is used to convert DC to AC for electricity
transmission. A novel inverter for energy storage is proposed in [36,37]; the inverter is used to minimize
the burden on the MG. However, the authors only considered the performance of practical DC and AC
with ESSs, whereas energy exchange was not considered. ESSs have limitations, and authors in [1]
proposed a regrouped particle swarm optimization (RegPSO) model to address the single energy storage
problem. The proposed model combines two energy storage units, and the results show comparative
advantages in obtaining the optimal global solution using a day-ahead scheduling horizon. However,
ToU, CPP, and MT are not considered.

In the last decade, improvement in optimal energy management in MGs has been the focus of
the research community. Thus, several heuristic methods to provide solutions to optimize the energy
management problem have been presented in the literature. Authors in [38] present five optimization
methods, including firefly (FF), particle swarm optimization (PSO), differential evolution (DE),
GA, and teaching–learning-based optimization (TLBO) to address MG operation cost minimization
problems. These algorithms were tested on different performance indicators with a standard benchmark.
The simulation results showed that the performance of TLBO and DE was better and stable with respect
to other algorithms. However, energy exchange was not considered. In order to enhance energy
exchange, MGs need further improvement in terms of procurement cost; hence, a robust optimization
approach (ROA) is proposed in [3] as a stochastic bidding strategy for MGs. This approach reduces
the procurement energy cost to bid day-ahead, RTP, and ToU. However, CPP is not considered. CPP
is best known to reduce peak loads used in demand-side management activity. To minimize peak
load consumption, the work in [39] proposes a coordinated load scheduling and controlling algorithm
with less computational overhead to schedule controllable loads. However, dispatchable DGs are not
considered. Authors in [40] propose optimal scheduling using PSO under ToU and RTP market prices
by considering uncertainties of RESs and loads. The optimal scheduling model is used to address the
impact of demand response on networked MGs. However, PSO may not escape the local optimum
solution because of premature convergence. Authors in [41] proposed an optimal power flow using
the Jaya algorithm. The proposed model minimizes fuel cost and power loss reduction, and improves
the voltage stability; however, ToU, CPP, market price, and energy exchange with the main grid are not
considered. The Table 1, presents the summary of the related work in terms of techniques, achievements
and limitations. This paper presents the following contributions, which is an enhancement to our
previous work [42], which only considered the demand side.

1. A scenario is given to allow MG operators to include the actions of energy trading with the
main grid. This depends on ToU, CPP, and the conditions of trading to achieve multiple
objectives, including the minimization of production and fuel cost along with the maximization
of sales revenue.

2. An efficient algorithm is proposed to perform optimal energy management, and an objective
function is formulated as a multi-objective scheduling problem, (i.e., MG is considered for
two cases: standalone and grid-connected operation modes).
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3. The mechanism of CPP is also incorporated because it influences more power supply during
critical pricing hours announced by the utility. This pricing mechanism also helps in reducing
cost during other hours of the day.

4. We also considered microturbines (MTs), WTs, PVs, and diesel generators as dispatchable DGs
and ESSs.

Table 1. Summary of related work.

Technique(s) Achievement(s) Limitation(s)

RegPSO [1]

Addresses the single energy storage problem,
incorporates the isolated and nonisolated microgrid

operation modes, minimizes the operation and
maintenance cost, maximizes sales revenue.

Time-of-use (ToU), critical peak price
(CPP), and microturbines (MTs) are not

considered.

Deterministic and
chance-constrained [2]

Reduces burden, operational cost, and enhances energy
exchange commitment.

Sales revenue is not considered in their
energy exchange plan.

ROA [3] Reduces procurement energy cost to bid day-ahead,
RTP, and ToU. CPP is not considered.

Probabilistic programming
models [12,13] Residential and industrial MG. Requires extra computational power.

Dynamic programming
models [14,15] Residential and industrial MG. Inefficient for large decision variables.

MILP [27] Provide cost-saving for residential MG. MTs are not considered.

MILP [28] Minimizes net electricity cost of MG.
Production, purchasing, and fuel cost are

not considered in their objective
function.

MILP [29] Short-term load scheduling, minimizes operational cost
and conserves user’s unique PSI.

Energy exchanged with main grid is not
considered.

Benders decomposition [30]

Minimizes total operation, generation, and spinning
reserve cost of local resources as well as purchasing

cost of energy. Ignored possibility of CPP circumstances.

MMEP [31]
Maximizes the level of distributed energy

resource (DER), satisfying operational constraints with
high probability.

Energy exchange with main grid is not
considered.

Fuzzy decision-making, GA [32] Resolves conflicting requirements of MG operations.
MTs and electricity market tariff are not

considered.

coalitional game theory [33] Minimizes electricity cost and load consumption. Fuel cost and production cost are not
considered.

MODMG [34] Reduces economic costs and voltage deviation. MTs are not considered.

AIA and DRA [35] Maximizes net benefits and social welfare of the
customers, and reduces generation cost.

ToU, CPP, energy exchange, and
consumer privacy are not considered.

Novel inverter [36,37] Minimize the burden on MG Energy exchange is not considered

FF, PSO, DE, GA, TLBO [38] MG operation cost minimization. Energy exchange is not considered.

Coordinated load scheduling and
controlling algorithm [39] Minimizes peak load consumption. Dispatchable distributed generators

(DGs) are not considered.

PSO [40] Addresses the impact of demand response on
networked MG.

PSO may not escape local optimum
solution because of premature

convergence.

Jaya Algorithm [41]
Determines the best operating levels, reduces the real

power losses, stabilizes voltage, and optimizes
generation cost.

CPP, ToU, standalone, and
grid-connected not specified, energy

exchange, sales revenue maximization,
and market prices are not considered.

3. Problem Formulation

Existing work regarding optimal energy management in MGs provides solutions using
deterministic and stochastic methods formulated under day-ahead, ToU, and RTP market prices.
In addition, many existing methods have more than one algorithm-specific control parameter
(e.g., crossover, selection, and mutation in GA) to adjust, which requires a longer execution time.
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To address these challenges, a Jaya algorithm-based optimization method under ToU and CPP market
prices with a one-hour time horizon is proposed. The proposed method does not require the adjustment
of algorithm-specific control parameters; however, it has well known control parameters which do
require adjustment (e.g., population size, elite size). The Jaya-based optimization algorithm provides
a solution to the energy management problem formulated as a multi-objective scheduling problem.
This multi-objective scheduling problem is well-aimed at minimizing the production, operation,
and maintenance costs while maximizing sales profit. To evaluate the performance of the proposed
method, other optimization methods such as EDE and SBA are implemented for comparative analysis.

3.1. Formulation of Objective Function

An EMS requires the following information to give optimal results [1]:

1. 24-h ToU or CPP hourly load demand forecast
2. 24-h WT energy forecast
3. 24-h MT energy forecast
4. 24-h PV energy forecast
5. The utility price forecast or a pre-specified utility price.

The objective functions are split into two cases. Case I and II describe objective functions for MG
standalone and grid-connected modes, respectively. A discrete time optimization with a one-hour time
period is formulated for the optimal scheduling problem.

3.1.1. Case I: Standalone Mode

The major objective is to minimize production, operation, and maintenance costs [1]. The objective
function Fstandalone is computed in Equation (1).

Fstandalone = min
T

∑
t=1
{∑(Fuelcost

k (t)× Dunit
k (t))+

Scost
k (t)+

n

∑
k=1

(OMk(t)× Poutput
power (t) + OMwind(t)× Pwind(t)

+OMPV(t)× PPV(t) + OMMT(t)× PMT(t)+
ESU

∑
esu=1

(OMES
esu(t)× PES

esu(t)))},

(1)

where:

Dunit
k (t) =

{
1, if the kth dispatchable DG is turn ON,

0, if the kth dispatchable DG is turn OFF.
(2)

T is taken from each scheduling day. The diesel generator function is given in Equation (3).

Fuelcost
k (t) = ak + bk × Poutput

power (t)

+ck × Poutput
power (t)2.

(3)

The startup cost function is given in Equation (4).

Scost
k (t) =

{
scost, if Dunit

k (t)− Dunit
k (t− 1) = 1

0, otherwise,
(4)

where scost is the initial startup cost.
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3.1.2. Case II: Grid-Connected Mode

In this case, maximum profit is obtained from the selling revenue by subtracting the production
cost. The operation and maintenance cost is minimized. Thus, the objective function is split into
Fconnected

1 and Fconnected
2 , as given in Equations (5) and (6):

Fconnected
1 = min

T

∑
t=1
{Gbuy(t)×

Pgrid(t) + ∑(Fuelcost
k (t)× Dunit

k (t)) + Scost
k (t)+

n

∑
k=1

(OMk(t)× Poutput
power (t) + OMwind(t)× Pwind(t)

+OMPV(t)× PPV(t) + OMMT(t)× PMT(t)+
ESU

∑
esu=1

(OMES
esu(t)× PES

esu(t)))}.

(5)

The power bought from the utility at any given time period t must be greater than zero; that is,
Pgrid(t) > 0.

Fconnected
2 = max

T

∑
t=1
{−Gsell(t)×

Pgrid(t)−∑(Fuelcost
k (t)× Dunit

k (t)) + Scost
k (t)+

n

∑
k=1

(OMk(t)× Poutput
power (t) + OMwind(t)× Pwind(t)

+OMPV(t)× PPV(t) + OMMT(t)× PMT(t)+
ESU

∑
esu=1

(OMES
esu(t)× PES

esu(t)))},

(6)

where Fconnected
1 and Fconnected

2 are objective functions for case II. The power sold at any given time
period t to the utility must be less than zero; that is, Pgrid(t) < 0.

3.1.3. Formulation of the Multi-Objective Scheduling Problem

The derivation of the objective functions from standalone and grid-connected modes is
formulated as a multi-objective scheduling problem by keeping ESS’s capacity, power exchange
limit, and operational cost constraints.

Epmin
grid (t) ≤ Ep

grid(t) ≤ Epmax
grid (t). (7)

The value of Ep
grid(t) can be as large as possible at any given time period t. The net power exchange

with utility is computed in Equation (8).

Ep
grid(t) = Gbuy(t)− Gsell(t), (8)

ESpmin
esu (t) ≤ ESp

esu(t) ≤ ESpmax
esu (t), (9)

ESp
esu(t) =


ESp

esu(t) > 0 , if not charging,

ESp
esu(t) < 0 , if charging,

ESp
esu(t) = 0 , if inert,

(10)

SOCesmin
esu ≤ SOCes

esu(t) ≤ SOCesmax
esu , (11)
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where SOCes
esu(t) is computed as:

SOCes
esu(t + 1) = SOCes

esu(t)−
ϑes

esu(t)× PES
esu(t)

ξes
esu

. (12)

To obtain the battery’s state of charge (SOC), a Dunit
k (t) is needed to determine PES

esu(t) for each
esuth. The Dunit

k (t) includes the SOCes
esu, ESU, and Poutput

power (t).

T

∑
t=1

(Poutput
power (t)) +

n

∑
k=1

(PES
esu(t)) = P f orecast

load (t)− Pwind(t)

−PPV(t)− PMT(t)− Pgrid(t).

(13)

Equation (13) presents the demand and supply balance equation.

4. Proposed System Model

A MG is assumed to generate and satisfy the load demand requirements of the individual homes
within the residential area, as shown in Figure 1. It includes two PV systems, a diesel generator,
an MT, a WT, and an ESS that consists of two batteries (i.e., batteries that can store 200 or 300 kW
power per every 4-h). The main grid is connected to the MG through a 10 kV bus at PCC and the
MG operates under the concept of standalone as well as grid-connected modes according to the
requirements. Residential homes are connected to the MG through the distribution power line at
various voltages (i.e., 11 kV, 13 kV) and called primary distribution voltage, broken by a step-down
transformer. The step-down voltage for consumer utilization varies between 120, 240, and 480 volts.
It ensures that electricity is sent in the area through the secondary main (i.e., network wire) to the
residential homes. The various components of the system model are described briefly: the maximum
power point tracking (MPPT) is used for tracking the maximum power available from the PV modular.
The tracking depends on weather condition and the voltage of the array. MPPT varies with different
PV insulation and temperature. For the WT unit, a WT energy conversion system (WECS) is used to
convert wind energy into electricity. The EMS ensures communication and workability between RES,
ESS, and dispatchable DGs. The local switch centralizes communication among multiple connected
DGs. The PCC is the point in the model where multiple power flows are linked and accessible to
both main grid and consumers. The local interconnection consists of primary feeder (i.e., electronic
power converter), inverter and isolated power transformer, while a power flow controller provides
reactive compensation for the high-voltage transmission line. The ESS and dispatchable DGs retrieve
information about their scheduling from the EMS. The EMS is required to handle scheduling according
to the power capacity of the MG, the ON and OFF status, price tariffs, and load requirement.

In Figure 2, a brief description of the proposed Jaya-EMS architecture is presented. The Jaya-based
EMS receives hourly market prices from utility, and load demand from residential areas. EMS updates
its memory with the ON/OFF status of the dispatchable DGs and determines which DG to turn ON.
If solar irradiation is the standby DG, PV is set to 1 (i.e., ON). If the load demand is less than the
power generated by PV, the battery starts charging, otherwise track PV using MPPT. We considered
SOC of the battery, if the battery is empty; i.e., means the battery is not charging, turn ON the diesel
generator only when fuel cost is less than the electricity tariff, otherwise turn OFF the diesel generator.
The process continues until the battery is not empty, then stored power is dispatched to meet the
load demands. For the WT operation, the amount of power produced differs at every hour, daily or
seasonal timescales; i.e., the power supply is more than the load demand. In our scenario, we consider
two cases: WT power supply is sent directly to the MG with no power storage facility, WT needs to
be slow when the energy produced is more than is required. On the other hand, WT power is stored
using the storage facility. In the MT case, MT uses the battery to provide startup power. DC power by
battery is converted into two phases (i.e., up chopper, down chopper) whereas, AC power is used to
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operate the MT. Moreover, up chopper is used to reduce the required voltage of the battery and down
chopper is used to charge the battery during normal operation as well as serves as a backup for electric
supply during high load demand.

Jaya-

EMS

Main grid

Battery pack PV
MT WTDiesel generator

Communication line

Power flow controller

Local interconnection

PCC

Local 

switch

Residential area with 

160 homes

2500 kW
200, 80 

kW 
200x4h kW 
300 x 4h kW200 kW500 kW

MG

Home appliances

400V AC

1

51

101

2 3

52 53

102 103

Power flow

Control flow

Figure 1. Proposed system model. EMS: energy management system; PCC: point of common coupling;
PV: photovoltaic; WT: wind turbine.

4.1. Jaya Algorithm

The Jaya algorithm is a meta-heuristic population-based algorithm, and has been proven to
provide optimal scheduling for unconstrained and constrained optimization problems [43]. Several
population-based algorithms are known to be influenced by algorithm-specific control parameters.
These control parameters are unique to each algorithm, and the performance is determined by proper
adjustment of the control parameter(s). The use of this algorithm for the optimization process ensures
that solutions to determine do not deviate from the ideal solution by avoiding a worse solution,
and it has a single phase which makes it easy to implement. We considered h(x) to be minimized at
any iteration t. Suppose that there are n decision variables (i.e., (j = 1, 2 . . . , n)). If in the jth variable,
Vj,l,t value is obtained for the lth individual during the tth iteration, then the modified value is obtained
using Equation (14) as:

V
′
j,l,t = Vj,l,t + r1,j,l(Vj,ideal,t − |Vj,l,t|)−

r2,j,l(Vj,worst,t − |Vj,l,t|).
(14)

V
′
j,l,t is the updated value of Vj,l,t, and r1,j,l , r2,j,l is in the range [0, 1]. The term r1,j,l(Vj,ideal,t −

|Vj,l,t|) indicates the tendency of the solution to move closer to the ideal solution, while the term
r2,j,l(Vj,worst,t − |Vj,l,t|) indicates the tendency of the solution to avoid the worst solution. V

′
j,l,t is

accepted if it gives a better function value. All accepted function values at the end of the iteration are
preserved, and are used as the input to the subsequent iteration.
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Figure 2. Proposed architecture for Jaya-based EMS. BAT: battery.
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To discuss the operation of the proposed model, the multi-objective functions given in
Sections 3.1.1 and 3.1.2 are considered. h(x) is used to find the values of xj that minimize the
multi-objective function. The following are the steps that describe the proposed model:

Step 1 Obtain the hourly power rating of the individual dispatchable DGs, the hourly selling and
buying prices (i.e., ToU and CPP), load demand, P are taken as 30 individual solutions, n as
6 decision variables (i.e., the dispatchable DGs), and 125 iterations are used as the stopping
criterion.

Step 2 Generate the initial population randomly within the range of values that corresponds to h(x)
(i.e., using the upper and lower limits). After the population generation, a counter is set to the
maximum iterations.

Step 3 Run the initial dispatch without the EMS and calculate the objective function that is to be
minimized for standalone and grid-connected modes using Equations (1) and (5).

Step 4 Update the population based upon the fitness comparison at the end of each iteration. Perform
a local search to ascertain if the solution satisfies the objective constraints. Apply mutation
strategy to maintain and introduce diversity in the population. In addition, a global solution
is obtained if the new solution gives a better objective value.

Step 5 Transform the updated population into binary that denotes the ON and OFF status of
dispatchable DGs.

Step 6 Run the EMS for each individual and compute their corresponding objective values at
each iteration.

Step 7 Consider the energy storage if it is empty, then turn ON standby dispatchable DG, otherwise
turn OFF dispatchable DG.

Step 8 If the load demand at a particular time slot t is high and the utility price is also high, then the
power stored is dispatched to satisfy the load demand at that particular time slot t, a control
signal is sent to other dispatchable DGs, and EMS memory is updated. This process continues
for 24-h.

Step 9 Identify the ideal and worst solutions and modify the solution using Equation (14) and
execute the dispatch after considering the modified solution, obtain the objective value for
each individual solution, and update the solution if it provides the ideal solution.

Step 10 Stop execution if termination criteria are reached.

The parameter mapping of the proposed algorithm is shown in Table 2. The Algorithm 1 describes
the Jaya scheduling technique. We sort DGs in descending order based on power output, which
shows the level of storage within the scheduling horizon. This helps in choosing the DG with the
largest power output among all the other DGs. As a consequence, this will increase the likelihood of
achieving our set of objectives. The computational steps of the Jaya optimization technique depend
upon the complexity at lines (11–40). The complexity of other lines (16–33) are superseded by these
lines; the complexity of line 13 is influenced by line 15. Sub-lines 15–23 take O(1); while line 15 can
iterate maximally with k iterations, and thus its cost is O(k). Line 13 performs at the maximum iteration
cost of O(k2); then, the overall T events take the cost of O(T2).

Table 2. Proposed algorithms mapping on EMS. EDE: enhanced differential evolution;
SBA: strawberry algorithm.

Jaya-Parameters EDE-Parameters SBA-Parameters EMS Parameters Values

P P P Individual Solution 30
Modified function Mutant vector Growth Initial DGs states 2

n Trial vectors NRunner Number of dispatchabe DGs 6
Selection Selection Droot Schedule/Time slots 24

Fitness function Fitness function Fitness function Design objective function 1
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Algorithm 1: Jaya optimization technique

1 Set the initial P, n, population boundary: min, max respectively, and termination criterion;
2 iter = 0;
3 Generate a random population;
4 D: DGs set; /* k : number of DGs in D, t: time of scheduling event*/;
5 k= 0; /*Initialize DG schedule to empty*/;
6 For each (event ti ∈ D);
7 Determine the power store of ESU; /*Power store is not empty*/;
8 Calculate the multi-objective function using Equations (1) and (5);
9 Sort DGs in descending order of their output; /*D is now sorted */;

10 k=D ; /* k is set equal to the sorted set D*/;
11 for t=1 to T do
12 for l=1 to p do
13 for r=1 to k do
14 flag= TRUE;
15 for i=1 to k-1 do
16 j = i + 1; /* tj: event following ti in k */;
17 For all maximum power store at ti and tj; /*analyze in 2 folds*/;
18 if ti is not current event then
19 Set ti as not current event; /* current event: either ToU or CPP*/

20 if tj is not current event then
21 Set tj as not current event; /* current event: either ToU or CPP */

22 Store power output of D at t(i, j) and t(j, i); /* Store power at distinct time*/;
23 Select DG with the largest power output;

24 if DG with the largest power needs shifting of ti and tj then
25 Shift (ti, tj);
26 T= T + T(tj); /*scheduling time of tj in current event */;
27 flag=FALSE;
28 else
29 T=T + T(ti); /* scheduling time of ti in current event*/

30 if flag=TRUE then
31 Break;
32 No shifting; /*so all events are in order*/;
33 k is finally shifted; return event k(1);

34 while iter < MaxIter do
35 iter = iter + 1;
36 Evaluate objective value of each one of the population; Obtain new solution;
37 Conduct the local search;
38 Start mutation Strategy;
39 End mutation Strategy;
40 Accept new solution if it gives a better objective value;

4.2. SBA

Several plant intelligence-based inspired optimization algorithms have been proposed in [44].
Authors in [45] propose a numerical SBA to resolve steady multi-variable problems. The runner,
as well as stolon, is the building element in the generation of the strawberry plant. The leaf axil forms
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a crawling stalk known as the runner, and can be propagated from the parent plant. A new plant
is produced from the node of the runner and then a new root emerges with a runner to form the
daughter plant. This process is repeated on the daughter plant to regenerate a new daughter plant.
The parameter mapping of SBA to EMS is presented in Table 2, where the NRunner is the length of
runners, and Droot is the length of the roots.

4.3. EDE

EDE is an enhanced edition of differential evolution [46], where mutation, selection, and crossover
are the major operators. A randomly generated vector produces three distinct target vectors, and the
differences of any two distinct vectors are added into the target vector to generate a mutant vector.
The crossover process starts by generating a mutant vector, and a trial space is formed by merging the
target vector and mutant vector. The steps presented during EDE are: initializing initial population;
mutation; crossover; evaluating the fitness of trial vectors; select trial vector with minimal cost; discover
the worst individual in the population. The parameter mapping of EDE to EMS is presented in Table 2.

5. Simulations and Discussions

In this section, we illustrate the effectiveness of the proposed system model through two case
studies: standalone and grid-connected operation modes. The proposed multi-objective optimization
problem was simulated in MATLAB R2016a. Hourly time-dependent and event-based electricity prices
are shown in Table 3, and were used for energy exchange with the utility. The power ratings of WT, PV,
MT, diesel generator, and ESS were chosen empirically based on the parameters shown in Tables 4–7,
respectively. The results of the proposed method were analyzed and compared with that of SBA and
EDE respectively.

Table 3. The different market prices and hourly demand load [1,42,47].

Hour(s) Load Demand (kWh) ToU (c$/kWh) CPP (c$/kWh) Selling Price (c$/kWh)

1 720 8.7 11.4 12
2 960 8.7 11.4 12
3 640 8.7 11.4 12
4 180 8.7 11.4 12
5 480 8.7 11.4 12
6 720 8.7 11.4 12
7 260 13.2 11.4 12
8 1720 13.2 11.4 12
9 2120 13.2 11.4 12
10 1400 13.2 11.4 12
11 680 18 123.4 12
12 1160 18 123.4 12
13 640 18 123.4 12
14 320 18 123.4 12
15 180 18 123.4 12
16 720 18 123.4 12
17 720 13.2 11.4 12
18 200 13.2 11.4 12
19 220 8.7 11.4 12
20 680 8.7 11.4 12
21 780 8.7 11.4 12
22 640 8.7 11.4 12
23 500 8.7 11.4 12
24 160 8.7 11.4 12

Table 4. Parameters of the distributed generators [1,31].

Unit Types Min Power (kW) Max Power (kW) O and M Cost (c$/kW) Start Up Cost (c$/kW)

WT 0 2500 0.3767 900
PV 0 480 0.2169 1200
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Table 5. Parameters of the energy storage devices [1].

Unit Types Min Power (kW) Max Power (kW) OM Cost (c$/kW) Efficiency

Battery 1 240 4 h × 300 23.4 0.95
Battery 2 160 4 h × 200 35.0 0.85

Table 6. Battery specifications [1]. SOC: state of charge.

Capacity 20 kWh

Upper bound of SOC 100
Lower bound of SOC 20

Upper bound of power 30 kW
Lower bound of power −30 kW

Table 7. Parameters of dispatchable generators [28,31].

Unit Types Min Power
(kW)

Max Power
(kW)

O and M Cost
(c$/kW)

Startup Cost
(c$/kW) a b c

Diesel 10 500 175.2 3.0 1.30 0.0304 0.00104
MT 10 200 262.8 2.0 0.40 0.0397 0.00051

5.1. Operation in Standalone MG Mode

Figure 3 shows the hourly rating of DGs and the load demand. Load demand is the hourly
aggregated operational loads of multiple homes. The figure shows that demand load is far greater
than the initial power capacity of each distributed generation unit.
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Figure 3. Hourly demand load and rating of dispatchable DG.

Optimal energy management for a MG with hourly ESU and SOC are shown in Figures 4–6.
In the ToU case for battery-1: During the first 7 h (12 a.m.–6 a.m.) of the simulation period for the ESU,
the Jaya-based EMS stored the power of 3500 kW for 9–19 h and reduced in subsequent hours. EDE
stored the power of 7200 kW, whereas the SBA-based EMS stored 6000 kW, as shown in Figure 4a for
the standalone grid. The Jaya-based EMS stored the power of 4800 kW, whereas the EDE-based EMS
stored 7200 kW and the SBA-based EMS stored 3200 kW, as shown in Figure 4b for grid-connected
MG-1. In Figure 4c, the Jaya-based EMS stored the power of 4800 kW and EDE-based EMS stored
7200 kW, whereas, SBA-based EMS stored 6000 kW for grid-connected MG-2.

For the CPP case: 3500 kW was the stored power for Jaya, EDE, and SBA-based EMS, as shown
in Figure 4d for the standalone grid. The stored power for Jaya in grid-connected MG-1 was 3500 kW,
it was 6000 kW for EDE, and was 4800 kW SBA-based EMS, as shown in Figure 4e. Similarly, 3600 kW
was the stored power of Jaya, EDE, and SBA-based EMS as shown in Figure 4f for grid-connected MG-2.
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Figure 4. Power stored using the battery-1: (a) Standalone MG using ToU; (b) Grid-connected MG-1
using ToU; (c) Grid-connected MG-2 using ToU; (d) Standalone MG using CPP; (e) Grid-connected
MG-1 using CPP; (f) Grid-connected MG-2 using CPP.

In battery-2, Jaya-based stored the power of 2800 kW, EDE-based stored 4000 kW, and SBA stored
3300 kW, as shown in Figure 5a for the standalone grid. In Figure 5b, Jaya-based stored the power of
3200 kW, EDE-based stored 4600 kW, and SBA-based EMS stored 2800 kW for for the grid-connected
MG-1. Jaya-based EMS stored the power of 3200 kW, EDE-based stored 4700 kW, and SBA-based
stored 4000 kW for the grid-connected MG-2. However, Jaya-based did not show stored power in
some hours, because Jaya-based EMS sufficiently satisfied load demand.
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Figure 5. (a) Power stored using battery-2 in standalone MG using ToU; (b) Power stored using
battery-2 in grid-connected MG-1 using ToU; (c) Power stored using battery-2 in grid-connected MG-2
using ToU; (d) Power generation using the diesel generator in standalone MG using ToU; (e) Power
generation using the diesel generator in grid-connected MG-1 using ToU; (f) Power generation using
the diesel generator in grid-connected MG-2 using ToU.

In Figure 5d, the diesel generator for the standalone showed that Jaya-based EMS reduced its
power supply during the first 1–9 h as compared to EDE and SBA. The maximum power supply of
the diesel generator for Jaya-based EMS was 6800 kW, as compared to 12,200 kW for EDE and SBA.
The maximum diesel power generation was 10,000 kW, as compared to 15,000 kW for EDE and SBA,
as shown in Figure 5e. Similarly, for the Jaya-based EMS, the maximum diesel power generation was
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10,000 kW, as compared to 15,000 kW for EDE and SBA (Figure 5f). However, the Jaya-based EMS had
no diesel power supply during first 1–9 h and 19–24 h respectively. This is because the stored power in
the batteries was used to satisfy the demand load request during these hours.

The batteries had unstable charging behavior due to the high demand load request. Figure 6a
shows the SOC for the two MG operational modes. Meanwhile, the batteries maximum charging rates
were 99% for SBA, 96% for Jaya, and 95% for EDE. There was no charging rate below the initially
charged limit, and the MG could meet the load requirement even for the inactive state.
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Figure 6. (a) SOC in standalone MG using ToU; (b) SOC in grid-connected MG-1 using ToU; (c) SOC
in grid-connected MG-2 using ToU; (d) SOC in standalone MG using CPP; (e) SOC in grid-connected
MG-1 using CPP; (f) SOC in grid-connected MG-2 using CPP.
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The PV unit significantly supplied 2500 kW power more than the 2400 kW of WT and 1000 kW of
MT, as shown in Figures 7a and 8a. SBA and EDE supplied more power in the WT unit than Jaya-based
EMS. Figure 8d shows the maximum power supply of 2000 kW, 2500 kW, and 1500 kW of PV for SBA,
EDE, and Jaya-based EMS, respectively. In this period, the MG could satisfy the load requirement
and charged the batteries. The diesel generator unit supplied power of 12,200 kW as compared to the
8000 kW of battery-1 and 4000 kW of battery-2. Thus, fuel cost increased.

In Figure 9a, EDE-based EMS generated a minimal fuel cost in the first 7 h and was then reduced in
the 12–16 h of the day, whereas SBA-based EMS generated the greatest fuel cost. In Table 8, EDE-based
EMS produced a sales revenue that was greater than that of Jaya and SBA. This is due to the high
power supply of MT and PV. EDE-based EMS had minimal production cost as compared to Jaya
and SBA.

Table 8. Fuel, production cost, and selling income by proposed methods using CPP scheme.

Standalone Grid

Optim. Model Total Daily Fuel Cost
(c$/kWh)

Daily Energy Selling
Profit (c$/kWh)

Total Daily Production
Cost (c$/kWh)

Computational
Time (s)

Without EMS 403,850 13,325,000 4,2495,000 -
Jaya 327,280 31,027,000 2,600,500 0.4505
EDE 152,800 31,125,000 3,015,600 0.8126
SBA 334,610 −60,302,000 2,686,000 0.5172

Grid-connected MG-1

Jaya 249,840 23,023,000 2,600,500 0.0488
EDE 838,520 −18,478,000 3,015,600 0.3275
SBA 381,320 −65,229,000 2,686,000 0.2598

Grid-connected MG-2

Jaya 230,240 31,503,000 2,593,600 0.0575
EDE 789,070 −11,099,000 3,015,400 0.3371
SBA 162,600 −51,486,000 2,616,500 0.2316

Figure 9d shows the hourly fuel cost. The figure shows the time period with minimal fuel cost
generated by SBA and Jaya-based EMS. All algorithms generated a high fuel cost during the peak
hours which then reduced in subsequent hours. This was due to the high amount of power supplied
by the diesel generator.

Figure 10a illustrates that there was a fluctuating cost of operations during the period of simulation.
The results indicate that the EMS was able to shift dispatchable DGs from on-peak to off-peak hours.
Tables 8 and 9 show the total daily fuel cost, production cost, and selling revenue for the ToU and CPP.
In Table 9, EDE-based EMS showed a high total daily fuel cost of 5,24,930 USD cents per kilowatt-hour
(c$/kWh) as compared to Jaya and SBA, meaning that there was a high production cost for Jaya and
SBA. Jaya-based EMS showed better sales revenue than EDE and SBA. However, Jaya-based EMS
showed minimum execution time as compared to SBA and EDE.

In Figure 11a during the first 8 h for Jaya and EDE-based EMS, a constant amount of power was
supplied which sufficiently satisfied the load requirement. There was no reduction in power supply
except for EDE-based EMS during hours 21 and 22. Thus, the batteries started discharging to supply
power. During the peak hours, a high amount of power was supplied to satisfy the load request, and
thus the batteries started charging.

For the CPP case, during the time periods of 1–11 h, Jaya-based EMS had continuous power
stored at 1200 kW for battery-1 and 550 kW for battery-2. EDE and SBA-based EMS showed better
power stored than the Jaya-based EMS with the power stored at 2400 kW for battery-1 and 1600 kW for
battery-2. The power stored for all proposed algorithms was 3600 kW and 2400 kW for battery-1 and
battery-2, respectively. The batteries had unsteady charging behavior, and this was due to high demand
load request from the residential area. However, batteries did not get complete charging; more so,
the batteries’ discharging did not exceed the specified charged limit of 20%. Thus, the MG could meet
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the demand load requirement of the residential area for the inactive state. In Figure 10d, SBA-based
EMS produced the highest operating cost, greater than EDE and Jaya, respectively. The operation
and maintenance costs were stable for the three algorithms, among which Jaya-based EMS had the
minimal cost.
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Figure 7. (a) Power generation for MT in standalone MG using ToU; (b) Power generation for MT
in grid-connected MG-1 using ToU; (c) Power generation for MT in grid-connected MG-2 using
ToU; (d) Power generation for MT in standalone MG using CPP; (e) Power generation for MT in
grid-connected MG-1 using CPP; (f) Power generation for MT in grid-connected MG-2 using CPP.
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Figure 8. (a) Power generation for WT in standalone MG using ToU; (b) Power generation for WT
in grid-connected MG-1 using ToU; (c) Power generation for WT in grid-connected MG-2 using
ToU; (d) Power generation for PV in standalone MG using ToU; (e) Power generation for PV in
grid-connected MG-1 using ToU; (f) Power generation for PV in grid-connected MG-2 using ToU.
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(e) Grid-connected MG-1
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Figure 9. (a) Diesel fuel consumption cost in standalone MG using CPP; (b) Diesel fuel consumption
cost in grid-connected MG-1 using CPP; (c) Diesel fuel consumption cost in grid-connected MG-2 using
CPP; (d) Diesel fuel consumption cost in standalone MG using ToU; (e) Diesel fuel consumption cost in
grid-connected MG-1 using ToU; (f) Diesel fuel consumption cost in grid-connected MG-2 using ToU.



Energies 2018, 11, 1513 23 of 29

0 5 10 15 20 25

Daytime (hour)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
O

pe
ra

tio
n 

C
os

t (
c$

\k
W

)
×107

Jaya
EDE
SBA

(a) Standalone MG

0 5 10 15 20 25

Daytime (hour)

0

1

2

3

4

5

6

7

P
ro

du
ct

io
n 

C
os

t (
c$

/k
W

)

×106

Jaya
EDE
SBA

(b) Grid-connected MG-1

0 5 10 15 20 25

Daytime (hour)

-3

-2

-1

0

1

2

3

S
el

lin
g 

R
ev

en
ue

 (
c$

/k
W

)

×106

Jaya
EDE
SBA

(c) Grid-connected MG-2
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Figure 10. (a) Operation and maintenance cost using ToU; (b) Production cost using ToU; (c) Selling
revenue using ToU; (d) Operation and maintenance using CPP; (e) Production cost using CPP; (f) Selling
revenue using CPP.
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Figure 11. (a) Demand and supply in standalone MG using ToU; (b) Demand and supply in grid-
connected MG-1 using ToU; (c) Demand and supply in grid-connected MG-2 using ToU; (d) Demand
and supply in standalone MG using CPP; (e) Demand and supply in grid-connected MG-1 using
CPP; (f) Demand and supply in grid-connected MG-2 using CPP.
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Table 9. Fuel, production cost, and selling income of proposed methods using the ToU scheme.

Standalone Grid

Optim. Model Total Hourly Fuel Cost
(c$/kWh)

Total Hourly Energy
Selling Profit (c$/kWh)

Total Daily Production
Cost (c$/kWh)

Computational
Time (s)

Without EMS 403,850 13,611,000 42,593,000 -
Jaya 401,380 22,376,000 24,998,000 0.4253
EDE 524,930 −7,369,700 27,972,000 0.6791
SBA 111,560 −45,810,000 24,157,000 0.5479

Grid-connected MG-1

Jaya 537,750 15,945,000 3,255,200 0.0977
EDE 552,070 17,002,000 3,244,600 0.3641
SBA 191,690 −5,992,000 3,056,600 0.2736

Grid-connected MG-2

Jaya 436,290 19,398,000 2,691,000 0.0551
EDE 326,570 23,644,000 2,652,800 0.3725
SBA 376,930 −61,490,000 2,697,000 0.3507

Operation in Grid-Connected Mode

In the grid-connected mode, energy exchange occurs between the MG and the main grid to meet
the demand load requirement of the residential area. The EMS provides optimal scheduling of the
DERs under grid-connected mode to minimize the production cost and maximize the sales revenue.
Figure 11b shows demand and supply. The batteries were at steady charging state with the power
stored of 8000 kW and 4000 kW for both grid-connected MG-1 and MG-2, as shown in Figures 4 and 5.

The batteries stored more power for EDE than Jaya and SBA-based EMS. In the WT unit in
Figure 8b,c, EDE-based EMS supplied more power than Jaya and SBA. The diesel generator power
supply tended to reduce in Jaya and SBA, but was high for EDE-based EMS. In EDE-based EMS,
the diesel generator incurred more fuel cost, since it generated 15,000 kW of power at 12–20 h and
15,000 kW at 8–12 h, as shown in Figure 9e.

As soon as the MG is able to meet demand load requirement of the residential area, batteries stop
discharging for subsequent use during peak demand load request. In Figure 10c, SBA-based EMS did
not show improvement in total daily production cost. If the power supplied is more from the MG than
the power supplied by the main grid, then the preserved power from the ESSs can be used, especially
when utility prices are high. The preferred performance of Jaya-based EMS over SBA and EDE in
terms of sales revenues is clearly seen.

In the case of CPP, Jaya-based EMS in Table 8 had a minimum total daily production cost as
compared to EDE and SBA. Figure 11e,f show the demand and supply for the grid-connected modes.
From the figures, the MG supplied more power during the on-peak and off-peak hours. EDE-based
EMS supplied more power as compared to Jaya and SBA. This is because EDE-based EMS scheduled
the WT and MT at the same time. The negative selling revenue indicates the operation and maintenance
costs were greater than the production cost.

5.2. Performance Trade-Off

To show the comparative analysis using CPP, the fuel cost without EMS was 403,850 c$/kWh.
Jaya-based EMS reduced the daily fuel cost by up to 18.96% compared to the 62.16% of EDE and
17.14% of SBA for the standalone MG. Whereas, a daily fuel cost reduction of 38.13% was observed
in the Jaya-based system compared to −107.63% in EDE and 5.57% in SBA for grid-connected MG-1.
Additionally, Jaya-based EMS reduced fuel costs by up to 42.98% compared to −95.38% for EDE
and 59.73% for SBA for the grid-connected MG-2. The total daily production cost without EMS was
42,495,000 c$/kWh; with Jaya-based EMS the total daily production cost was reduced by up to 93.89%
compared to 92.90% with EDE and 93.67% with SBA for the standalone MG. Whereas, the daily
production reduction with the Jaya-based EMS was 93.89% compared to 92.90% with EDE and 93.67%
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with SBA. In addition, Jaya-based EMS reduced the daily production cost by up to 93.89% compared
to 92.90% for EDE and 93.84% of SBA for the grid-connected MG-1 and MG-2, respectively. The daily
sales revenue without EMS was 13,325,000 c$/kWh; Jaya-based EMS achieved a maximum daily
sales revenue above 100% (i.e., 132.84%) compared to 133.58% for EDE and −352.54% for SBA for the
standalone MG. Whereas, the Jaya-based EMS maximized the daily sales revenue by up to 72.78%
as compared to −38.67% for EDE and −389.52% for SBA. In addition, Jaya-based EMS maximized
the daily sales revenue by up to 136.42% compared to −16.70% for EDE and −286.38% for SBA for
grid-connected MG-1 and MG-2, respectively.

The following is a comparative analysis using ToU. The daily fuel cost without EMS was
403,850 c$/kWh; Jaya-based EMS reduced the daily fuel cost by up to 0.61% compared to −29.98% for
EDE and 72.37% for SBA in the standalone MG. The Jaya-based EMS did not improve the daily fuel cost,
with −33.15% compared to −36.70% with EDE and 52.53% with SBA. In a similar manner, Jaya-based
EMS failed by−8.03% compared to 19.13% by EDE and 6.66% by SBA for the grid-connected MG-1 and
MG-2 respectively. The total daily production costs without EMS were 42,593,000 c$/kWh; the total
daily production cost with Jaya-based EMS was minimized by up to 41.30% compared to 34.32% with
EDE and 43.28% with SBA for the standalone MG. Meanwhile, there was a 92.35% daily production
cost reduction by Jaya-based EMS, compared to 92.38% by EDE and 92.82% by SBA. In addition,
Jaya-based EMS reduced the daily production cost by up to 93.68% compared to 93.77% with EDE and
93.66% with SBA for the grid-connected MG-1 and MG-2 respectively. The daily sales revenue without
EMS was 13,611,000 c$/kWh; Jaya-based EMS maximized the daily sales revenue by up to 64.39%
compared to −45.85% with EDE and −236.56% with SBA for the standalone MG. Whereas, Jaya-based
EMS maximized the daily sales revenue by up to 17.14% compared to 24.91% with EDE and −55.97%
with SBA. Additionally, Jaya-based EMS maximized the daily sales revenue by up to 42.51% compared
to 73.71% of EDE and −351.76% of SBA for grid-connected MG-1 and MG-2 respectively.

However, Jaya-based EMS outperformed the other methods in terms of execution time, having
(0.4253, 0.0977, 0.0551) compared to (0.6791, 0.3641, 0.3725) with EDE and (0.5479, 0.2736, 0.3507)
with SBA for standalone, grid-connected MG-1, and MG-2, respectively in the ToU case. Similarly,
Jaya-based EMS showed better execution times of (0.4505, 0.0488, 0.0575) compared to (0.8126, 0.3275,
0.3371) for EDE and (0.5172, 0.2598, 0.2316) for SBA for standalone, grid-connected MG-1, and MG-2,
respectively, in the CPP case.

6. Conclusions and Future Work

With the growing demand for electricity, it becomes necessary to integrate RESs with traditional
grid sources in order to meet the requirements. MGs offer a way of incorporating various DERs by
optimizing the monetary operation and control problem, resulting in efficient power utilization. In this
paper, we used a multi-objective approach in scheduling various DERs to achieve minimized operation
and maintenance costs. We formulated a multi-objective scheduling problem for the standalone
and grid-connected operational modes under the CPP and ToU scheduling horizons. Furthermore,
we applied the Jaya algorithm to the formulated problems to evaluate its effectiveness. Simulation
results showed the best performance of Jaya against SBA and EDE methods in terms of production
cost, fuel cost, selling revenue, and execution time.

Jaya-based EMS reduced the total daily fuel cost by up to 38.13% as compared to EDE and SBA.
Additionally, the total daily production cost of the Jaya-based EMS was reduced by up to 93.89% as
compared to EDE and SBA. Moreover, Jaya-based EMS achieved a maximum daily sales revenue
above 100% (i.e., 132.84%) as compared to EDE and SBA. Additionally, Jaya-based EMS outperformed
the other methods in terms of execution time (0.4253 s).

The current MG operations can be modelled as a multi-objective scheduling problem, which can
be effectively solved using the proposed approach. Our future work will aim at determining the size
of the MG, as well robustness to communication outages and addressing prevalent security threats
within the network.
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Abbreviations

Min & Max Minimum and maximum population bound
h(x) Objective function
n Index of decision variables
p Number of individual solution
MaxItr Maximum number of iteration
Vj,ideal,t jth individual with the ideal value during the tth iteration
Vj,worst,t jth individual with the worse value during the tth iteration
r1,j,l & r2,j,l Two random numbers for lth variable during tth iteration
P Population size
T Total of time period
k Number of dispatchable DGs
Dunit

k (t) Decision variables at time period t
ESU Number of batteries within MG
Poutput

power (t) The power output of the kth dispatchable DG at time t
Scost

k Startup cost of the kth dispatchable DG
Fuelcost

k (t) Fuel cost at any given time t
a, b & c Parameters of the fuel cost function
OMk(t) Operation and Maintenance cost at any given time t
OMwind(t) Operation and Maintenance cost for WT at any given time t
OMMT(t) Operation and Maintenance cost for MT at any given time t
OMPV(t) Operation and Maintenance cost for PV at any given time t
Pwind(t) Forecast power generation for WT at any given time t
PMT(t) Forecast power generation for MT at any given time t
PPV(t) Forecast power generation for PV at any given time t
esuth Index of energy storage unit
OMES

esu(t) Operation and Maintenance cost for energy storage unit at any given time t
Gbuy(t) Electricity buying price at any given time t
Pgrid(t) Power bought from the utility at any given time t
Gsell(t) Electricity selling price at any given time t
Pgrid(t) Power sold to the utility at any given time t
Ep

grid(t) Power exchange at any given time t

Epmin
grid (t) Minimum limit of power exchange at any given time t

Epmax
grid Maximum limit of power exchange

ESpmin
esu (t) Minimum battery charging limit at any given time t

ESpmax
esu (t) Maximum battery charging limit at any given time t

ϑes
esu(t) Battery charging efficiency at any given time t

ξes
esu Rated storage capacity

P f orecast
load (t) Forecast demand load requirement at any given time t

PES
esu(t) Charging and discharging power at any given time t
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