
energies

Article

Analysis of Pressure Fluctuations in a Prototype
Pump-Turbine with Different Numbers of Runner
Blades in Turbine Mode

Deyou Li 1 ID , Yuekun Sun 2, Zhigang Zuo 2,*, Shuhong Liu 2,*, Hongjie Wang 1 ID

and Zhenggui Li 1,3

1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
lideyou@hit.edu.cn (D.L.); wanghongjie@hit.edu.cn (H.W.); lzhgui@mail.xhu.edu.cn (Z.L.)

2 State Key Laboratory of HydroScience and Engineering, Department of Energy and Power Engineering,
Tsinghua University, Beijing 100084, China; syk0409@126.com

3 Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education Sichuan,
Chengdu 610039, China

* Correspondence: zhigang200@tsinghua.edu.cn (Z.Z.); liushuhong@mail.tsinghua.edu.cn (S.L.);
Tel.: +86-10-6277-3947 (Z.Z.)

Received: 20 April 2018; Accepted: 31 May 2018; Published: 6 June 2018
����������
�������

Abstract: In pump-turbines, high pressure fluctuation is one of the crucial instabilities, which is
harmful to the stable and effective operation of the entire unit. Extensive studies have been carried
out to investigate pressure fluctuations (amplitude and frequency) at specific locations. However,
limited research was conducted on the distribution of pressure fluctuations in turbine mode in a
pump-turbine, as well as the influence of the number of runner blades on pressure fluctuations. Hence,
in this study, three dimensional numerical simulations were performed to predict the distribution
of pressure fluctuations with different numbers of runner blades in a prototype pump-turbine in
turbine mode using the shear stress transport (SST) k-ω turbulence model. Three operating points
with the same hydraulic head and different mass flow rates were simulated. The distribution of
pressure fluctuation components of blade passing frequency and its harmonics in the direction along
the whole flow path, as well as along the circumferential direction, was presented. The mass flow
rate and number of runner blades have great influence on the distribution of pressure fluctuations,
especially at blade passing frequency along circumferential direction. The mass flow rate mainly
affects the position of peak pressure fluctuations, while the number of runner blades mainly changes
the number of peak pressure fluctuations. Additionally, the number of runner blades influences the
dominant frequencies of pressure fluctuations especially in the spiral casing and draft tube.

Keywords: pump-turbine; prototype; pressure fluctuation; number of runner blades; blade-passing
frequency

1. Introduction

Pumped storage power plants (PSPPs) have rapidly developed in recent years to balance the
variation of loads, which is induced by the large investment of renewable energies (such as solar
energy and wind energy) in the power grid [1,2]. Hence, the current of development of PSPPs
trends toward a higher specific speed, a higher head, and a large capacity [3,4]. As a consequence,
many technical issues arise in the safe and stable operations of pump-turbines, i.e., the key hydraulic
parts of PSPPs. Among these issues, hydraulic instabilities of pump-turbines are found as one of the
most influential ones, which is believed to be mainly originated from high pressure fluctuations in the
hydraulic components [5,6]. Hence, the characteristics of pressure fluctuations and the influences of
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the vital parameters (number of runner blades etc.) on pressure fluctuations are of great interest in
engineering practice.

A reference survey shows that, a large number of experimental and numerical studies have been
carried out on the generation mechanism and characteristics of pressure fluctuations in pump-turbines.
It has been concluded that the pressure fluctuations mainly originate from rotor—stator interaction
(RSI) in the vaneless space between guide vanes and runner blades [7], vortex rope in the draft tube [8],
and vortex motion in the stay/guide vanes [9,10].

It is shown that most studies have been performed on model pump-turbines. For examples:
Liu et al. [11] has studied the pressure fluctuations in the transient process of a pump-turbine in
turbine mode, with discussions of the influence of misaligned guide vanes (MGV). Li et al. [12] found
that the rotation of Dean Vortices in the draft tube induced strong low-frequency pressure fluctuations
under the large partial operating conditions of a model pump-turbine in pump mode. In other studies,
transient simulations in both turbine and pump modes of model pump-turbines have been carried
out, and the variation of pressure fluctuations in the transient processes have been obtained [3,13,14].
Ran et al. [15] experimentally studied the pressure fluctuations in a model pump-turbine at large
partial flow conditions, and showed an increase on the amplitudes of the pressure fluctuations against
stable operating conditions, which were caused by the rotating stalls in the guide vane region (0.2 f n).
Yang et al. [16] performed experimental studies on the pressure characteristics in the pump mode
of a low specific speed pump-turbine, and they concluded that high-amplitude pressure fluctuation
comes from the rotating stall through the spectral analysis of pressure–time series just as well as by
high-speed flow visualizations.

Additionally, the pressure fluctuation propagation of a pump-turbine in pump mode was analyzed
by Guo et al. [17]. It was concluded that the pressure fluctuation along the passage direction was
mainly affected by the interaction between the runner and vanes. Hence, the selection of the number
of runner blades is vital. The influence of the distributor pitch diameter on pressure fluctuations in
a pump-turbine was discussed by Sun et al. [18]. Analysis showed that the position of the guide
vanes had an obvious influence in the frequency characteristics of pressure fluctuation induced by RSI,
but minor influence in the amplitude.

In the prototype pump-turbines, the studies on pressure fluctuations through the experimental
and numerical methods are rather limited. Experiments in prototype pump-turbines are difficult
to be carried out. And the numerical simulations are much more difficult than that in the model
pump-turbines due to the larger size of geometry.

With respect to the experiments on prototype pump-turbines, Zhang et al. [19] studied the
characteristics of pressure fluctuations in a prototype pump-turbine with a wide range of load
conditions. According to the characteristics of pressure fluctuations, the investigated load range
was divided into three regions. In the first region with low load, the amplitude of pressure fluctuations
is the highest, which comes from rotor-stator interaction in the vanless space. In the second region
with medium low load, the amplitude of pressure fluctuations is less prominent, which is caused by
the swirling vortex rope in the draft tube. In the third region with high load, the amplitude of pressure
fluctuations is quietly limited, which mainly is originated from the rotor-stator interaction.

For numerical simulations of prototype pump-turbines, Liu et al. [20] carried out a 3D transient
simulation of the power failure process. It was shown that pressure fluctuations increase when the
pump-turbine was operating in pump-braking mode. Chen et al. [21] simulated the starting transient
process in a turbine model of a prototype pump-turbine. Li et al. [22] performed a 3D transient
simulation of a prototype pump-turbine during normal turbine shutdown. Xiao et al. [23] discussed
the effect of MGV on pressure fluctuations in a prototype turbine.

Many studies have revealed that the highest pressure fluctuations occur in the vaneless space of
the pump-turbines, which were induced by RSI [24]. To better understand the generation mechanism
of RSI, Ruchonnet et al. [25] carried out a one-dimensional numerical simulation to investigate the
hydroacoustic part of RSI. The numerical results show that there are several RSI patterns of the
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pressure fluctuations, which result from the rotor-stator excitation. Nicolet et al. [26] performed similar
work and studied the effect of the number of runner blades and the thickness of guide vanes on RSI.
The results reveal that the number of blades has an obvious influence on the first dominant frequency
in the vaneless space.

From the above literature review, it can be seen that the distribution of pressure fluctuation in
prototype pump-turbines in turbine mode has not been clear. Furthermore, there are no studies about
the effect of the number of runner blades on the characteristics of pressure fluctuations. Hence, in the
present study, 3D numerical simulations were performed using the SST k-ω turbulence model to
investigate the distribution of pressure fluctuations in a prototype pump-turbine in turbine mode with
different numbers of runner blades. Firstly, the numerical accuracy of the simulations was validated
using the available experimental data. The distribution of the pressure fluctuation along the flow
path and in the circumferential directions was analyzed. Then, the influence of mass flow rate on
the pressure fluctuation was discussed. Finally, the influences of the number of runner blades were
studied. The number of runner blades is usually 7 or 9 in the engineering application. The original
runner in this article is the one with 7 blades, while it was modified by adding 2 blade profiles in
order to have a runner with 9 blades. The hydraulic profiles of the added blades were the same as the
7 existing blades. Several operating points in turbine mode were studied to find out the influence of
the number of runner blades on pressure fluctuations.

2. Pump-Turbine Specification

The parameters of the prototype pump-turbine are shown in Table 1. The properties of the
fluid through the pump-turbine is water. Operating temperature is under the room temperature (20).
Density and viscosity are respectively set as 998.2 kg/m3 and 0.001003 Pa·s. The rated design point is
P0 is shown in Table 2. To analyze the influence of mass flow rate, another three operating points were
chosen in the simulations. The detailed information of the three operating points is listed in Table 2.
P2 is the operating point with the highest efficiency in the 230 m head, while P1 is a large flow rate
point and P3 is a small flow rate point.

Table 1. Parameters of pump-turbine.

Geometric parameters

D1 (m) 4.8
D2 (m) 3.15

Z 7 or 9
ZS 20
ZG 20

Operating parameters
(turbine mode)

Hd (m) 285
Qd (m3/s) 120
n (r/min) 300

ns 143

Table 2. Studied operating points.

No. α (◦) H (m) Q (m3/s) P (MW)

P0 21 285 119.9 308.1
P1 40 230 152.6 295.2
P2 22 230 107.9 217.4
P3 11 230 54.44 81.01

Figure 1 shows the whole geometry of the computational domain, which contains a spiral casing,
stay vane channels (20 stay vanes), guide vane channels (20 guide vanes), a runner and a draft tube.
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Figure 1. Hydraulic domain of the prototype pump turbine.

3. Numerical Model and Schemes

3.1. Mesh Generation

The mesh for numerical simulations in the study was generated in ANASYS 14.0 ICEM module.
Unstructured mesh was generated in the spiral casing and stay vane channels. Structural mesh was
created for guide vane channels, the runner and the draft tube. In order to satisfy the requirement of
y+, mesh near boundary walls are refined. The total number of elements is set as 17.3 million based on
the independence study of the mesh, as shown in Figure 2. It is that the test was performed regarding
the hydraulic efficiency (η) at rated design point (P0). Figure 3 and Table 3 give the mesh conditions of
major hydraulic components.
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Table 3. Mesh of different hydraulic parts.

Type
Inlet Spiral Casing Guide Vanes Runner Draft Tube

Whole
Structural Unstructured Structural Structural Structural

Nodes 288,347 1,737,211 1,676,610 5,533,416 1,646,592 10,882,196
Elements 298,480 7,833,653 1,798,270 5,741,808 1,578,539 17,250,750
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3.2. Locations of Pressure Monitoring points  

Pressure monitoring points were positioned in two manners in the pump-turbine. Twenty 
points were equally distributed in the vaneless space between guide vanes and the runner 
(HVS1-20), as shown in Figure 4. Other pressure monitoring points (HC, HST2 & HST1, HG, HFS, 
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paths, as shown in Figure 5. 
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3.2. Locations of Pressure Monitoring points

Pressure monitoring points were positioned in two manners in the pump-turbine. Twenty points
were equally distributed in the vaneless space between guide vanes and the runner (HVS1-20), as shown
in Figure 4. Other pressure monitoring points (HC, HST2 & HST1, HG, HFS, HVS, HD2 and HD6) were
placed in the middle of the flow channels, approximating theoretical flow paths, as shown in Figure 5.
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3.3. Numerical Schemes

ANASYS 14.0 FLUENT was used to perform the simulation. The SST k-ω turbulence model was
chosen in the simulations. It has been proven that SST k-ω model gives a good prediction of pressure
gradients and flow separations, which was employed in the present study. Velocity inlet at the spiral
casing and pressure outlet in the draft tube in turbine mode were set as the boundary conditions of
the pump-turbine. SIMPLEC pressure-velocity coupling scheme selected. Spatial discretization was
chosen as second order upwind. The unsteady time step 5.56 × 10−4 s was selected in the present
study, in which the runner rotates by 1 degree each step. The residual error was set as 10−4.

4. Result and Discussions

4.1. Validation of Numerical Method

Steady simulation results were validated against the experimental results. The experiments
were carried out in VA tech, under the guidance of the International Electrotechnical Commission
Standard [27]. The comparison of head and efficiency between the experiments and numerical results
is shown in Figure 6. With respect to head, the maximum error (less than 2%) occurs at operating point
P1, while for efficiency, the maximum error (less than 3%) occurs at operating point P3, it is seen that
due to the simplification of the geometry (including the clearance), numerical results show certain
small errors compared with experimental data. The overall agreements between the experiments and
the numerical results proved the accuracy of the numerical method.
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Numerical pressure fluctuations were also compared against experiments. The values and
frequency spectrum of relative pressure fluctuation amplitude (defined as ∆p/ρgH, where ∆p is the
total amplitude of pressure fluctuations; ρ is the density of water; H is the hydraulic head) in the spiral
casing, vaneless space and draft tube are shown in Table 4 and Figure 7.

Table 4. Accuracy validation of relative amplitude of pressure fluctuations.

HC HVS HD2

Cal. 1.19% 11.14% 1.86%
Exp. 1.01% 11.37% 1.68%
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4.2. Pressure Fluctuation Distribution in Circumferential Direction

Figure 8a gives pressure fluctuations at different locations in the vaneless space at P2 (best
efficiency point in turbine mode). In contrast to the pump mode [28], four peak values of relative
amplitude of pressure fluctuations are almost equally distributed.
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Figure 8b shows the Fast Fourier Transform (FFT) analysis of pressure fluctuations in the
vaneless space. It can be seen that the main pressure fluctuation components possess BPF and
its harmonic frequencies.

Figure 9 shows the pressure fluctuation components of BPF, 2BPF and 3BPF. The components of
2BPF and 3BPF almost keep the constant amplitude. The flow velocity contour in Figure 10 shows
the nonuniformity of the flow. The zones with larger velocity coincide with the zones with larger
amplitude of pressure fluctuations. This indicates that the nonuniformity of the flow in the vaneless
space is the reason of nonuniformity of pressure fluctuations
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4.3. Pressure Fluctuation Distribution in the Middle of Flow Channels

The relative amplitude of pressure fluctuations in the middle of flow channels is illustrated in
Figure 11a. A highest amplitude of pressure fluctuations occurs at HVS. Figure 11b shows FFT analysis
of pressure fluctuations at different locations. Details of amplitude of BPF, 2BPF and 3BPF can be
observed in Figure 12. It is seen that pressure fluctuation component with BPF is the first dominant,
whose amplitude decays in the spiral casing and draft tube. Meanwhile, component with 3BPF extends
from the vaneless space to the flow channels with almost constant amplitude. Amplitude of pressure
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fluctuation component of 3BPF is larger than BPF in the spiral casing and draft tube. In contrast, BPF is
the largest in the vaneless space. The results are similar with the results in pump mode [28].Energies 2018, 11, x FOR PEER REVIEW  9 of 16 
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4.4. Influence of Mass Flow Rate on Pressure Flucutaiton Distribution

To study the influence of the mass flow rate on the pressure fluctuation distribution, results at
two more operating points (P1 with a larger flow rate and P3 with a smaller flow rate) are analysed in
the following.

The relative amplitude of pressure fluctuations in the vaneless space at P1 and P3 is shown in
Figure 13. The results indicate that the relative amplitude of pressure fluctuations is different when
the mass flow rate changes. It is postulated that there are other pressure fluctuations sources when
the mass flow rate is either very large or very small. The spectrum analysis of pressure fluctuations at
P1 and P3 is shown in Figure 14. The low frequency (near rotational frequency) is much larger than
that at the best efficiency point P2, shown in Figure 8b. The low frequency in the vaneless space is
mainly caused by draft tube vortex, instead of RSI which is analysed in this article, shown in Figure 15.
The vortex in the draft tube was extracted through iso-surface of pressure (3540 Pa). When the mass
flow rate is larger or smaller than the rated flow rate, the draft tube vortex changes to helical vortex
which induces pressure fluctuations with low frequencies. Since our study focuses on the influence of
hydraulic instabilities in vaneless space, only the pressure fluctuation components with frequencies of
BPF, 2BPF and 3BPF are analyzed, as shown in Figure 16. The comparison between Figures 9 and 16
shows that the distribution of component at BPF, 2BPF and 3BPF are similar when the mass flow rate
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changes. There are four peak values of pressure fluctuations at BPF, while pressure fluctuations at
2BPF and 3BPF change little compared with that at BPF.Energies 2018, 11, x FOR PEER REVIEW  10 of 16 
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The detailed distribution of pressure fluctuations at BPF at operating points P1, P2 and P3 is
depicted in Figure 17. The position of peak value shifts in anticlockwise direction when the mass
flow rate decreases. The peak value position and shift angle when the mass flow rate is different,
as listed in Table 5. When the mass flow rate decreases by about 33%, the peak value position shifts in
anticlockwise direction about 18–36 degree. When the mass flow rate decreases by about 66%, the peak
value position shifts about 72–90 degree. That means the mass flow makes larger influence when the
mass flow is smaller.
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Table 5. Shift angle of peak value when the mass flow rate decreased.

Position of Peak Value Shift Angle

P1 HVS (5, 11, 15, 20) 0
P2 HVS (7, 12, 16, 2) 18–36◦

P3 HVS (9, 14, 19, 5) 72–90◦
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4.5. Influence of Number of Runner Blades

4.5.1. Circumferential Direction

The blade number of blades is changed from 7 to 9 by adding 2 additional blades with the same
profiles as the original blades. Other geometric profiles of pump-turbine kept the same. The comparison
of the hydraulic performance and the relative amplitude of pressure fluctuations of this model with
9 and 7 blades are respectively shown in Figures 18 and 19. It is seen from Figure 18 that the head
with 9 runner blades is larger than that with 7 runner blades, while efficiency with 9 runner blades
is lower than that with 7 runner blades at almost all the operating points. For the relative amplitude
of pressure fluctuations, at large flow rate operating point (P1), the amplitude with 9 runner blades
is much higher than that with 7 runner blades; at set flow rate operating point, the amplitude with
9 runner blades is almost equal to that with 7 runner blades; and at small flow rate operating point,
the amplitude with 9 runner blades is less than that with 7 runner blades.
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The peak value position of BPF is discussed below. The distribution of pressure fluctuation
components of BPF at operating points P1, P2 and P3 with 9 impeller blades is show in Figure 20.
The number and position of peak value both change by changing the number of runner blades.
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Figure 20. Pressure fluctuation components of BPF at different circumferential locations at P1, P2 and
P3 operating points with 9 impeller blades.

Table 6 and Figure 21 show the detailed peak value position and shift angle when the mass flow
rate decreased with 9 blades. The number of peak values of BPF is 6 at P1 and P3 operating points,
while it is 5 at the P2 operating point. There are four peak values of BPF at the P1, P2, and P3 points
when the blade number is 7. That means that the number of blades mainly influences the number of
peak values at BPF.
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Table 6. Shift angle of peak value when the mass flow rate decreased with 9 blades.

Position of Peak Value Shift Angle

P1 HVS (5, 8, 13, 16, 19, 2) 0
P2 HVS (5, 10, 14, 20, 2) NA
P3 HVS (7, 10, 13, 17, 20, 3) 18–36◦

4.5.2. In the Spiral Casing and Draft Tube

The number of runner blades also influence the pressure fluctuations in the spiral casing and
draft tube. Figure 22 shows the comparison of frequency spectrum of pressure fluctuations in the
spiral casing, while Figure 23 shows that in the draft tube. The results indicate that the first dominant
frequency in the spiral casing and draft tube is 105 Hz (3 × 7f n) with the combination of 7 blades
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and 20 guide vanes, while the first dominant frequency is 90 Hz (2 × 9f n) with the combination of
9 blades and 20 guide vanes. The 7fn and 9fn are the separately BPF in 7 blades and 9 blades. When the
blade number is 9, the BPF (9f n) has an obvious increase compared with 7 blades. Furthermore,
the amplitudes of dominant frequencies are obviously reduced with 9 runner blades compared with
those with 7 runner blades.
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5. Conclusions

The conclusions that can be drawn from the numerical simulations are as follows.

(1) There are peak values of relative amplitude of pressure fluctuations which are almost equally
distributed along the circumferential direction in the turbine mode. It is different to that in the
pump mode. The position of peak pressure fluctuations is changed by changing mass flow rate.
The position of peak value shifts in the anticlockwise direction as the mass flow rate is decreased.
The shift is larger when the mass flow is smaller.

(2) The number of runner blades has a significant influence on the dominant characteristics of
pressure fluctuation. The spectrum of pressure fluctuations with 9 blades is obviously different
with 7 blades. The first dominant frequency in the vaneless space is blade-passing frequency
(BPF), which is nonuple rotational frequency (9f n) in 9 blades geometry and septuple rotational
frequency (7f n) in 7 blades geometry. The first dominant frequency in the spiral casing and
draft tube is 21f n with the combination of 7 blades and 20 guide vanes, while the first dominant
frequency is 18f n with the combination of 9 blades and 20 guide vanes.
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(3) The number of runner blades obviously affects the number of peak pressure fluctuations,
which mainly changes the number of peak pressure fluctuations at BPF. The amplitudes of
pressure fluctuation in the draft tube and the spiral casing are obviously reduced with 9 runner
blades compared with those with 7 runner blades.

According to the above studies, the number of runner blades have a large influence on the
pressure fluctuation in the vaneless space in pump-turbines, which is a major factor affecting the
hydraulic stability. However, its influence is clearly subjected to the design and working conditions
of a specific given pump-turbine unit. Hence, it is recommended to adequately consider both the
hydraulic performance and stability, in terms of the influence of the number of runner blades in the
design stage for engineers.
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Nomenclature

BPF Blade passing frequency
2BPF Two times blade passing frequency
3BPF Three times blade passing frequency
D1 Runner outlet diameter, m.
D2 Runner inlet diameter, m.
f n Rotational frequency, Hz.
H Head, m.
Hd Rated head, m.
n Rotating speed, r/min.

ns Specific speed, ns =
π
30 nQd

0.5

(gHd)
0.75 .

P Input power, kW.
Qd Rated discharge, m3/s.
Z Number of runner blades
Zg Number of guide vanes
Zs Number of stay vanes
α Guide vanes opening, ◦

η Efficiency, the ratio of mechanical power of runner to the hydraulic power, %.
Cal Results from numerical simulation
Exp Results from experiments
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