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Abstract: This paper deals with the optimal allocation (siting and sizing) of distributed electrical 

energy storage systems in unbalanced electrical distribution systems. This problem is formulated as 

a mixed, non-linear, constrained minimization problem, in which the objective function involves 

economic factors and constraints address the technical limitations of both network and distributed 

resources. The problem is cumbersome from the computational point of view due to the presence 

of both constraints of an intertemporal nature and a great number of state variables. In order to 

guarantee reasonable accuracy-although limiting the computational efforts-a new approach is 

proposed in this paper: it is based on a Simultaneous Perturbation Stochastic Approximation (SPSA) 

method and on an innovative inner algorithm, which allows it to quickly carry out the daily 

scheduling (charging/discharging) of the electrical energy storage systems. The proposed method 

is applied to a medium voltage (Institute of Electrical and Electronics Engineers) IEEE unbalanced 

test network, to demonstrate the effectiveness of the procedure in terms of computational effort 

while preserving the accuracy of the solution. The obtained results are also compared with the 

results of a Genetic Algorithm and of an exhaustive procedure. 

Keywords: distributed electrical energy storage systems; optimization method; unbalanced 

distribution networks 

 

1. Introduction 

Electrical Energy Storage Systems (EESSs) have been recognized as a viable solution for 

implementing the smart grid paradigm, providing features in load levelling, integrating renewable 

and intermittent sources, improving power quality (PQ) and reliability, reducing energy import 

during peak demand periods, and so on [1]. 

In particular, EESSs can be exploited in distribution systems to pursue several objectives that 

range from implementing demand response to minimizing electrical energy costs. System objectives 

can also be pursued; indeed, voltage profiles as well as other PQ aspects (such as unbalances) can be 

improved by controlling EESSs smart interfacing converters. For instance [2] proposed the 

compensation of unbalances by adequately using storage systems. 
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However, EESSs are expensive and allocating (i.e., sizing and siting) the EESSs in a distribution 

system is crucial to minimizing the total investment cost while meeting system requirements.  

Many recent contributions can be found on this topic in relevant literature [3–17]. The 

formulation complexity of such contributions is of a different nature, and their solutions are based 

on different mathematical techniques; furthermore, different storage services are considered. 

Economic objectives are pursued in [3–7]. In particular [3] proposes a method based on a detailed 

economic analysis for allocating storage systems and distributed generators, which is obtained by 

minimizing the net present value of the costs sustained in operating a microgrid. In [4] the optimal 

sizing and siting of EESSs are based on the maximization of the total economic benefits of the 

distribution company and on the reduction of the procurement-cost risk that stems from price 

volatility. The reduction of energy exchanges at the substation and the total power losses are also 

taken into account by [5], who presents a cost-benefit analysis of energy storage for peak demand 

reduction in medium-voltage distribution networks. Savings in the cost of energy based on the 

different hourly prices of electricity are considered together with savings in network reinforcement 

consequent to the implementation of the peak shaving. A bi-level optimization model is proposed in 

[6], aiming at minimizing the total net present value of the distribution system. Xiong et al. [7] 

propose an economic approach that accounts for wind power uncertainty. 

Further references consider the contribution of the EESSs in supporting the distribution systems 

[8–17]. The optimization problem presented in [8,9] includes the provision by the storage systems 

that not only balance energy capabilities, but also balance ancillary services. In particular, network 

voltage deviations, feeders/lines congestions, network losses, and load curtailment are considered. A 

more recent study by the same authors, presented in [10], includes a grid reconfiguration. Marra et 

al. [11] propose an allocation method of EESSs for the voltage support in a network with high 

penetration of photovoltaic systems. The reliability of a distribution system, in particular accounted 

for by the Energy Not Served indicator, is the objective considered in [12]. A wind power-rich 

distribution network is treated in [13] and the optimal allocation of storage units is finalized to reduce 

curtailment from wind farms, managing congestion and voltages. In [14] the allocation of storage 

systems is aimed at alleviating the negative impacts of the high penetration of photovoltaic systems 

in distribution networks, whereas in [15] the voltage mitigation support of EESSs is considered and 

exploited for integrating solar photovoltaic plants and for reducing voltage fluctuations. Frequency 

regulation and peak shaving in a transmission and distribution network are implemented in [16]. In 

[17], in order to limit the computational time and still maintaining reasonable accuracy, a subset of 

candidate buses for the siting of the storage resources is identified by applying the Inherent Structure 

Theory of Networks and the Loading Constraints Criterion. 

A comprehensive overview on the methods presented in the literature for sizing and siting 

EESSs is in [18]. 

The analysis of the relevant literature clearly reveals that a planning period made over many 

years has to be considered in order to correctly account for the use of EESSs in distribution systems. 

Moreover, the strategy implemented for determining the charging/discharging patterns of the 

storage systems introduces intertemporal constraints, since the operation of a storage system at a 

time step will affect its operation during the following time steps [19,20]. The strategy has to be 

defined and included in the planning problem to maximize the advantages brought by the EESSs. 

Moreover, taking into account the unbalanced nature of the distribution systems that requires a three-

phase modeling of all of the components, the planning problem of allocating EESSs eventually 

consists in solving a high-dimensional mixed integer, non-linear optimization problem. 

This implies that simplified approaches or model approximations have to be considered in order 

to make the study useful even in realistic applications, in which the problem may be further 

complicated by the great number of network buses. Therefore, developing new methods that can 

limit the computational effort for the optimization problem solution is quite essential. 

In this paper, a new approach based on the Simultaneous Perturbation Stochastic 

Approximation (SPSA) method [21,22] is proposed for optimally allocating (i.e., sizing and siting) 

EESSs in unbalanced distribution systems.  
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SPSA is widely used to solve optimization problems in several frameworks [23]. It operates by 

simultaneously perturbing all of the unknown problems (both continuous and integer), stochastically 

approximating differentiation at each iteration. Although SPSA is a stochastic optimization solution 

method, simultaneous population-free perturbations make the computation very effective.   

In addition, the complexity effort introduced by adding constraints of an intertemporal nature 

(due to the EESSs daily charging/discharging stages) is overcome in this paper by applying an inner 

simplified approach. This approach is based on a busbar system where EESSs are exploited to reduce 

the energy purchase during hours with greater prices and to increase the energy during hours with 

smaller prices. Furthermore, the simplified strategy attempts to realize a load leveling: when the EESS 

is charging or discharging, the load curve is possibly flattened. 

Eventually, the main features of the proposed approach are: 

• A distributed storage is considered to catch the potential advantages brought by EESSs in an 

unbalanced distribution system. 

• The procedure accounts for many economic and technical aspects of the EESSs allocation.  

• The implementation of the solving algorithm based on the SPSA method allows to considerably 

shorten the computational time while providing good-quality solutions. 

• The inner simplified approach allows it to quickly carry out the daily scheduling of the EESSs, 

further shortening the computational time. 

• The comparison of the obtained results with the results of a Genetic Algorithm (GA) and of an 

exhaustive procedure gives evidence of the accuracy and of the computational effort reduction. 

This paper is organized as follows. Section 2 shows the formulation of the planning problem. 

Section 3 refers to the new approach used for solving the optimization problem. Section 4 briefly 

recalls the GA applied for comparison. Section 5 shows the results of numerical simulations and the 

comparisons with a GA solution and an exhaustive solution. Final considerations are reported in 

Section 6. 

2. Problem Formulation 

The EESSs can be sized and located in an unbalanced distribution system, aiming at optimizing 

the benefits for the whole system. In particular, several effects of EESSs on the distribution system 

can be taken into account and can be optimized. 

In particular, economic and technical effects have to be considered. In fact, EESSs can modify 

the pattern of energy imported from the upstream grid in view of an investment for the EESSs 

installation. Moreover, the allocation (siting and sizing) of EESSs can significantly affect the PQ levels 

at all buses of the distribution systems. Indeed, an adequate allocation of EESSs can improve the 

voltage profile at all the system nodes and can control the currents flowing through the system lines. 

The impact of EESSs on the unbalanced factors is another aspect that is worth being investigated. In 

this respect, the EESSs can be effectively designed at the planning stage in order to obtain the best 

performance and to support the distribution system operator (DSO) in keeping unbalance factors 

under the maximum Standard allowable values.  

The planning of EESSs for an unbalanced distribution system can be formulated as a mixed 

integer, non-linear, constrained, optimization problem, in which a proper objective function is 

minimized and a large number of equality/inequality constraints are met. 

In this paper, the objective function 𝑓𝑜𝑏𝑗 to be minimized depends on the cost of the energy 

acquired from the upstream grid over the planning period, and on the EESSs costs:  

𝑓𝑜𝑏𝑗 = 𝑃𝑉(𝐶𝐸) + 𝑃𝑉(𝐶𝐸𝑆) (1) 

where 𝑃𝑉(𝐶𝐸) is the present value of the cost of the energy that the distribution system acquires 

from the upstream grid in the planning period, and 𝑃𝑉(𝐶𝐸𝑆) is the present value of the EESSs cost. 

The vector of problem variables 𝑿 includes the size, the allocation bus, and the allocation phase of 

each EESS. 

The following relationship can be obtained by expanding the cost items in Equation (1):  
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𝑓𝑜𝑏𝑗 = ∑ (
1 + 𝛽

1 + 𝛼
)

𝑦−1

𝑦∈Ω𝑌

∑ ∑ ∑ 𝑐ℎ,𝑑,𝑦
𝐸 𝑃1ℎ,𝑑,𝑦

𝑝

3

𝑝=1ℎ∈Ω𝐻𝑑∈Ω𝐷

+ ∑ [𝐸𝑠
𝑠𝑖𝑧𝑒 ∑

𝑟𝑠𝑦
𝐸𝐶𝐸𝑆𝑦

(1 + 𝛼)𝑦−1

𝑦∈Ω𝑌

+ 𝑆𝐼𝐶𝐸𝑆𝑃𝑠
𝑠𝑖𝑧𝑒]

𝑠∈Ω𝑆

 (2) 

The objective function in Equation (2) accounts also for the battery replacement by means of the 

term 𝑟𝑠𝑦
. When, during year 𝑦, there is a battery installation (only at y = 1) or replacement, 𝑟𝑠𝑦

is not 

zero. If the battery lifetime exceeds the remaining years of the planning period, the value of 𝑟𝑠𝑦
 is 

less than 1 to account for the residual value of the battery at the end of the planning period. To make 

a reasonable economic analysis, a trend of the batteries installation costs is included in Equation (2), with 

an installation cost 𝐸𝐶𝐸𝑆𝑦
 that varies with the considered year 𝑦 . We assume, moreover, not to 

replace the interfacing static converters during the planning period. 

The decision variables of the optimization problem are the sizing (power and energy) and siting 

of the single-phase and three-phase storage systems. In particular, the power sizing of the storage 

system is assumed to be discrete and multiple of an elementary size, whereas the siting is clearly a 

discrete variable (the grid buses). Therefore, if the numbers of battery units connected at the phases 

of a generic bus are all greater than zero, then a three-phase converter will connect the battery to the 

distribution system. On the contrary, if one of these numbers is zero, single-phase EESSs will be 

installed. The energy size of an EESS; i.e., 𝐸𝑠
𝑠𝑖𝑧𝑒  in Equation (2)—is the available energy capacity.  

The objective function in Equation (2) has to be minimized subject to meeting a set of equality 

and inequality constraints, which refer to the technical limitations of both the network and its 

distributed resources. In the following, for the sake of simplicity, we refer only to three phases of 

EESS. 

First of all, for each storage system and during each day of operation, the energy charged must 

be equal to the energy discharged: 

∑ 𝛾𝑠,ℎ𝑃𝑠,ℎ,𝑑,𝑦
𝐸𝑆

ℎ∈Ω𝐻
∆𝑡 = 0,     𝑠 ∈ Ω𝑆, 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌 (3) 

The efficiency 𝛾𝑠,ℎ in Equation (3) depends also on the operation of the EESS; indeed, the values 

in charging and in discharging steps may be different. The power 𝑃𝑠,ℎ,𝑑,𝑦
𝐸𝑆  is positive or negative, 

according to the discharge or charge steps. 

Due to constraints on the expected life of the batteries, each battery can be charged or discharged 

in assigned hours. Since the objective is to minimize the cost of electricity, the hours of charging and 

discharging depend on the structure of the electricity prices (tariffs).  

The value of 𝑃𝑠,ℎ,𝑑,𝑦
𝐸𝑆  for each battery cannot exceed admissible ranges. In particular, during the 

charging hours, the following constraints apply:  

−𝑃𝑠
𝑠𝑖𝑧𝑒 ≤ 𝑃𝑠,ℎ,𝑑,𝑦

𝐸𝑆 ≤ 0, 𝑠 ∈ Ω𝑆 , ℎ ∈ Ω𝑐ℎ,𝑑,𝑦 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌 (4) 

During the discharging hours, the following constraints apply: 

0 ≤ 𝑃𝑠,ℎ,𝑑,𝑦
𝐸𝑆 ≤ 𝑃𝑠

𝑠𝑖𝑧𝑒 , 𝑠 ∈ Ω𝑆, ℎ ∈ Ω𝑑𝑖𝑠𝑐ℎ,𝑑,𝑦 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌 (5) 

The size of the EESS AC/DC interfacing converter imposes constraints on the active and reactive 

powers that the EESS can absorb/inject. In particular, for each storage system and during each hour 

of operation of the energy storage, the following constraints have to be verified:  

√(𝑃𝑠,ℎ,𝑑,𝑦
𝐸𝑆 )

2
+ (𝑄𝑠,ℎ,𝑑,𝑦

𝐸𝑆 )
2

≤ 𝑆𝑠
𝐸𝑆, 𝑠 ∈ Ω𝑆, ℎ ∈ Ω𝐻 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌 (6) 

Note that the apparent power 𝑆𝑠
𝐸𝑆coincides with the power size when the converter operates at 

unitary power factor.  

Furthermore, for each EESS, the nominal discharging time (i.e., the ratio between the energy size 

𝐸𝑠
𝑠𝑖𝑧𝑒and the power size 𝑃𝑠

𝑠𝑖𝑧𝑒) has to be constrained into a range defined by the specific technology 

of the storage device. 

With reference to the network, the three-phase load flow equations [24] have to be included. In 

particular, the following equations apply at each three-phase node: 
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𝑃𝑏,ℎ,𝑑,𝑦
𝑝

= 𝑉𝑏,ℎ,𝑑,𝑦
𝑝

∑ ∑ 𝑉𝑘,ℎ,𝑑,𝑦
𝑚

3

𝑚=1𝑘∈Ω𝐵

[𝐺𝑏𝑘
𝑝𝑚

𝑐𝑜𝑠(𝜗𝑏,ℎ,𝑑,𝑦
𝑝

− 𝜗𝑘,ℎ,𝑑,𝑦
𝑚 ) + 𝐵𝑏𝑘

𝑝𝑚
𝑠𝑖𝑛(𝜗𝑏,ℎ,𝑑,𝑦

𝑝
− 𝜗𝑘,ℎ,𝑑,𝑦

𝑚 )] 

𝑄𝑏,ℎ,𝑑,𝑦
𝑝

= 𝑉𝑏,ℎ,𝑑,𝑦
𝑝

∑ ∑ 𝑉𝑘,ℎ,𝑑,𝑦
𝑚

3

𝑚=1𝑘∈Ω𝐵

[𝐺𝑏𝑘
𝑝𝑚

𝑠𝑖𝑛(𝜗𝑏,ℎ,𝑑,𝑦
𝑝

− 𝜗𝑘,ℎ,𝑑,𝑦
𝑚 ) − 𝐵𝑏𝑘

𝑝𝑚
𝑐𝑜𝑠(𝜗𝑏,ℎ,𝑑,𝑦

𝑝
− 𝜗𝑘,ℎ,𝑑,𝑦

𝑚 )] 

  𝑏 ∈ Ω𝐵 , ℎ ∈ Ω𝐻 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌, 𝑝 = 1,2,3 

(7) 

where 𝑃𝑏,ℎ,𝑑,𝑦
𝑝  and 𝑄𝑏,ℎ,𝑑,𝑦

𝑝  are the net injected active and reactive powers. Extending Equations (7) in 

order to include single-phase and two-phase nodes is trivial.  

With reference to the slack bus, that is set at the bus of interconnection to the upstream network 

(i.e., bus #1), the magnitude and the argument of phase voltages are specified:  

𝑉1,ℎ,𝑑,𝑦
𝑝

= 𝑉𝑠𝑙𝑎𝑐𝑘 

𝜗1,ℎ,𝑑,𝑦
𝑝

=
2

3
𝜋(1 − 𝑝) 

ℎ ∈ Ω𝐻 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌, 𝑝 = 1,2,3 

(8) 

Moreover, at the interconnection bus, the apparent power flowing through the interfacing 

transformer is constrained by its rating 𝑆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ; then, the following constraint has to be 

considered:  

√(∑ 𝑃1,ℎ,𝑑,𝑦
𝑝

3

𝑝=1

)

2

+ (∑ 𝑄1,ℎ,𝑑,𝑦
𝑝

3

𝑝=1

)

2

≤ 𝑆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  (9) 

Meeting PQ requirements at all of the buses leads to the following constraints: 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑏,ℎ,𝑑,𝑦
𝑝

≤ 𝑉𝑚𝑎𝑥 ,     𝑏 ∈ Ω𝐵 , ℎ ∈ Ω𝐻 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌 , 𝑝 = 1,2,3 (10) 

𝑘𝑑𝑏,ℎ,𝑑,𝑦 ≤ 𝑘𝑑𝑚𝑎𝑥 ,                               𝑏 ∈ Ω𝐵 , ℎ ∈ Ω𝐻 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌 
(11) 

Eventually, the lines of the system have a specified ampacity that cannot be exceeded; then, the 

line phase currents are limited as well:  

𝐼𝑙,ℎ,𝑑,𝑦
𝑝

≤ 𝐼𝑙
𝑚𝑎𝑥,  𝑙 ∈ Ω𝐿 , ℎ ∈ Ω𝐻 , 𝑑 ∈ Ω𝐷 , 𝑦 ∈ Ω𝑌, 𝑝 = 1,2,3 (12) 

We note that the planning problem is based on the choice of a planning period, the length (i.e., 

the number of years) of which depends on the expected lifetimes of the equipment. Moreover, it is 

evident that considering all of the days of all of the years in the planning period may push the 

computational effort beyond reasonable time scales; therefore, it is rational to consider a reduced set 

of typical days for each year on the basis of seasonal characteristics, holidays, weekdays (Monday to 

Friday), weekends (Saturday and Sunday), and so on. 

3. Solving Procedure 

The planning problem formulated in Section 2 is a cumbersome optimization problem that may 

require tremendous computational effort to be solved, particularly in unbalanced distribution 

systems. Therefore, developing new methods that can limit the computational effort in the solution 

of the optimization problem while saving the accuracy of the results, is quite essential. 

Based on these considerations, a hybrid approach is proposed in this paper to quickly and 

accurately solve the optimization problem presented in Section 2. This approach consists in a four-

step iterative procedure that includes an inner routine (Figure 1): 

1st Step: The Simultaneous Perturbation Stochastic Approximation (SPSA) method selects 

specific buses at which EESSs of specified power ratings are sited. 

2nd Step: In the inner routine, an algorithm based on a simplified approach provides, for each 

day of each year, the hourly active and reactive power profiles of the EESSs and their energy sizes. 

3rd Step: The network constraints (Equations (7)–(12)) are verified through load flow analyses. 

In this way, only feasible conditions are taken into consideration, whereas conditions that do not 
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satisfy the network constraints are discarded. If the network constraints are never verified, the 

algorithm returns to step 1, otherwise it calculates (Equation (2)). 

4rd Step: The convergence is checked by monitoring the number of iterations and/or the decrease 

of the objective function (Equation (2)). If the convergence is not achieved, the algorithm returns to 

step 1.  

Note that, in the inner routine, a simplified algorithm minimizes the objective function (Equation (2)), 

satisfying the EESSs constraints. It is based on a busbar system in which EESSs are exploited to reduce 

the energy purchase during hours with greater prices, and to increase the energy purchase during 

hours with smaller prices. Furthermore, the implemented strategy attempts to realize a load leveling: 

when the EESS is charging or discharging, the load curve is possibly flattened. 

Note also that, solving the EESSs siting and sizing planning problem by means of non-simplified 

procedures may require so much time that it is difficult to obtain reasonable results. Instead, the 

simplified step-procedure proposed in this paper allows it to dramatically shorten the computational 

time while saving the accuracy of the results. In fact, the algorithm based on the SPSA provides good 

solutions with a considerably shortened computational time; moreover, the inner simplified 

approach allows it in turn to quickly carry out the daily scheduling of the EESS, further shortening 

the computational efforts. 

In Sections 3.1 and 3.2, details about the aforesaid algorithms will be provided. Moreover, 

Section 4 briefly recalls the micro Genetic Algorithms (μGA) applied in the numerical applications of 

Section 5 to compare the proposed procedure. 

 

Figure 1. Flow chart of the solving procedure. 
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3.1. The Simultaneous Perturbation Stochastic Approximation Method 

The SPSA method was firstly proposed by J. C. Spall [21] to solve optimization problems and, 

since then, it has widely been applied to several planning problems [23]. 

The SPSA method is based on the simultaneous perturbation of all unknown variables 

𝑥𝑖  (𝑖 = 1, … , 𝑞) and on the differentiation approximation. This is performed in a stochastic way for 

each iteration [22]. 

Let us initially refer to a generic unconstrained optimization problem with integer variables:  

min 𝑓𝑜𝑏𝑗(𝑿) (13) 

being the vector 𝑿 composed of q integer variables: 

𝑿 = [𝑥1, … , 𝑥𝑞]𝑇  (14) 

Let  be the operator that rounds a real number to the nearest integer toward positive 

infinity. 

The elements of the vector 𝑿 are updated at each iteration of the SPSA algorithm; for instance, 

considering the kth iteration, we have:  

𝑿𝑘+1 = 𝑿𝑘 − ⌈𝑎𝑘𝒈𝑘⌉∆𝑘 (15) 

where: 

𝒈𝑘 =
𝑓(𝑿𝑘 + 𝑐𝑘∆𝑘) − 𝑓(𝑿𝑘 − 𝑐𝑘∆𝑘)

2𝑐𝑘

[

(∆𝑘1
)

−1

⋮

(∆𝑘𝑞
)

−1
] (16) 

The constant  𝑎𝑘  is included to accelerate the convergence, and it depends on the expected 

maximum number of iterations, the expected step size, and the starting values of the optimization 

variables; ∆𝑘is the random perturbation vector (with dimension q), the components of which are 

independently generated following a Bernoulli (±1) distribution [25]; the constant 𝑐𝑘 is a positive 

number. More details about the values of the constants and on the generation of the perturbation 

vector are in [25]. 

If the optimization problem is constrained by a set of inequality constraints:  

min 𝑓(𝑿) (17) 

subject to 

𝜑𝑖(𝑿) ≤ 0, 𝑖 = 1, … , 𝑁𝑖𝑛 (18) 

the SPSA algorithm can be applied as well, but the update of the vector  𝑿 accounts for the violated 

constraints [26].  

Note that the SPSA method does not directly handle equality constraints, whereas a set of 

equality constraints (Equation (7) with the positions of Equation (8)) appears in the optimization 

problem to be solved in the outer routine.  

Fortunately, these equations can be separately considered [27] (3rd Step of the proposed 

procedure). In fact, once the daily scheduling of EESSs is known after performing the inner routine, 

Equation (7) (including, of course, the conditions stated by (8)) can be separately solved in order to 

determine the phase voltages (magnitudes and arguments) at all buses. The latter allows, then, to 

verify whether inequality constraints among Equations (9–12) are met or not, discarding unfeasible 

siting and sizing solutions. In the case of an unfeasible solution, the update of the vector 𝑿 accounts 

for the violated constraints, as previously mentioned. 

3.2. Inner Algorithm: the EESSs Daily Scheduling 

The optimal daily scheduling of EESSs (i.e., charging/discharging cycles of EESSs) along with 

the energy size of the EESSs are obtained by applying a simplified but effective and fast algorithm, 

 .
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based on a busbar-system representation of the network (Figure 2). The losses of the distribution 

system are not taken into consideration, allowing it in this way to avoid time-consuming algorithms 

(e.g., three-phase load flow) and to adopt fast operations (we show once again that the three-phase 

load flow equations (and the losses) are taken into account in Step 3).  

The power rating of the equivalent EESS in Figure 2 is given by 𝑃𝐸𝐸𝑆𝑆 = ∑ 𝑃𝑠
𝑠𝑖𝑧𝑒

𝑠∈Ω𝑆
 where the 

size 𝑃𝑠
𝑠𝑖𝑧𝑒 of the EESS installed at bus s is fixed in the outer routine by SPSA for 𝑠 ∈ Ω𝑆  and the 

equivalent load in Figure 2 incorporates all the loads of the original system under study. 

 

Figure 2. Busbar system considered in the inner routine. 

With reference to the system in Figure 2, the inner routine solves an optimization problem in 

which the objective function to be minimized accounts for the total costs of Equation (2), given by the 

sum of the costs of the energy bought from the upstream network (which depends on the daily 

scheduling of the equivalent EESSs, once the equivalent load is assigned) over the planning period 

and the EESSs costs. A set of EESSs constraints are also considered, as shown hereinafter. We assume 

that a tariff scheme is assigned as input data of the optimization problem. Each day is divided into 

tariff periods, each characterized by an energy cost. The tariff periods depend on the season of the 

year. Typically, this tariff scheme includes on-peak hours (which are characterized by the greatest 

energy prices), off-peak hours (characterized by the smallest energy prices) and part-peak hours (i.e., 

the hours during which energy prices are comprised between on-peak and off-peak prices). 

The decision variables of the optimization problem (output of the inner routine) are the values 

of the active powers in the charging/discharging stages of the equivalent EESS for all of the hours of 

the typical days in years; such values are linked to the energy size of the equivalent EESS, as it is 

shown in the following. In order to reduce the computational efforts, some typical days (e.g., working 

day, Saturday, Holidays) are considered in each season of the year. 

In particular, assuming the nominal discharging time of the equivalent EESS to be a discrete 

variable, the optimization problem of the inner routine is solved by applying an exhaustive 

procedure; i.e., considering all of the possible integer values of the nominal discharging time 𝑡𝑑𝑖𝑠𝑐ℎ 

(from one hour, up to a maximum value 𝑡𝑑𝑖𝑠𝑐ℎ
𝑚𝑎𝑥 ), and selecting the optimal value to be the one 

associated to the smallest value of the objective function Equation (2) involving the total costs.  

The maximum nominal discharging time 𝑡𝑑𝑖𝑠𝑐ℎ
𝑚𝑎𝑥  can be determined as the ratio of the greatest 

value of maximum energy that can be charged (during low-price hours) and discharged (during high-

price hours) over a day without violating any constraints, to the 𝑃𝐸𝐸𝑆𝑆 (the integer rounded value is 

taken). Its value is constrained into a range defined by the EESS technology 
During the exhaustive procedure, once 𝑡𝑑𝑖𝑠𝑐ℎ is fixed, for each typical day of each year of the 

planning period, the charging/discharging cycle of the equivalent EESS is determined: (i) by reducing 

the energy consumption during hours with greater prices, and by increasing the energy purchase 

during hours with smaller prices; and (ii) by implementing a strategy aiming at load levelling. In 

particular, when the EESS is charging or discharging, the equivalent load curve is possibly flattened.  

More in detail, the most inexpensive daily operation of the equivalent EESS is obtained by 

moving as much energy as possible from the on-/part-peak hours to the off-peak hours, charging 

batteries during the off-peak hours and discharging them during the on-/part-peak hours. The peak 

power during the off-peak hours is straightforwardly adapted. Moreover, the inner algorithm tries 

to perform a load levelling, when it is possible, during the time intervals of each tariff period. With 

such characteristics, even if we operate in a busbar system (in which losses are neglected), we are 
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confident that levelling the load leads to a reduction of the mean required power and, consequently, 

we also expect active power losses to be reduced.  

As previously evidenced, the optimization problem solved in the inner routine includes a set of 

constraints that have to be verified when the exhaustive procedure is applied; the EESSs constraints 

of Section 2 (expressed for the equivalent EESS) and the following ones: 

i. capacity of the grid: the “updated” daily curves (provided by the sum of the load powers and of 

the EESS power) do not have to exceed the peak power of the loads, 

ii. exportation is not allowed: when the EESS is discharging, power cannot flow toward the main 

grid, 

These must be verified. 

Two examples are reported hereinafter in order to better clarify the strategy implemented to 

optimally charge and discharge the equivalent EESS, with reference to the three tariff periods (i.e., 

off-peak, part-peak, and on-peak hours) in which the smallest price occurs during the off-peak hours.  

In the next figures, 𝑃𝑜𝑛 𝑝𝑒𝑎𝑘,𝑑,𝑦 and 𝑃𝑜𝑓𝑓 𝑝𝑒𝑎𝑘,𝑑,𝑦 are the constant values of power during the on 

peak hours ( ℎ ∈ Ω𝑑𝑖𝑠𝑐ℎ,𝑑,𝑦 ) and the off-peak hours ( ℎ ∈ Ω𝑐ℎ,𝑑,𝑦 ), respectively.  𝑃𝑜𝑛 𝑝𝑒𝑎𝑘,𝑑,𝑦  and 

𝑃𝑜𝑓𝑓 𝑝𝑒𝑎𝑘,𝑑,𝑦are determined by considering the contribution of the energy charged (ℎ ∈ Ω𝑐ℎ,𝑑,𝑦) and 

discharged (ℎ ∈ Ω𝑑𝑖𝑠𝑐ℎ,𝑑,𝑦) by the equivalent EESS. In Figure 4, 𝑃𝑝𝑎𝑟𝑡 𝑝𝑒𝑎𝑘,𝑑,𝑦 is the constant value of 

power during the part-peak hours. 

Different cases can occur, on the basis of the rating of the equivalent EESS (i.e., 𝑃𝐸𝐸𝑆𝑆), on the 

basis of the value of the nominal discharging time, and, of course, on the basis of the assigned load 

curve. Two of these cases are discussed hereinafter, considering a specified typical day. 

In the first case we assume 𝑡𝑑𝑖𝑠𝑐ℎ equal to 6 hours; as shown in Figure 3, the equivalent EESS 

discharges during the peak hours in such a way that a levelled power, i.e., 𝑃𝑜𝑛 𝑝𝑒𝑎𝑘,𝑑,𝑦, is obtained. 

Similarly, the equivalent EESS is charged during the off-peak hours in such a way that a levelled 

power, i.e., 𝑃𝑜𝑓𝑓 𝑝𝑒𝑎𝑘,𝑑,𝑦 is obtained. 

In the second case we assume the power rating and the nominal discharging time of the 

equivalent EESS to be significantly greater than in the previous case. As shown in Figure 4, the energy 

stored by the equivalent EESS is greater than the energy required by the loads during the peak hours; 

therefore, part of this energy can be also used in the part-peak hours. As a consequence, 𝑃𝑜𝑛 𝑝𝑒𝑎𝑘,𝑑,𝑦 

is zero, and the EESS discharges during some hours of the part-peak period. This allows it not to 

draw energy from the main grid when prices are high. In particular, note that in the case represented 

in Figure 4, constraints on the minimum and maximum values of the “updated” load curve (the one 

that include the storage) are binding. In fact, during the charging phase in the off-peak hours, the 

“updated” load curve has a maximum equal to the peak value of the original load curve due to the 

condition (i) reported above. Moreover, during the discharging phase in the on-peak hours, the 

levelled load is zero due to the condition (ii) reported above.  

Once the optimization problem of the inner routine is solved and the charging/discharging cycle 

of the equivalent EESS is obtained for all of the days, we assume that all of the EESSs that constitute 

the equivalent EESS in Figure 2 operate with the same charging/discharging starting times, and with 

active powers of each of them scaled of the quantity 𝑃𝑠
𝑠𝑖𝑧𝑒/𝑃𝐸𝐸𝑆𝑆   (𝑠 ∈ Ω𝑆). 

Regarding the reactive power, in order to support the network operation, the converters of the 

storage systems are controlled to provide the maximum reactive power compatible with the 

constraint Equation (6) while assuring not to inject reactive power into the upstream network.  
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Figure 3. Example of Electrical Energy Storage Systems (EESS) scheduling–P is active power–(blue 

line: original load curve; red line: load curve including the storage systems; grey area: energy 

absorbed or provided by the EESS), , on-peak hours: 12:00 noon to 6:00 

pm–part-peak hours: 8:30 am to 12:00 noon and 6:00 pm to 9:30 pm – off-peak hours: 9:30 pm to 8:30 

am. 

 

Figure 4. Example of EESS scheduling–P is active power–(blue line: original load curve; red line: load 

curve including the storage systems), 
.
 

4. Micro Genetic Algorithms 

The μGA used in [28] is applied in this paper. The μGA, which is used to reduce the processing 

time required by simple GAs, explores the possibility of working with small populations. The μGA 

evolves with populations of only five individuals, and it uses the selection and the crossover. The 

mutation is not applied, since diversity is guaranteed by periodically refreshing the population. The 

replacement of the population (except the replacement of the best individual) is also performed [28].  

In particular, the selection is based on the roulette wheel method. The amount of diversity of the 

population, after the application of genetic operators, is measured by counting the total number of 

genes that are unlike the genes of the best individual. When the diversity of the population is smaller 

than a selected threshold, four individual populations are deleted and replaced by new randomly-

, , , , , ,ch d y ch d y ch d y
  =  

, , , , , ,ch d y ch d y ch d y
  =  
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generated individuals. The next step is performed with this new population, made up of four new 

random individuals and of the best individual of the previous population. Of course, if the 

population diversity is greater than the selected threshold, the algorithm is halted. For the 

applications of μGAs, two different halt conditions are used:  

• a control on the fitness improvement provided by the next solution; or 

• a maximum number of generated individuals. 

In the first case, the algorithm's processing ends when the best fitness value remains stable for a 

certain number of generations; a maximum number of generations is previewed after the algorithm 

ends. In particular, in order to avoid premature convergences, this verification is performed after the 

diversity check. 

The second condition stops the algorithm at an assigned finite number of generated individuals 

(200 in this paper). 

5. Case Study 

The planning problem related to the sizing and siting of EESSs is solved for the IEEE unbalanced 

34-bus test system shown in Figure 5. This system contains a mixture of single- and three-phase lines 

and loads. Note that the system lines 808–810, 816–818, 818–820, 820–822, 824–826, 854–856, 858–864, 

and 862–838 are single-phase and the remaining lines are three-phase. The complete network data 

and parameters are in [29].  

The EESSs can be allocated at single-phase and three-phase buses. 

Time-of-Use pricing of energy bought from the utility is assumed, with the tariffs reported in 

Table 1 [30]. These tariffs are chosen since they are characterized by a significant spread between on-

peak and off-peak prices, which nowadays is a mandatory condition to profitably use storage 

systems. 

Three typical days (i.e., working day, Saturday, Holiday) and four seasons are considered. As a 

result, 24 typical days are assumed [31]. A rate of increase equal to 2% was assumed in order to 

account for an increase of load over the planning period. The peak powers are set at 70% of the 

nominal power of the load in [29].  

Both the effective rate of change and the discount rate are assumed equal to 3%. 

Two operation modes of energy storage systems are considered: 

• Mode 1: The energy storage systems are used only in the summer months: during the off-peak 

hours they can charge, and during the rest of the day the battery can discharge. The storage 

systems also exchange the reactive power subject to the constraints of Equation (6).  

• Mode 2: For each day of the year, the energy storage systems can charge during the off-peak hours, 

and they can discharge during the remaining hours. Both active and reactive powers can be 

exchanged subject to the constraints of Equation (6). 

 

Figure 5. IEEE 34-bus test system. 
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Table 1. Time of use (TOU) Tariff. 

Summer Tariff 

 Period price ($/MWh) 

On-peak 12:00 noon to 6:00 pm 542.04 

Part-Peak 8:30 am to 12:00 noon and 6:00 pm to 9:30 pm 252.90 

Off-Peak 9:30 pm to 8:30 am 142.54 

Winter Tariff 

 Period price ($/MWh) 

On-Peak 8:30 am to 9:30 pm 161.96 

Off-Peak 9:30 pm to 8:30 am 132.54 

With reference to the constraints, the maximum line currents are fixed at the ratings reported in 

[29], and the maximum value of the unbalance factor at each bus is set at 3%. The minimum and the 

maximum values of the voltage at each phase of each bus are set at 90% and 110% of the nominal 

value, respectively. 

5.1. Analysis of Several Technologies 

Several technologies can be considered for the batteries used in the EESSs. They have different 

characteristics in terms of:  

• Energy and power installation costs 

• Electrochemical properties (energy density, power density) 

• Costs evolution 

• Performances. 

From the analysis of the data reported in [32], it is evident that NaS (Sodium-Sulfur) batteries 

are associated with the smallest costs, whatever their operation mode. However, the EESSs based on 

these batteries are available starting from 800 kVA/4.8 MWh size [33]; therefore, they are not 

compatible with the distributed EESSs concept analyzed in this paper for the network under study. 

Na-NiCl2 batteries can be considered as the candidate technology for EESSs due to their 

modularity and to economic considerations [32]. 

With respect to EESSs, the following assumptions stand: 

• The unit storage system available at any phase of each bus is assumed to come in discrete sizes 

of 50 kVA; 

• The standard value of the power/energy ratio for Na-NiCl2 batteries is generally around 1/3 [34];  

• The efficiencies in charging and discharging modes are set at 0.9 [34]; 

• The installation cost at year 1 is assumed to be 400 $/kWh [32]; the expected evolution of battery 

costs in the next years is also provided in [32]. Based on this analysis, in this application, the 

replacement cost was evaluated for each year of the planning period according to [32]. 

5.2. Results 

Tables 2 and 3 report the results obtained for Mode 1 and Mode 2 operations, whereas Table 4 

reports the values of the objective function for the optimal configurations of Tables 2 and 3 (in per 

unit (p.u.) value of the objective function without any EESSs).  

We point out from the analysis of the results reported in Tables 2–4 that: 

• the optimal value of the power/energy ratio is always 1/6; this value is adequate for Na-NiCl2 

batteries.  

• The total size of installed EESSs is 700 kVA (4.2 MWh) for Mode 1 and 650 kVA (3.9 MWh) for 

Mode 2, respectively.  
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• The Mode 1 allows it to obtain smaller total costs. These results confirm that there is convenience 

in using the storage systems only in the most adequate conditions, due to the non-negligible 

cycling costs.  

Table 2. Optimal location and size of energy storage systems for Mode 1. 

Storage systems Location and Size 

Three-phase storage systems 

150 kVA/900 kWh at bus #806 

150 kVA/900 kWh at bus #836 

150 kVA/900 kWh at bus #844 

150 kVA/900 kWh at bus #860 

Single-phase storage systems 
50 kVA/300 kWh at bus #810 

50 kVA/300 kWh at bus #818 

Table 3. Optimal location and size of energy storage systems for Mode 2. 

Storage systems Location and Size 

Three-phase storage systems 

150 kVA/900 kWh at bus #806 

150 kVA/900 kWh at bus #844 

300 kVA/1800 kWh at bus #858 

Single-phase storage systems 50 kVA/300 kWh at bus #818 

Table 4. Objective function of the optimal configurations. 

Mode Objective Function (p.u.) 

Mode 1 0.8974 

Mode 2 0.9447 

A further analysis aims at evaluating the performance of the optimal configuration of Table 2 

when the operating Mode 2 is implemented, and at evaluating the performance of the optimal 

configuration of Table 3 when the operating Mode 1 is implemented. The results are reported in Table 5.  

Table 5. Objective function of the optimal configurations. 

Configuration 
Objective Function (p.u.) 

Operating Mode 1 Operating Mode 2 

Optimal configuration obtained for Mode 1  0.8974 0.9466 

Optimal configuration obtained for Mode 2 0.8991 0.9447 

The EESSs have a positive effect on voltage amplitudes and on the unbalance factor as well. Of 

course, the voltage amplitude (as well as the unbalance factor) varies with the node, the day, and the 

hour. The minimum, the mean, and the maximum values of the voltage amplitudes during one year 

are shown in Figure 6 for all of the buses and for the three phases. The minimum, the mean, and the 

maximum values of the unbalance factor during one year are shown in Figure 7 for all of the three-

phase buses.  
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(a) 

 
(b) 

 
(c) 

Figure 6. Minimum, mean, and maximum values of phase voltage amplitude (a): phase a; (b): phase 

b; (c): phase c, at all buses (in one year). 
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Figure 7. Minimum, mean, and maximum values of unbalance factor at all three phase buses (in one 

year). 

The planning problem of the optimal sizing and siting of EESSs is also solved by means of the 

μGA. In this case, the outer routine applies the μGA, in which the EESSs sites and sizes (powers) are 

discrete variables. The optimal location and size for the operation of Mode 1 are reported in Table 6, 

and the objective function of the optimal configuration (in per unit value to the objective function 

without any EESS) is 0.8971 p.u. The result is very close to the one obtained by applying the SPSA, in 

spite of a much longer computational time. In particular, the proposed procedure (based on the 

application of the SPSA algorithm) has required a computational time of about 60 hours, which is 30 

times lower than that requested by the μGA. These times must be handled with care because our 

software was not optimized for computational speed and the simulations were carried out with 

Matlab (MathWorks, Natick, MA, USA) programs by a 3.6 GHz-16 GB RAM PC Xeon processor E3-

1280v2 (Intel corporation, Santa Clara, CA, USA). Nowadays, massive computation is becoming 

accessible with the new machines and configurations (parallel distributed processing and 

environment). 

Table 6. Optimal location and size of energy storage systems for mode 1 by applying the μGA. 

Storage Systems Location and Size 

Three-phase storage systems 

150 kVA/900 kWh at bus #802 

150 kVA/900 kWh at bus #836 

150 kVA/900 kWh at bus #844 

150 kVA/900 kWh at bus #852 

Single-phase storage systems 
50 kVA/300 kWh at bus #810 

50 kVA/300 kWh at bus #820 

Eventually, an exhaustive search is performed for a single EESS NaS installation (800 kVA/4.8 

MWh) in order to check the benefits of the distributed EESS concept. The exhaustive search results in 

an optimal value of the objective function equal to 0.8991 p.u., and the optimal location is at the node 

#832. Therefore, despite the smaller cost of the NaS technology, the distributed concept allows to 

obtain better performances. 

6. Conclusions 

In this paper, an optimization problem for the optimal siting and sizing of battery systems in an 

unbalanced electrical distribution systems is formulated and solved with a simplified hybrid 

algorithm. The algorithm significantly reduces the computational efforts involved in the solution of 
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the high dimensional mixed integer and nonlinear optimization problem by applying (i) the 

Simultaneous Perturbation Stochastic Approximation method and (ii) an inner simplified procedure 

that allows it to quickly carry out the daily scheduling (charging/discharging) of the EESSs. The 

numerical application to an unbalanced IEEE test network clearly shows the feasibility and 

effectiveness of the proposed solution in terms of accuracy and reduced computational time. The 

results are compared with the ones obtained by applying a micro Genetic Algorithm. 

The proposed approach gives insight into the technical and economic advantages of using 

distributed electrical energy storage systems in an unbalanced distribution network. 

In the present paper, the size of EESSs was assumed as a discrete variable; however, it can be 

considered as a continuous variable as well. Since this point is worth further investigation, a future 

work will address the comparison of the discrete and continuous sizing of EESSs. 

Future research on the subject will extend the proposed analytical approach to take into account 

the different sources of uncertainties involved in the EESSs allocation problem. 
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Appendix A. List of Principal symbols  

𝛼 Discount rate  

𝛽 Rate of change of the electrical energy cost 

𝛾𝑠,ℎ,𝑑,𝑦 
Efficiency of the electrical energy storage system installed at bus 𝑠, 

at hour ℎ of the day 𝑑 in the year 𝑦 

𝜃𝑏,ℎ,𝑑,𝑦
𝑝  

Phase of voltage at phase 𝑝 of bus 𝑏, at hour ℎ of the day 𝑑 in the 

year 𝑦 

∆𝑘 kth random perturbation vector 

∆𝑡 Duration of the time intervals in Ω𝐻 

Ω𝐵 , 𝑏 Set/index of the busses of the network 

Ω𝐷 , 𝑑 Set/index of day 

Ω𝐻 , ℎ Set/index of hour 

Ω𝐿 , 𝑙 Set/index of line 

Ω𝑆, 𝑠 Set/index of bus with electrical energy storage systems 

Ω𝑌, 𝑦 Set/index of year 

𝑎𝑘 , 𝑐𝑘 Constants 

𝑐ℎ,𝑑,𝑦
𝐸  Unitary cost of energy  

𝑓𝑜𝑏𝑗  Objective function 

𝒈𝑘 kth gradient 

𝑘𝑑𝑏,ℎ,𝑑,𝑦  Unbalance factor at bus 𝑏, at hour ℎ of the day 𝑑 in the year 𝑦 

𝑘𝑑𝑚𝑎𝑥  Maximum allowable value of unbalance factor  

𝑝 Index of bus phase (𝑝=1,2,3) 

𝑟𝑠 Number of replacements of batteries installed at bus 𝑠 

𝑡𝑑𝑖𝑠𝑐ℎ nominal discharging time 

𝑡𝑑𝑖𝑠𝑐ℎ
𝑚𝑎𝑥  maximum value of the nominal discharging time 

𝑥𝑖 ith variable 

𝐵𝐶𝐸𝑆  
Installation cost of electrical energy storage system for unit of 

energy 

𝐶𝐸𝑆 Cost of the energy storage systems installed in the system 

𝐶𝐸𝑆𝑠
  Cost of the energy storage system installed at bus 𝑠  

𝐶𝐸 
Cost of the energy acquired from the upstream grid in the planning 

period 
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𝐶ℎ,𝑑,𝑦
𝐸  

Cost of energy provided by the upstream grid, at hour ℎ of the day 

𝑑 in the year 𝑦 

𝐸𝑠
𝑠𝑖𝑧𝑒  

Size (energy) of the electrical energy storage system installed at bus 
𝑠 

𝐸𝐶𝐸𝑆𝑦
 Unitary capacity cost of the batteries, at the year 𝑦 

𝐺𝑏𝑘
𝑝𝑚

, 𝐵𝑏𝑘
𝑝𝑚 

Terms of the three-phase network admittance matrix relating bus 𝑏 

with phase 𝑝 and bus 𝑘 with phase 𝑚 

𝐼𝑙,ℎ,𝑑,𝑦  Current flowing in line 𝑙, at hour ℎ of the day 𝑑 in the year 𝑦 

𝐼𝑙
𝑚𝑎𝑥  Ampacity of line 𝑙 

𝑁𝑏 Number of buses 

𝑃1,ℎ,𝑑,𝑦
𝑝   

Active power at phase 𝑝 of the slack bus, at hour ℎ of the day 𝑑 in 

the year 𝑦 

𝑃𝑏,ℎ,𝑑,𝑦
𝑝   

Active power at phase 𝑝 of bus 𝑏, at hour ℎ of the day 𝑑 in the 

year 𝑦  

𝑃𝐸𝐸𝑆𝑆  Power rating of the equivalent EESS (Fig. 2) 

𝑃𝑜𝑛 𝑝𝑒𝑎𝑘,𝑑,𝑦 
Constant value of load and equivalent EESS power during the on 

peak hours 

𝑃𝑜𝑓𝑓 𝑝𝑒𝑎𝑘,𝑑,𝑦 
Constant value of load and equivalent EESS power during the off 

peak hours 

𝑃𝑠
𝑠𝑖𝑧𝑒   

Size (power) of the electrical energy storage system installed at bus 
𝑠 

𝑃𝑠,ℎ,𝑑,𝑦
𝐸𝑆  

Active power of the electrical energy storage system installed at bus 

𝑠, at hour ℎ of the day 𝑑 in the year 𝑦  

𝑃𝑒𝑞,ℎ,𝑑,𝑦
𝐸𝑆  

Active power of the equivalent electrical energy storage system, at 

hour ℎ of the day 𝑑 in the year 𝑦  

𝑃𝑉 Present value 

𝑄𝑏,ℎ,𝑑,𝑦
𝑝   

Reactive power at phase 𝑝 of bus 𝑏, at hour ℎ of the day 𝑑 in the 

year 𝑦 

𝑄𝑠,ℎ,𝑑,𝑦
𝐸𝑆   

Reactive power of the electrical energy storage system installed at 

bus 𝑠, at hour ℎ of the day 𝑑 in the year 𝑦 

𝑆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  Rating of the interfacing transformer  

𝑆𝑠
𝐸𝑆  

Rating of the AC/DC interfacing converter of the electrical energy 

storage system installed at bus s  

𝑆𝐼𝐶𝐸𝑆 Initial cost of electrical energy storage system for unit of power 

𝑉𝑏,ℎ,𝑑,𝑦
𝑝  

Magnitude of voltage phase p of bus b, at hour h of the day d in the 

year y 

𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 Minimum and maximum allowable value of voltage magnitude  

𝑿 Vector of variables 
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